UNIVERSITAT BASEL

PAN - A P2P Approach for Scalable
Complex Event Detection in Distributed
Data Streams

Master Thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Databases and Information Systems (DBIS) Group
http://dbis.cs.unibas.ch/

Examiner: Prof. Dr. Heiko Schuldt

Supervisor: Ivan Giangreco, M.Sc.

Lukas Probst
lukas.probst@unibas.ch
09-050-402

August 8, 2014

N

/|/_/
NN

RN

UNI
BASEL

Acknowledgments

First, I would like to thank Prof. Dr. Heiko Schuldt for the opportunity to write my
master thesis in the DBIS group and his great feedback in our meetings. Special thanks
go to my supervisor, Ivan Giangreco. His feedback, proofreading and especially our regular
controversy and inspiring discussions were very helpful. In addition, I want to thank all the
other nice people who supported me with feedback and thought-provoking impulses.

Moreover, I would like to take this opportunity to thank my family, my friends and especially

my girlfriend Lea for supporting me during the last labor intensive months.

Abstract

In the last decade, the number of data streams and the volume of streamed data has increased
enormously. With this trend, the importance of detecting complex events in data streams
in real-time has increased as well. Solving this problem is important for many economical
as well as entertainment (e.g., sport analyses) use cases.

In this thesis, we present PAN (P2P Analysis Network). PAN is a generic real-time complex
event detection system which is able to analyze multiple distributed input data streams and
handle several client requests.

In order to be scalable, PAN distributes its workload onto several workers hosted on peers
in a P2P network, which are combined to a workflow. This general idea is not novel but
used by many distributed complex event processing (CEP) systems. However, PAN uses a
pull-based - instead of the common push-based - publish/subscribe approach to connect the
workers and thereby inverts the workflow definition direction. This fundamental difference
enables the dynamic extension of the workflow at runtime without changing the existing
workflow. In consequence, PAN is able to handle clients as sinks of a workflow and balance
the load onto multiple publishers. This makes PAN scalable not only in terms of data but
also w.r.t. the number of client requests.

Evaluations based on an extended version of the ACM DEBS 2013 Grand Challenge scenario
confirm that the PAN approach works well, i.e., that it is possible to combine the workers
of a real-time complex event detection system to a workflow by means of a pull-based

publish/subscribe system.

Table of Contents

Acknowledgments ii
Abstract iii
Abbreviations viii
Figure Legend ix
1 Introduction 1
1.1 Motivation Scenario 2
1.1.1 The ACM DEBS 2013 Grand Challenge 2

1.1.1.1 Setting 3

1.1.1.2 Requirements Lo 4

1.1.1.3 Queries 4

1.1.2 Scenario Extension o 5

1.1.2.1 Multiple Sensor Data Streams 5

1.1.2.2 Client Requests 6

1.2 Problem Statement 7

2 Background 10
2.1 Proposed Grand Challenge Solutions 10
2.2 Comparisono e 13
2.3 Scenario Extension Consideration 14

3 Evaluation Problem - Sensor Simulation Environment 16
3.1 Problem e 16
3.1.1 Additional Requirements, 17

3.1.2 Sensor Data Separation 17

3.1.3 Real-World and Real-Time Simulation 17

3.1.3.1 Real-World 18

3.1.3.2 Real-Time 18

3.2 Theory o o o e 19
3.2.1 Sensor Data Separation 19

3.2.2 Real-World and Real-Time Simulation 20

3.2.21 Real-World e 20

Table of Contents

v
3222 Real-Time 21

3.3 Implementation 24
3.3.1 Sensor Data Separator 0. 24
3.3.2 WeakTrueTime 25
3.3.2.1 Weaker Guarantees 25

3.3.2.2 Assumptions 25

3.3.2.3 Architecture 26

3.3.2.4 WeakTrueTime Calculation 27

3.3.3 Sensor Simulator L L 28
3.3.3.1 Sensor Simulation Environment 29

3.3.3.2 Sensor Simulator Architecture 29

4 PAN - P2P Analysis Network 33
4.1 Background 33
4.2 Concepto 34
42,1 PANataGlance e 34
4.2.2 Architecture e 35
4.23 Workflow 36
4.2.4 Worker 37
4.2.4.1 Input/Output 38

4.2.4.2 Internal Components 39

4.2.4.3 Component Separation and Single-Purpose Workers 40

4.2.5 Publish/Subscribe Lo L 41
4.2.5.1 Pull-Based Approach 41

4.2.5.2 Publish/Subscribe Repository 42

4.2.6 Client Requests 44
4.2.7 Consequences of the REST-Interface Communication Approach 44
428 Load Balancing o 45

4.3 Implementation L 47
4.3.1 RingBuffer 48
4.3.2 REST-Interfaces e 48
4.3.3 Logging 49
4.3.4 ACM DEBS 2013 Grand Challenge Workflow 49
4.3.5 Launch and Deployment Scripts 50

5 Evaluation 51
5.1 Sensor Simulation Environment 00000 51
5.2 PAN . . e 54
5.2.1 Setting 54
5.2.2 Query Delay Metric 55
5.2.3 Big Workflow Evaluations 57
5.2.3.1 Workflow 57

5.2.3.2 Degree of Distribution 58

5.2.3.3 Intra-PAN Network Properties 60

Table of Contents vi

5234 Consistencyo 63

5.2.4 Stream Repeaters and Load Balancing 64

5.2.4.1 Workflow and Setup Modification 64

5242 Results 65

5.2.5 Visualization 66

52.5.1 Full Game 66

5252 Heat Map. e 67

5.2.6 Discussion 68

6 Related Work 70
7 Conclusion 73
Bibliography 74
Appendix A Class Diagrams 77
A1 WeakTrueTime Class Diagram 7
A.2 Sensor Simulator Class Diagram 78
Appendix B Sensor Simulator Parameters 79
Appendix C REST-Interfaces 80
C.1 Publish/Subscribe Repository 80
C.2 Worker o e 81
Appendix D Workers and Components 82
D.1 Internal Components 82
D.1.1 Generic oL e 82

D.1.2 ACM DEBS 2013 Grand Challenge Specific 83

D.2 Workers e 84
D.2.1 Generico 84

D.2.2 ACM DEBS 2013 Grand Challenge Specific 85
Appendix E Workflows 86
El Full Game o . e 86
E.1.1 Full Gameon 3 Peers 86

E.1.2 Full Gameon 6 Peers 87

E.1.3 Full Game on 8 Peers 87

E.1.3.1 JSON Config 88

E.1.4 Full Gameon 14 Peers 91

E.2 Sensor Forwarding 92
E21 1Forwarder e 92

E.2.2 1 Forwarder, 1 Repeater 92

E.2.3 1 Forwarder, 2 Repeaters 93

Table of Contents vii
E.3 Heat Map e 94
Appendix F Evaluation Settings 95
F.1 Sensor Simulator Config 95
F.2 PAN Config 96
F.3 Client Config e 97
Appendix G Evaluation Results 98
G.1 Sensor Simulation Environment 0oL 98
G.2 PAN . . e 101
G.2.1 Degree of Distribution 0oL 102

G.2.1.1 Table e 102

G.2.1.2 Graphs 103

G.2.2 Latency 105

G.221 Table 105

G.2.2.2 Graphs 106

G.2.3 Bandwidth 108

G.2.3.1 Table 108

G.23.2 Graphs 111

G.2.4 Consistency o e 113

G.2.5 Stream Repeaters and Load Balancing 115

G.2.5.1 Table 115

G.2.5.2 Graphs 116

Declaration on Scientific Integrity 119

Abbreviations

CEP Complex Event Processing
DEBS Distributed Event-Based Systems
DEBS’13 7th ACM International Conference on Distributed Event-Based Systems

FIFA International Federation of Association Football
FPGA Field Programmable Gate Array

P2P Peer to Peer

PAN P2P Analysis Network

REST Representational State Transfer
W2w Worker to Worker
WTT WeakTrueTime

Figure Legend

General Communication Distinction:
——>» Intra-PAN Communication

———» Inter-PAN Communication

Communication in exemplary Figures:

———» Real-World Sensor Data Input Stream

—>» Forwarded Real-World Sensor Data Stream

—> (Intermediate) Statistical Data Stream between two Workers
———>» Statistical Data Stream between Worker and Client

———>» Client Request (no Stream)

Symbols:
@)) (Simulated) Sensor
¥ client
e Algorithm

Abbreviations:

LL_A2 Left Leg Player A2 (i.e., SENSORA47)
RL_B1 Right Leg Player B1 (i.e., SENSOR61)
BP_A1 Ball Possession Player A1

BP_A Ball Possession Team A

HM_B1 Heat Map Player B1

W1 Worker 1

Acknowledgements:

The soccer field graphic in our figures are based on a Wikipedia offside graphic!. We want
to thank the Wikipedia user NielsF for creating this graphic and publishing it under the

“copyleft” license.

1 NielsF’s offside graphic: http://de.wikipedia.org/wiki/Datei:Offsidelarge.svg (07.08.2014)

http://de.wikipedia.org/wiki/Datei:Offsidelarge.svg

Introduction

In the last ten years, the number of data streams and the volume of streamed data has
increased enormously. With this trend, the importance of detecting complex events in data
streams in real-time has increased as well. Solving this problem is important for many
economical as well as entertainment (e.g., sport analyses) use cases. Hence, more and more
solutions for this problem arise (e.g., Amazon Kinesis [1]).

However, in many cases, these systems lack an evaluation base. For this purpose, the DEBS
Grand Challenge series was introduced. The main purpose of these challenges is to provide
an evaluation base for Complex Event Processing (CEP) systems. The ACM DEBS 2013
Grand Challenge [2, 3] defines a scenario for real-time event detection in a soccer match.
More precisely, the task is to generate several continuous data streams with statistics about
the ongoing soccer match (according to specified queries) given a single input data stream.
To make the scenario more realistic and generic, we modify it by introducing two extensions.
First, we change the setting from one input data stream to multiple distributed input data
streams. Therefore, we simulate each transmitter as an independent sensor which generates
and sends its own data stream. Second, we further introduce the problem of handling and
answering multiple parallel client requests.

In the context of the ACM DEBS 2013 Grand Challenge six solutions ([4], [5], [6], [7], [8]
and [9]) were published. Although, most of these solutions are generic, they do not face our
proposed scenario extensions. None of the solutions can handle multiple distributed input
data streams. Moreover, most solutions further disregard client requests or provide only
rudimentary solutions. In addition, most solutions are not scalable. In fact, only a single
solution is evaluated, and thus shown to be able to run, in a distributed manner.

In this thesis, we propose PAN (P2P Analysis Network). PAN is a scalable generic solution
for real-time complex event detection in distributed data streams. PAN’s architecture is
based on the workflow-based architecture idea proposed by Jergler et. al. [6]. Jergler et. al.
connect different workers with non-blocking ring buffers and thereby generate a workflow
consisting of a sequential and parallel arrangement and connection of workers. Jergler et.
al. further state that their idea can be distributed using the publish/subscribe concept.
However, they present only a centralized solution and do not describe in detail how the

distribution can be performed. Moreover, they do not face our scenario extensions.

Introduction 2

With PAN, we pursue Jergler’s architecture idea. More precisely, we extend and improve
it by means of implementing it in a distributed way and thereby transform the idea into a
very scalable approach. In addition, we solve our scenario extensions. PAN distributes its
workload onto several workers which are distributed onto multiple peers in a P2P network.
These workers are combined to a workflow using a pull-based publish/subscribe approach
instead of the common push-based approach. The major advantage of the pull-based ap-
proach is that it changes the workflow definition direction and thereby enables the adaption
of the workflow during runtime. As a result, PAN is flexible and scalable in terms of both,
data and client requests.

In the end of this thesis, we leverage the extended grand challenge scenario to evaluate
PAN’s applicability, scalability and performance characteristics.

The remainder of this thesis is organized as follows. Section 1.1 presents the ACM DEBS
2013 Grand Challenge as well as our scenario extensions in detail. The problem statement
is given in Section 1.2. Chapter 2 presents and discusses the published solutions for the
ACM DEBS 2013 Grand Challenge. We present our solution to the evaluation problem in
Chapter 3. Chapter 4 presents PAN. An evaluation of the sensor simulation environment
and PAN is given in Chapter 5. Finally, Chapter 6 presents related work and Chapter 7

concludes.

1.1 Motivation Scenario

The motivation scenario for this thesis is based on the ACM DEBS 2013 Grand Chal-
lenge. Section 1.1.1 presents the grand challenge scenario, i.e., the setting as well as the
requirements and the specified queries, in detail. Although the grand challenge scenario is
a remarkably good motivation and evaluation base for real-time complex event detection
systems, we further extend it by two aspects for this thesis. Section 1.1.2 presents both ex-
tensions and discusses why these extensions are reasonable. The purpose of both extensions
is to make the scenario more realistic and, moreover, force our solution to be more generic.
Thereby, we put special attention on the system’s scalability, distributability and capability
to handle distributed input streams and parallel client requests.

The resulting scenario is the motivating example scenario for this thesis. Moreover, the
sensor and meta data provided for the ACM DEBS 2013 Grand Challenge are used to

evaluate the correctness and performance of our approach.

1.1.1 The ACM DEBS 2013 Grand Challenge

In January 2013, Mutschler et. al. published the description of the ACM DEBS 2013 Grand
Challenge [2, 3]. The grand challenge is a part of the 7th ACM International Conference on
Distributed Event-Based Systems (DEBS’13)2. This challenge is the third of its kind. The
main purpose behind these challenges is to provide an evaluation base for CEP systems.

In a nutshell, the task in the 2013 grand challenge is to generate several continuous data

2 7th ACM International Conference on Distributed Event-Based Systems (DEBS’13): http://www.orgs.
ttu.edu/debs2013/ (07.08.2014)

http://www.orgs.ttu.edu/debs2013/
http://www.orgs.ttu.edu/debs2013/

Introduction 3

(@) ((T)) ((T)) @
@ ((T))

«j;» Ik
((T)) «m @ ((?)

Figure 1.1: RedFIR® Tracking System

RedFIR _ full-
CPU game

@)

streams with statistical data for a soccer match for a given continuous sensor data stream
in real time. In the remainder of this section, we will present the setting, the requirements
and the specified queries of the ACM DEBS 2013 Grand Challenge.

1.1.1.1 Setting

The dataset of the ACM DEBS 2013 Grand Challenge consists of a test soccer match (60
minutes, 8 vs. 8) of the German Bundesliga club 1. FC Niirnberg in which the position,
velocity and acceleration of each player and ball are captured with the highly accurate
RedFIR® tracking system®. Figure 1.1 illustrates the main components and the setup of
this system.

The fundamental idea of this system is comparable to GPS. More precisely, there is a RedFIR
transmitter built into each ball and in each of the player’s shin guards. The goal keepers are
additionally equipped with transmitters near the hands. Each RedFIR transmitter emits a
signal in a dedicated interval (ball 2000 Hz, others 200 Hz). Moreover, there are six reference
transmitters with known positions, placed at the four corners of the soccer field and at the
two crossing points of the halfway line and the sidelines. There are twelve receiving antennas
placed around the field. Each antenna is plugged to an FPGA which receives and cleans the
signal. All twelve FPGAs are synchronized. A CPU connected to all FPGAs can use the
time differences between the arrivals of each emitted signal at the different antennas and
the known positions of the reference transmitters to compute the positions of each RedFIR
transmitter. The velocity and the acceleration are further computed by the CPU using the
positions. Finally, the CPU generates a continuous and live data stream containing the

measurements of all transmitters with the following schema:

Sid, ts, x, y, 2, |’U|7 |a|7 Vgy Uy, Uz, Qg Qy, Gz

(e.g., A7, 10634747088949386, 27488, -5849, 161, 57112, 1206195, 5291, -7075, -4683, 8356, -5332, 1316)

3 RedFIR®: http://www.iis.fraunhofer.de/en/bf/In/referenzprojekte/redfir.html (07.08.2014)

http://www.iis.fraunhofer.de/en/bf/ln/referenzprojekte/redfir.html

Introduction 4

Real-Time [~ ~ >

full- Single Sensor Data Complex Event -~ -- >

game | usten Detection | e
System

Multiple Statistical Data
Output Streams

Figure 1.2: DEBS 2013 Grand Challenge Problem Overview Picture

In this 13-tuple sid denotes the sensor ID. A mapping from sensor IDs to the players and
balls is provided separately. ts stores the timestamp at which the data were measured. The
triplet (z,y, z) contains the position information. |v| and |a| are the absolute values of the
velocity and the acceleration, respectively. The remaining values describe the directions of
the velocity and the acceleration.

The ACM DEBS 2013 Grand Challenge provides a file (full-game) of approximately 4 GB
containing the generated data stream, i.e., the measurements of all transmitters. In the
challenge, this file is used to generate a continuous data stream as an evaluation base for
a real-time complex event detection system. The task is to analyze the sensor data stream
using different algorithms and generate statistical data streams which answer various queries
w.r.t. interesting soccer events and statistics. Figure 1.2 illustrates an overview of the

problem to be solved.

1.1.1.2 Requirements

An important requirement for the solution is that a query must be answered in real-time
on-line during the soccer match. Thus, both the analysis of the input stream (sensor data)
and the generation of the output stream (statistical data) have to be processed in real-
time while new data arrives. Moreover, an additional requirement is, that multiple queries
must be answered in parallel. Hence, the complex event detection system has to be able to
analyze different events and generate multiple output streams in parallel. Apart from these

requirements, there are no further specifications on how the problem should be solved.

1.1.1.3 Queries
The ACM DEBS 2013 Grand Challenge defines which queries have to be answered. Namely,

the following queries are required of the complex event detection system:

1. Running Analysis: The system should analyze the player movements and generate
individual running statistics for each player. The system should be able to generate

two different kinds of running statistics:

a) Current running statistics: This data stream should reflect the current running

intensity of the player.

Introduction 5

b) Aggregate running statistics (different window lengths): These data streams
should contain information about how long (time as well as distance) the player
stayed in a certain running intensity in the past (1 minute, 5 minutes, 10 minutes,

20 minutes or the whole game).

2. Ball Possession: The system has to generate ball possession statistics for each indi-

vidual player and aggregated statistics for the whole teams:

a) Per player: This stream should include the time of ball possession (for the whole

game) as well as the total number of ball hits of this player.

b) Per team (different window lengths): Each stream has to contain the aggregated
time of ball possession for all team members as well the percentage w.r.t. the ball
possession of both teams for the duration of the last window length (1 minute, 5

minutes, 10 minutes, 20 minutes or the whole game).

3. Heat Map: The system has to calculate statistics about the player presence in dif-
ferent regions on the soccer field. Therefore the system should generate heat map
streams for different grid sizes (104 cells, 400 cells, 1600 cells and 6400 cells). Further,
these statistics have to be calculated for different time windows (1 minute, 5 minutes,

10 minutes, 20 minutes and the whole game).

4. Shot on Goal: The system should be able to detect shots on the goal. For the
duration of the shot, i.e., until the ball is blocked or leaves the soccer field, a stream
containing the ball position, velocity and acceleration as well as the ID of the player

who shot has to be generated.

All streams for query group 1 and 2 have to be generated with a frequency of up to 50Hz.
The heap map streams (query 3) should only be updated every second. In contrast to the
first three queries which produce streams over the whole duration of the game, the shot
on goal query (query 4) only generates a data stream (with the frequency of incoming ball

sensor data updates) during a shot.

1.1.2 Scenario Extension

Due to the sensor data (full-game) and its detailed elaboration, the ACM DEBS 2013
Grand Challenge scenario described in Section 1.1.1 is a remarkably good example scenario
and evaluation base for a real-time complex event detection system. Nevertheless, in this
thesis we want to extend the scenario by two aspects, which are presented in the following
subsections. Figure 1.3 illustrates the impact of these extensions to the problem overview

picture.

1.1.2.1 Multiple Sensor Data Streams
First, in the grand challenge scenario there is only one input data stream containing the
positions as well as velocities and accelerations of all objects (i.e., balls, legs and hands).

The reason for this is the way the data were captured. In this aspect, we want to deviate

Introduction 6

Real-Time for BP_A1
Complex Event | 5°A
Detection <~ Raquest

System forBP_A

~H
I ~_ < \7\
~
Request for™ ~
HM_B1

Figure 1.3: Extended Problem Overview Picture

the example scenario and thus the motivation for this thesis from the original ACM DEBS
2013 Grand Challenge scenario. In contrast to only having one input data stream including
all measured data for all transmitters, we want to assume that each transmitter is a sensor
which measures its position, velocity and acceleration on its own and further produces its
own sensor data stream which acts as an input data stream for the real-time complex event
detection system.

This modification changes the scenario into a more distributed and thus more generic but also
more complex one. Instead of only one, the complex event detection system has to handle
several distributed input data streams. In our opinion this modification is very important
and reasonable since it forces the system to be more generic. We argue that a system which
should be applicable for other scenarios than the above presented grand challenge, should
be able to handle and analyze data from several distributed input data streams. Even in
the soccer match analysis case (using RedFIR), it is very likely that there are more than
one input data stream. For instance, in addition to the single RedFIR data stream, which
contains position, velocity and acceleration data, each player could be equipped with a heart
rate monitor which generates and sends an additional continuous data stream.

Hence, we simulate all transmitters (i.e., balls, legs and hands) as single sensors which
produce their own data streams in order to obtain an example scenario with multiple input

streams.

1.1.2.2 Client Requests

Second, there is another interesting topic which is not considered in the ACM DEBS 2013
Grand Challenge. The grand challenge only considers the analysis of the input data stream
and the generation of statistical output data streams. The problem description states that it
is sufficient to write the output data streams into files or the console output (stdout). Hence,
the grand challenge totally disregards how clients (e.g., television broadcast companies or
also normal persons) can request and access the data streams from the real-time complex
event detection system. In this thesis we also face this problem. Thus, the scenario is
further enriched with clients requesting, accessing and receiving the generated statistical

output streams.

Introduction 7

a Y N

full-
game || M

Single Si Dat: 3
ingle Sensor Data

Generate multiple
sensor data streams
using the single
provided file

BP_A1
M
==
=7 =

- e ﬁequest
Real-Time [© &
Complex Event |- ___8°A __
Detection R =
System o for BP_A
I~ : ~ 4B
Request?or\ ﬁ?
HM_B1
Evaluation Problem Main Problem
N)

Figure 1.4: Problem Separation

1.2 Problem Statement

Figure 1.4 illustrates the full problem which has to be solved in order to analyze the extended
motivation scenario presented in Section 1.1.2. The full problem includes both, generating
multiple input data streams using the provided data as well as analyzing these streams in
a real-time complex event detection system which further has to be able to handle multiple
different client requests in parallel. Hence, it can be separated into two parts: the evaluation
problem and the main problem.

The evaluation problem faces the issue, how to generate the input for evaluating the real-
time complex event detection system using the provided data. Since we want our system
to be able to detect events in multiple distributed input data streams, we have to generate
those streams. More precisely, we want to simulate a live ongoing soccer match in which
the players and the balls are equipped with independent sensors producing data streams
which are analyzed by the complex event detection system. Thus, the evaluation problem
considers how to generate multiple sensor data input streams from the single provided file
(full-game) in real-time. Chapter 3 describes the evaluation problem in detail and presents
our proposed solution as well as its implementation.

However, the main focus of this thesis is to develop a scalable real-time complex event
detection system for distributed data streams and thus solving the main problem. It is

important to note, that the purpose of this thesis is not to solve the extended version of the

Introduction 8

| __ OufputStream 1_ _y
—— - Tl & Reguestior — —?i
RealTime |
““““““ > Complex Event |« —_ . —— :?i
Detection ouiput Seem®
System

Input Stream | __ __ _Output Stream O_ _ v
————————— > - e o=
Request for

Output Stream O

Multiple Input Data Streams Multiple Clients Requests
for
Output Data Streams

Figure 1.5: Generic Problem Overview Picture with I Input Data Streams and O Output
Data Streams. To simplify the illustration each output data stream is only requested by
and sent to one client. In practice, an output data stream can be requested by multiple
clients and a client can request several streams.

ACM DEBS 2013 Grand Challenge presented in Section 1.1. Instead, the extended grand
challenge is only the motivating example scenario and the evaluation base for this thesis.
Rather its purpose is to develop a generic system which can analyze arbitrary events in
arbitrary distributed data streams. Hence, the system should not be adapted or optimized
for the grand challenge scenario and the scenario specific algorithms used for analyzing the
input streams (e.g., ball possession calculation) should be easily exchangeable.

Figure 1.5 illustrates the problem this thesis tackles. The main focus of this thesis is placed
on the development of the gray box in the middle, i.e., the real-time complex event de-
tection system. More precisely, the main problem we want to solve is how to handle and
analyze multiple distributed input data streams, how to generate several different output
data streams (with statistical data) and how to answer client requests with these streams.
Moreover, we suppose that there are situations which cannot be handled by a single machine
executing the whole real-time complex event detection system. Even in the grand challenge
scenario, there are several situations conceivable in which a single machine is not capable
of performing all work. For instance, assume that the number of sensors increases due to
more players or new sensor types (e.g., heart rate monitors). Alternatively, assume that
new statistics are introduced (e.g., cardioid or endurance statistics) or existing statistics are
refined (e.g., finer heat map grids or more sophisticated shot on goal detection algorithms).
Each of these small scenario modifications would increase the computational effort and it is
very likely that eventually the effort exceeds the computational power of a single machine.
But even if the scenario remains the same a single machine can be problematic if the number
of client requests increase. For instance, assume that the FIFA wants to provide each
television studio and all other interested parties data streams with real-time match statistics
of the World Cup final match. This offer would result in a huge number of requests that
could not be handled by a single machine. Both, its computational power and its network

connection, would become a bottleneck. If one further considers that we want to develop

Introduction 9

a generic system and not only a solution for the grand challenge, it is very clear, that our
system has so be scalable. We argue that this can only be achieved by distributing the
real-time complex event detection system onto multiple machines. Hence, obtaining good
scalability and high distributability while avoiding bottlenecks and single point of failures
whenever possible are our main targets. In Chapter 4 we present PAN, our P2P approach

for scalable complex event detection in distributed data streams.

Background

This chapter takes a close look on the solutions of the ACM DEBS 2013 Grand Challenge
[2, 3] (see Section 1.1.1), which were published in the Proceedings of the 7th ACM Inter-
national Conference on Distributed Event-Based Systems (DEBS’13). While Section 2.1
briefly summarizes each proposed solution, Section 2.2 compares them w.r.t. different issues
and tries to identify joint concepts. Finally, Section 2.3 discusses if and how the proposed

solutions consider our scenario extensions (see Section 1.1.2).

2.1 Proposed Grand Challenge Solutions

Jacobsen et. al. [4] present not only one but three solutions to the grand challenge. The au-
thors introduce a multi-stage monitoring pipeline consisting of three stages. The first stage
named data collection and dispatching stage feeds the complex event processing (CEP) en-
gine with the input data stream. The CEP engine performs the continuous query processing,
i.e., the second stage. The third stage, visualization and distribution, faces the problem of
providing the statistics to the clients. This is done either by a GUI-based monitoring panel
or by a publish/subscribe-based dissemination network. As mentioned above, the paper
presents not one but three solutions. More precisely, the authors present three CEP en-
gines for performing the second stage. The authors discuss the applicability of four existing
open-source off-the-shelf CEP engines. While they figured out that StreamIT and STREAM
are not suitable for solving the ACM DEBS 2013 Grand Challenge, they present solutions
based on Esper and Storm. Moreover, the authors develop BlueBay, an event processing
engine specialized for analyzing soccer games which is exactly adapted to the demands of the
Grand Challenge. The key concept which yields BlueBay’s good performance is the Stream
Window, which is a way of bucketizing in a circular buffer with a fixed length to perform
operations in constant time and with constant memory consumption. However, BlueBay
only supports limited parallelization which introduces a trade-off between throughput and
per-event delay and enables the deployer to distinguish between low-delay online analysis
and throughput-optimized offline analysis.

Wu et. al. present SPRINT [5]. SPRINT is a stream processing engine which analyses a

single data stream and generates multiple parallel output data streams with statistical data,

Background 11

i.e., answer multiple continuous queries in parallel. Although SPRINT is explicitly designed
for solving the ACM DEBS 2013 Grand Challenge, its architecture is also applicable to
other scenarios. Actually, generalizing SPRINT is one of the authors planned future work.
SPRINT’s architecture mainly consists of three components. First, the data source is read
by the preprocesser component. The preprocessor further injects the data tuples into an
shared lock-free ring buffer (LMAX Disruptor library [10]), which acts as a bridge between
the incoming data and the query processing. Hence, SPRINT follows the one-producer-
multiple-consumer model. The third component is a group of parallel query processors, which
read the data from the ring buffer. SPRINT supports inter- as well as intra-query parallelism.
Inter-query parallelism means, that each of the four queries is performed independently and
concurrently with the other queries. In addition, a query can be further parallelized by a
partition-and-merge paradigm. This additional parallelism is called intra-query parallelism.
Calculating the statistics in the different queries highly benefits from the frame-based sliding
window concept, which is a less memory consuming alternative to the common sliding-
window approach that splits the window into equal-sized intervals. Another noteworthy
point is that the authors exploit the fact that coarser heat maps can be generated by
aggregating the heat map with the finest granularity (6400 cells). A drawback of the SPRINT
approach is, that it uses load shedding to handle different query processing rates and avoid
blocking incoming data due to a full ring buffer. Hence, SPRINT’s high throughput is
achieved by dropping some either fixed or dynamically tuned percentage of the incoming
sensor data tuples.

Jergler et. al. [6] present an approach with a special workflow-based architecture. First, the
Event Replaying module reads the sensor data from the provided file and feeds them into the
Distributer Ring-Buffer respecting the timestamps (i.e., simulates the input stream). Then
the Parallel Processing module fetches data from the distributer ring buffer, analyzes the
input stream according to the queries and puts the statistics into the Output Ring-Buffer
from where the statistical output streams can be forwarded to clients. The way the query
processing (i.e., the analysis) is done, is the special part of this work: The authors present a
workflow-like way of processing the queries. They propose connecting different computation
and aggregation tasks with non-blocking ring buffers (LMAX Disruptor library [10]). This
yields a sequential and parallel arrangement and connection of different tasks. The paper
also includes how the grand challenge queries can be solved using this architecture, i.e.,
which tasks one has to combine and how. Although the authors only implement a centralized
solution, they state that their workflow idea can also be implemented in a distributed way by
leveraging the publish/subscribe concept. Moreover, the paper briefly presents the System
Statistics Monitoring module which in a nutshell is a HTML5 based visualization of the
produced statistic streams. Finally, the authors discuss how the event processing (i.e.,
analysis and statistic computation) can be accelerated by using FPGAs or GPUs.

The paper by Madsen et. al. [7] proposes a MapReduce-style solution called Enorm. Enorm
is an extended version of the MapReduce concept which is optimized for processing high
frequency input data streams. In contrast to traditional MapReduce, Enorm provides native
support for window computations and “sharing common computations among overlapped

windows” [7]. While common MapReduce involves only map and reduce functions, Enorm

Background 12

consists of map, compute and consolidate functions. While compute roughly replaces the
common reduce function, consolidate has to be used when sharing common computations
is desired. Moreover the authors present a detailed cost model, which should facilitate the
decision if sharing is useful. The authors state that “the feature of sharing computation in
Enorm is suitable for queries that have multiple windows, high input rates and relatively low
output frequency” [7]. A cost analysis unfortunately indicates that sharing is not beneficial
for the ACM DEBS 2013 Grand Challenge queries due to their high output frequencies.
The authors describe in detail a single Enorm job which answers all grand challenge queries.
Moreover, they deploy the Enorm job in the Amazon Elastic Compute Cloud (EC2) to show
its scalability.

Gal et. al. present TechniBall [8]. TechniBall is based on a generic solution developed
for the INSIGHT European project, whose purpose is to improve the ability to handle
emergency situations. The architecture combines the streams framework with the Esper
engine. Streams enables the authors to define data flows containing different processors in
XML-files. Moreover, the authors are able to implement processors using the streams API.
Furthermore, the authors implement “a single custom Esper processor using the streams
API, directly including Esper queries into the XML description of the data flow graphs” [8].
Hence, the different processors in the data flow can be implemented either with the streams
API, for fast processing simple computations, or with Esper queries for more complex anal-
yses. TechniBall uses this architecture to answer the ACM DEBS 2013 Grand Challenge
queries. More precisely, the authors defined a data flow and several processors which reads
the input data from one source and prints all statistical output streams to the console (std-
out). TechniBall uses a state machine for the shot on goal query and sliding windows for
aggregated statistics. Furthermore, the authors implement a GameView processor which
visualizes the input data (not the statistics) and enrich the console output by query fields
and JSON encoding. The authors state that their work “follows a stream-oriented model
for event processing” [8] and that the data flow execution can be distributed to several ma-
chines when using a Storm topology instead of simply executing it in the streams-runtime.
However, the authors neither evaluate this nor present more details how much effort this
would induce.

Badiozamany et. al. propose a generic system called EPIC [9]. EPIC is a data stream
management system (DSMS) extending the SCSQ system. EPIC’s linchpin is its high level
query language. All computations, conversions and analyses at the query processing nodes
as well as the dataflow are expressed by the query language. The two major extensions EPIC
introduces are the Frequently Emitting Windowizer (FEW) and “user-defined incremental
window aggregate functions” [9]. Sliding windows are very important for analyzing the
streams and so for answering the grand challenge queries. The query language mentioned
above supports windows as first class objects. The authors state, that the problem of
normal windows is, that they cannot “emit aggregation results before a complete windows
is formed” [9] (e.g., the 5 minute windows cannot emit results after playing only 2 minutes).
To solve this problem, the authors introduce the FEW operator, which “decouples the
frequency of emitted tuples from a window’s slide” [9]. Moreover, EPIC enables a user

to define its own windows aggregation functions by implementing three functions (init,

Background 13

add and remove) and registering the aggregation function in the system. In addition to
presenting EPIC’s generic extensions to the SCSQ system, the authors explain in detail how
the ACM DEBS 2013 Grand Challenge queries can be answered with an EPIC query. Their
proposed solution heavily leverages the frequently emitting sliding windows and user-defined
aggregation functions. Furthermore, the solution exploits the fact that coarser heat maps
can be constructed by fine ones. In addition, the authors state that EPIC enables the user
to define “user defined parallelization primitives” [9]. The authors even state that “the
system can also distribute query processing nodes over several computers” [9]. However,
they did neither describe how this can be done nor evaluate a distributed execution. EPIC’s
intense but easy customizability is its main advantage. The (frequently emitting) windowizer
as well as the user-defined incremental window aggregate functions enable using EPIC for
various scenarios. The special feature of this solution is that the whole dataflow as well
as all computations and functions are defined in a query language (only functions can also
be written in external programming languages). This, however, has a serious effect on the
throughput as well as delay performance which is much weaker than those of any other

proposed solution.

2.2 Comparison
This section discusses commonalities of and differences between the different solutions ([4],
[5], [6], [7], [8] and [9]) presented in Section 2.1. If one compares the different solutions, one

can make the following observations:

e Statistic Calculation: None of the proposed solutions generate all resulting sta-
tistical data streams directly from the input sensor data stream. Rather, the single
input stream is transformed into several intermediate result streams by means of fil-
tering, extending (with meta data information) or preprocessing. Often this is done in
multiple consecutive steps. In addition, query results (i.e., statistical output streams)
often base on other query results (e.g., the team ball possession stream depends on
the player ball possession streams) or computations are shared between different time
windows and heat map resolutions. For instance, [5] and [9] both explicitly state that
they exploit the fact, that the more coarse heat maps (e.g., 12 x 25) can be com-
puted by aggregating the finest heat maps (e.g., 64 x 100) and thus one only has to
calculate and store the heat maps with the finest granularity. Moreover, all solutions
have in common that they use some kind of sliding windows at least to answer the
aggregated statistic queries. Anyway, sliding windows and aggregations are the major
key concepts for the statistic calculations and therefore for answering the queries in

all proposed solutions.

Background 14

e Generalization: All presented solutions for the ACM DEBS 2013 Grand Challenge
either base on a generic architecture presented in the published papers ([6], [7], [8],
[9] and the Esper and Storm solutions in [4]) or can at least be generalized with
relatively little effort ([5]). The sole exception is the BlueBay approach in [4] which
is intentionally specialized for answering the grand challenge queries for the defined

input data stream.

e Main Architecture Idea: The main architecture ideas behind the proposed solutions
can be separated into three groups. The first group ([6], [8] and [9]) are workflow-
based architectures. Although the concrete realization differs and the authors use
different terms to describe their architecture, the main idea is roughly the same. [7]’s
architecture follows an extended MapReduce concept. In contrast, the third group
([5] and BlueBay in [4]) have rather hardcoded and static architectures with much less

flexibility (see also distribution).

e Ring Buffer: Another concept which is very prominent in the presented solutions
is the ring buffer concept. The main advantage of ring buffers compared to other
buffers is their constant length and thus constant memory consumption and absence
of memory allocations during runtime. Three solutions (namely [5], [6] and BlueBay
in [4]) explicitly state that they use ring buffers. For the other solutions there is no
information given which buffers are used, but it is likely that they also use ring buffers
for either input, intermediate or output data streams or for storing windows. [5] and
[6] both use the LMAX Disruptor library [10] which contains a shared lock-free and
thus non-blocking ring buffer.

e Parallelization and Distribution: All proposed solutions provide a kind of sup-
port for parallelism on a single machine. Hence, they leverage a state of the art
multi-core system. Furthermore, all papers evaluated their systems with activated
parallelization. Although the performance results are different, the common result is
that parallelization introduces synchronization costs which can harm the performance
when not considered properly. But, in contrast to single machine parallelism, not all
proposed systems can be executed distributed on several machines. The authors of [6],
[7], [8] and [9] state, that their solutions can be distributed without too much effort.
One important reason for that is that these are the solutions with an workflow-based
or MapReduce-style architecture. However, only the MapReduce-style solution [7] is
evaluated also in a distributed manner in the Amazon Elastic Compute Cloud (EC2).
For the other solutions, heretofore there is only a statement that it is possible to dis-
tribute the architecture on multiple machines but no implementation or evaluation is

presented in the papers published in the Proceedings of the DEBS’13.

2.3 Scenario Extension Consideration
In this section we inspect if and how the proposed solutions considered our scenario exten-
sions (see Section 1.1.2) and what this means for the extensions. For the two extensions the

following conclusions can be drawn:

Background 15

e Multiple Sensor Data Streams: As we expected no presented approach faced
the problem of analyzing several distributed input sensor data streams. This is not
surprising since it was unambiguously stated that there is only one input data stream
containing all sensor data. Hence, this extension noticeably modifies the ACM DEBS
2013 Grand Challenge. Therefore papers handling the extended scenario would not
solve the original grand challenge and therefore perhaps would not have been accepted

and published. Moreover, this extension complicates the problem a lot.

e Client Requests: In contrast to our first extension, the second extension (i.e., han-
dling and answering client requests) is also faced by some solutions published in the
Proceedings of the DEBS’13. We suppose the reason for this is that, in difference to
our first extension, the second extension does not modify but only extends the grand
challenge. [4] solves the problem of handling client requests in the best way. [4] is
the only solution which provides both, a visualization (which could be accessed by
clients or integrated into television broadcasts) and a publish/subscribe dissemination
network (where clients can subscribe for statistical data streams). The solution pre-
sented in [6] contains a HTMLS5 client which visualizes statistics and can be accessed
by clients in the web browser. [8] contains a visualization of the incoming sensor data
streams (not the statistics) and enriches the output with JSON encoding. This can be
interpreted as a very rudimentary solution of the client request problem. The other
proposed solutions ([5], [7] and [9]) do not face the client request scenario extension
and hence only print their output streams to the console (stdout) or to files as required
in the ACM DEBS 2013 Grand Challenge problem description. Nevertheless, the fact
that two (or even three) out of six proposed and published solutions also face our

second scenario extension, emphasizes that this extension is reasonable.

Evaluation Problem - Sensor Simulation
Environment

This chapter faces the evaluation problem. First, Section 3.1 describes the evaluation prob-
lem in detail. That is, it points out the different challenges which have to be solved in order
to provide an evaluation base for our real-time complex event detection system. Moreover,
in Section 3.2 we present our conceptual solution approaches for the different subproblems
as well as the theory which underlies our concepts. Section 3.3 presents our implementation

which produces the input data streams for evaluating PAN.

3.1 Problem

As mentioned in Section 1.1.2.1, we modified the ACM DEBS 2013 Grand Challenge sce-
nario. Instead of only one continuous input data stream containing the sensor data of all
objects, we want the system to be able to handle and analyze multiple distributed continu-
ous input data streams in parallel. Hence, we cannot simply read the provided sensor data
file (full-game) and feed the input buffer of our complex event detection system with data
tuples from this file w.r.t. the corresponding timestamps, as many solutions published at
the DEBS’13 did (see Chapter 2). Instead, we have to simulate each RedFIR transmitter
as an independent sensor which measures its position, velocity and acceleration on its own
and further generates its own continuous sensor data stream and sends this to the complex
event detection system.

Thus, the first problem to be solved is how to simulate real-world sensors. This problem does
not have to be solved for developing a scalable real-time complex event detection system for
distributed data streams, but for using the data provided by the ACM DEBS 2013 Grand
Challenge for evaluating this system. Therefore, we call this problem the evaluation problem.
The remainder of this section discusses this problem. More precisely, in the following, we
will present which problems have to be faced, which questions have to be answered and
which tasks have to be solved to simulate the real-world sensors in a way that they generate

and send data streams as if they were measuring data of a current soccer match.

Evaluation Problem - Sensor Simulation Environment 17

3.1.1 Additional Requirements

We require our simulation environment to support both, the simulation of all sensors on a
single machine as well as the distribution of the sensor simulations onto multiple devices.
The reason for this is that it should be possible to perform two kinds of evaluations.

First, measuring the query delay during the evaluation necessitates executing all sensor
simulators on the same machine (see Section 5.2.2). Therefore, all sensor simulators have
to run in parallel processes on the same machine. The possibility to execute all sensor
simulators on a single machine further enables us to start a new evaluation of our system
with minimal effort and costs since the most simple evaluation setup is to execute the sensor
simulations as well as the complex event detection system and potential clients on a single
machine. For instance, this facilitates quickly testing small changes in our scalable complex
event detection system.

Second, it should be possible to evaluate the real-time complex event detection system under
real-life conditions. Since in the real-life use case each sensor is a single independent device,
we require that also the sensor simulation can be distributed in the same way. According to
that, it should be possible to execute each sensor simulator on a single device (e.g., a very
weak cloud computing instance).

Moreover, we also want our simulation environment to support all setups between these two
extreme cases. This means, that we want to be able to perform the simulation of M sensors
distributed on N machines (N < M).

3.1.2 Sensor Data Separation

The ACM DEBS 2013 Grand Challenge provides only a single file (full-game) containing
the data of all transmitters. In order to simulate a transmitter as a single independent
sensor producing its own data stream, one has to separate the data tuples corresponding to
the certain transmitter from this file. These separated data tuples can then be used by the

sensor simulator to generate a continuous data stream.

3.1.3 Real-World and Real-Time Simulation

The problem of simulating a sensor which acts like a real-world sensor measuring data during
a live soccer match, can be splitted into two subproblems: Simulating the sensor’s system
properties (real-world) and simulating the correct timing, i.e., generating and sending the
streams with the same timing as if the soccer game would take place at the moment (real-
time).

In contrast to the separation which only has to be performed once, the simulation has to
be performed again for each evaluation. This is due to the fact, that the simulation is done
for generating real-time sensor data streams, i.e., for simulating a live ongoing soccer match
which has to be analyzed in real-time by the complex event detection system.

The question of how the data streams are actually sent, or more precisely who the actual
receiver of the sensor data stream is (e.g., which component or peer of the scalable complex
event detection system), is not faced in this part, since this question also arises in the real-life

use case and not only during simulation.

Evaluation Problem - Sensor Simulation Environment 18

3.1.3.1 Real-World

A real-world sensor which, for instance, measures the position of a ball is a highly mobile
wireless and performance weak device. Such a sensor strongly differs from a state of the
art personal computer or cloud instance in terms of computational power and network
connectivity. However, to be able to simulate the sensors on such machines, the properties
of a sensor have to be simulated in the sensor simulator running on an arbitrary machine in
order to obtain real-world conditions for our evaluation.

Moreover, it should be possible to simulate different kinds of sensors (e.g., GPS sensors and
heart rate monitors) with different properties. Although this is not the case in the ACM
DEBS 2013 Grand Challenge scenario, we want our system to be able to handle different
sensors. In order to be able to evaluate that, also the sensor simulator has to be able to

simulate this heterogeneity.

3.1.3.2 Real-Time

Another problem that we face in this thesis is how to achieve correct timing for the simula-
tion. For instance, it would be problematic if the sensor simulator of the ball sends the data
from the 57th minute of play while the sensor simulator for player A1’s left shin guard sends
data from the 55th minute. Although this example is very extreme, it is very important
that the sensor simulators generate data streams with data from the same point of time
in the match. Otherwise, the input sensor data streams for the complex event detection
system would contain data from different situations in the game. If the time gap between
the data is to large, it is impossible for the complex event detection system to perform any
proper analyses. Furthermore, the system does not have to be able to handle such problems
since this cannot happen when analyzing a live ongoing soccer match in real-time, which
in fact is the purpose of the system. Since we do not want to generate new problems with
the simulation which cannot happen in the real-life use case, the sensor simulators have to
prevent too large time differences between the distributed data streams.

While large time differences do not occur in the real-life use case, small time differences
do. For instance, these small differences could be introduced by real-world sensors with
different latencies. Accordingly, the event detection system has to be able to handle small
time differences. Thus, small time differences between the streams produced by the sensor
simulators are acceptable. Finding the threshold which time differences are acceptable
for the system, i.e., which maximal time difference has to be guaranteed from the sensor
simulators, is one important question to be answered in this thesis.

Hence, guaranteeing that the time differences do not exceed a certain threshold is an im-
portant task. This task has to be solved by synchronizing the time of all sensor simulators.
If all sensors are simulated on the same machine, i.e., the sensor simulators running in dif-
ferent processes on the same machine, this problem is relatively easy to solve. However, as
defined in Section 3.1.1, the sensor simulation should be executable in a distributed manner
on multiple machines. In this case, synchronization (i.e., obtaining a global timestamp) is a
non-trivial task.

Moreover, even if all sensor simulators are perfectly synchronized, i.e., have exactly the same

Evaluation Problem - Sensor Simulation Environment 19

global timestamp, the sensor data tuples have to be read from the data and added to the
data stream in the moment they were captured during the soccer game. Although the data
tuples are enriched with global timestamps (see Section 1.1.1.1), it is not possible to add
them at the precise moment unless the sensor simulator checks the data tuple list every
picosecond, which is for sure not a good idea. Instead, we will have to define a check period

which has to be respected in the above mentioned time difference threshold.

3.2 Theory

In this section, we present our solution approach for the evaluation problem presented in the
previous section as well as the theory which underlies our concepts. That is, we present our
concept how to simulate real-world sensors. More precisely, we present how we use the data
provided by the ACM DEBS 2013 Grand Challenge to generate an evaluation base for PAN,
i.e., our scalable real-time complex event detection system for distributed data streams.

In a nutshell, we use the provided file containing all data tuples, to simulate each RedFIR
transmitter as an independent sensor which generates and sends its own sensor data stream.
As a result, we obtain multiple distributed input sensor data streams for our complex event
detection system.

As presented in Section 3.1, we have to perform two steps to achieve this goal. The first
step is to separate the data tuples w.r.t. their origins (i.e., the corresponding sensors) into
subsets. Section 3.2.1 presents our proposed solution for this step. The second step is the
actual simulation of the real-world sensors. Our approach for solving this step is proposed
in Section 3.2.2.

3.2.1 Sensor Data Separation

In the ACM DEBS 2013 Grand Challenge there is only one single continuous input data
stream containing the data tuples of all sensors. As a consequence, a solution for this
challenge, or more precisely a submitted real-time complex event detection system (see
Chapter 2) only has to be able to handle and analyze one input data stream. For generating
this input data stream, the DEBS’13 committee provides a single file (full-game) containing
the data from all RedFIR transmitters. Each line in this file reflects a single measurement.
Each measurement is stored as a 13-tuple with the following schema (see Section 1.1.1.1 for

more details):

sid, ts, T, y, 2, |U|, |a‘7 Vgy Uy, Uz, gy Ay, Ay

(e.g., 47,10634747088949386, 27488, -5849, 161, 57112, 1206195, 5291, -7075, -4683, 8356, -5332, 1316)

As mentioned in Section 1.2, the purpose of this thesis is not to develop another solution
adapted to the ACM DEBS 2013 Grand Challenge. Instead, we want to develop a generic
scalable real-time complex event detection system which amongst other things should also
support multiple distributed input data streams. In order to still be able to use the grand
challenge as an evaluation base, we extended the scenario in a way that it produces multiple
distributed input data streams. More precisely, we simulate that each transmitter is an

independent sensor which produces its own sensor data stream (see Section 1.1.2.1).

Evaluation Problem - Sensor Simulation Environment 20

To be able to simulate a sensor, a preparation step is required. We need to separate the
data tuples stored in the single provided file (full-game) with respect to their origin (i.e., the
corresponding transmitter). Since the 13-tuples contain a sensor ID (sid, e.g., 47), we can
use this ID to separate the file. More precisely, we split the single file into several data tuple
subsets named after their sensor ID. Each entry in the new subsets reflects a measurement
of the sensor corresponding to transmitter sid. For instance, subset 47 contains all data
tuples representing measurements of the sensor with sid 47 (Left Leg Player A2).

In addition, it would be possible to drop the sid, i.e., store and stream 12-tuples instead of
13-tuples to save network bandwidth. Nevertheless, we abandoned this idea, since the sensor
ID information contained in each tuple is the easiest way to identify the sensor corresponding
to the measurement (i.e., to the position, etc.). Removing it would necessitate storing the
source corresponding to each sensor data stream in another way. Moreover, the sid is only a
small part of a data tuple and thus removing it would not reduce the bandwidth consumption
remarkably.

3.2.2 Real-World and Real-Time Simulation

In this section, we present the ideas on how to simulate the sensors with the separated data
tuple subsets as well as the basic theory that underlies our concepts. More precisely, we
present how we generate multiple distributed continuous sensor data input streams for eval-
uating our complex event detection approach using the sensor data tuple subsets produced
by the sensor data separation. Thereby, we take special care of fitting the correct timing
(real-time) and present ideas on how to simulate the sensor system properties (real-world).
Moreover, as presented in Section 3.1.1, we require our sensor simulation environment to
run on a single machine as well as distributed on multiple devices (e.g., cloud computing
instances). To achieve that multiple or even all sensor simulators can be executed on the
same machine, we identify a sensor simulator in the network communication not only by
its IP address but additionally by its port. As a result, multiple sensor simulators can
be uniquely identified while running on the same machine. This enables both, a network
communication between sensor simulators running on different machines as well as between

sensor simulators running on the same machine.

3.2.2.1 Real-World

In the scope of this thesis, we perform the evaluation of our approach on state of the art
computers and cloud computing instances (e.g., Microsoft Azure cloud instances). These
machines are typically well-connected (i.e., low latency, high bandwidth, etc.) and relatively
powerful. In contrast, a real-world sensor, which for instance measures the position of a ball
or the heart rate of a player, is a highly mobile wireless and performance weak device. To
perform realistic evaluations (i.e., evaluate our system under real-life conditions) the sensor

simulator has to simulate the system properties of a sensor:

(1) Fluctuating high latencies: A characteristic of wireless and especially mobile devices
are their high latencies. Moreover, the latency of a wireless mobile device typically

fluctuates a lot.

Evaluation Problem - Sensor Simulation Environment 21

(2) (Single) Message losses: Due to the sensors high mobility and its wireless connection, it

is very likely that some messages are lost during transmission.

(3) Temporal unreachability: It is possible that a wireless mobile devices is temporally

unreachable for instance due to signal blocking obstacles.

(4) Message Reordering: Particularly in network connections with a wireless mobile partic-

ipant, message reordering is very likely occur.

Moreover, the simulation environment has to be able to simulate different kinds of sensors
(e.g., GPS sensors and heart rate monitors) with different system properties at the same
time in parallel without compiling multiple versions of the sensor simulator. For instance
one sensor could have a low latency but be vulnerable for message losses, while another
sensor guarantees to be loss free but has a high and fluctuating latency.

However, it is out of the scope of this thesis to develop and implement a sensor simulation
environment which is capable to reflect realistic sensor system properties. Instead, we only
want to produce input data streams as an evaluation base for our real-time complex event
detection system. Since we further argue that it is legal to evaluate PAN first under perfect
conditions (in order to avoid corrupting the evaluation results and thus loose trends etc.), we
postpone simulating the sensor system properties and evaluating PAN under more realistic

conditions w.r.t. the input data streams to future work.

3.2.2.2 Real-Time

Section 3.1.3.1 revealed that the simulation environment has to guarantee that the time
difference between two data input streams (At;;, where ¢ and j are the sensor IDs of the
data streams and ¢ # j) does not exceed a certain threshold (7'). This condition can be

mathematically expressed with Equation 3.1.

Aty <T Wij |i#] (3.1)

If this condition does not hold, the sensor simulation environment and thus the evaluation
base would introduce problems which cannot occur in live ongoing soccer matches. Since
wireless mobile real-world sensors would anyway introduce small time differences due to
their different latencies, time differences smaller than the specified threshold are acceptable.
T introduces a trade-off between effort and correctness. On the one hand, the threshold
has to be realizable without to much (communication) overhead. On the other hand, the
threshold has to guarantee that all incoming data streams contain data tuples from the same
game situation since otherwise an analysis of the incoming sensor data streams is impossible.
Hence, finding the threshold T" which perfectly matches our demands is a non-trivial problem.
We further suggest, that the perfect threshold depends on the exact scenario, e.g., on the
latency variations of the sensors and on the velocity of the events. Therefore it is not
possible to find a single specific value for T', which is the best for all scenarios. Instead, one
has to experiment with different values in order to find an appropriate value for a specific

evaluation setting.

Evaluation Problem - Sensor Simulation Environment 22

In the remainder of this section, we want to face the problem how to guarantee that the
time differences between incoming sensor data streams do not exceed T, or, mathematically,
how to guarantee that the condition in Equation 3.1 is fulfilled.

In a nutshell, the key concept to solve this problem is synchronization. The sensor simulators
have to synchronize their time in order to generate data streams and thus send data tuples
from the same point of time in the match. For synchronizing their time, the sensor simulators
have to consider two aspects: The starting time and the time speed.

The necessity to synchronize the time when the sensor simulators start (starting time) to
read their sensor files and send data to the complex event detection system is easy to
see. The need for considering the time speed is a more intricate problem. If all sensor
simulators are executed on the same machine, this poses indeed no problem. In this case,
all sensor simulators have access to the same clock (on the same machine) and therefore
the speed in which the timestamps increase (i.e., the time speed) is the same for all sensor
simulators. Thus, the time speed is already synchronized. However, if the sensor simulators
are distributed this is not the case. Unfortunately, crystal clocks are not perfect. That
means, that the speed in which the timestamp increases and thus the time speed is not
the same on all machines. This results in increasing time differences (cf. literature [11]).
Therefore, we also need to take the time speed into account in order to obtain the same
time on all sensor simulators.

Lamport Clock [11] and Vector Clock [12] are well-known concepts for time synchroniza-
tion. Lamport introduces the famous happended-before-relation (—) as well as the logical
clock concept. Moreover, Lamport proposes a distributed algorithm which produces a syn-
chronized logical clock fulfilling the (weak) clock condition. Lamport further enriches the
partial ordering between the events (happend-before-relation) to a total ordering (=) by in-
troducing an arbitrary total ordering between the processes. This protocol is today known
as Lamport Clock. The Vector Clock concept extends the Lamport Clock concept in a
way that is also fulfills the strong clock condition. That means, that concurrent events are
assigned to the same time, which is not true for Lamport Clocks.

Both concepts have in common that they are logical clocks. That means, they yield a causal
ordering of the events. However, our sensor simulation environment needs a synchronized
physical clock. More precisely, we do not need an ordering but a globally synchronized
timestamp. Although, Lamport also presents a method of how to synchronize physical
clocks with Lamport Clocks and “derive an upper bound on how far out of synchrony
they can drift” [11], we decided not to use one of these concepts for our sensor simulation
environment. The reason for this is, that the logical clock approaches assume that the
events happened on different machines in the distributed system causally depend on each
other. In our simulation environment this is not the case. Instead, the events (i.e., sensor
measurements) are independent from each other. The only reason for synchronization is
that we want to send all those data tuples at (approximately) the same time, which were
also measured at the same time during the soccer match.

For synchronizing timestamps, Google uses the TrueTime [13] approach. TrueTime is the
time API of Spanner, Google’s latest globally-distributed database. TrueTime uses the
known clock uncertainties (k) to provide each machine with a timestamp which is guar-

Evaluation Problem - Sensor Simulation Environment 23

anteed to not deviate more than e from the true global timestamp. More precisely, each
machine, on which TrueTime is running, holds a time interval [earliest,latest]. €, which is
the half of the interval’s width, is the worst-case local clock time deviation since the last
synchronization. Therewith TrueTime perfectly fits our demands. The timestamps simply
have to be synchronized so often that e cannot exceeds T'.

Unfortunately, TrueTime needs an expensive infrastructure to work. TrueTime uses GPS
and atomic clocks as time references. Each time master machine is connected to such a time
reference device. The reference times are periodically compared between those machines.
Each machine in a Google datacenter runs a timeslave deamon which periodically contacts
a time master to update its local timestamp. The error bound e (and thus the interval
width) is 0 immediately after this synchronization and monotonically increases till the next
synchronization (i.e., € = k - t).

Since, we do not want to setup such an infrastructure, we introduce WeakTrueTime (WTT).
WeakTrueTime exploit the fact that we do not need a correct time as a time reference. All
we need is an arbitrary reference time. Therefore, we simply choose an arbitrary sensor
simulator to be the time master. The time master simply uses its machines clock as the
reference time. All other sensor simulators run a timeslave deamon which periodically
contacts the time master and updates their time interval in the same way as proposed
by Google’s TrueTime approach. Moreover, the time master selection does not have to be
performed by a complicated leader election algorithm. Instead, an arbitrary sensor simulator
can be informed to be the time master with a parameter when started. A more detailed
description of WeakTrueTime is presented in Section 3.3.2.

With WeakTrueTime we can solve all synchronization issues presented above. The maximal
time difference between a timeslave deamon and a time master (At,qstersiave) 1S composed

of the starting difference (Atgiqrt) and the maximal time interval error bound

masterslave
(€maz) (cf. Equation 3.2). The starting difference can be guaranteed to be approximately
0 be specifying a starting timestamp which is guaranteed to be so far in the future (e.g.,
60s) that all sensor simulators synchronized at least once with the time master before the

simulation begins.

Atmalsterslave = Atstartmasteml,we + €maz = Atstartmaste,‘slave + K- tsyncpem'od (32)

The time difference between two input data streams (At;;) is maximal if the streams are
produced by two sensor simulators with timeslave deamons whereof one’s WTT timestamp
is Atpastersiave in the past and the other’s WTT timestamp is Atpastersiave i1 the future
w.r.t. the time reference (i.e., the machine timestamp of the time master). That is, the
maximal time difference between two input data streams (i.e., max At;;) is composes of two
times At astersiave and the both time periods in which the data tuple set is check for new

events (tcheckperiod; aNd teneckperiod;) (cf. Equation 3.3).

max Atij =2 At'masterslave + tcheckperiodi + tcheckperiodj (33)

The period in which the tuple set is checked depends on the I/O performance of the machine

and on the actual implementation. For instance, fcheckperiod; can be reduced when the

Evaluation Problem - Sensor Simulation Environment 24

—K AN N
13 14 47
(Left Leg (Right Leg (Left Leg
fUl/- Sensor Data Player 1) Player 1) Player 2)
> S t
AN N
game eparator R ,
s | o

Figure 3.1: Sensor Data Separation Procedure

data tuple set is preloaded from the sensor file into a list in the main memory. Anyway,
a checking period below 10ms should be possible. In order to guarantee the condition
in Equation 3.1, the synchronization period (tsyncperiod), i-€., the time passing between
two synchronizations with the time master, has to be chosen in a way that the maximal
time difference between two input data streams does not exceed T (cf. Equation 3.4).
Assumed that the periods in which the tuple sets are the same at both sensor simulators
(i-e., teheckperiod; = teheckperiod; = teheckperiod)s Lsynceperiod has to be chosen in a way that
Equation 3.5 is fulfilled in order to guarantee that the time differences between two input

data stream does not exceed T

max Atij < T (34)

T
9 (Atstartmastemlm,,2 + tcheckperiod)

K

tsyncpe'r‘iod <

3.3 Implementation

In this section, we present our sensor simulation environment implementation which we use
as an evaluation base for PAN. Section 3.3.1 presents the Sensor Data Separator whose
purpose is to prepare the provided data for the actual sensor simulation. In Section 3.3.2
we present WeakTrueTime, a standalone library for synchronizing machine timestamps in a
distributed environment. This library is used by our Sensor Simulator, presented in Section

3.3.3, which generates and sends the input data streams for PAN.

3.3.1 Sensor Data Separator

As mentioned in Section 3.2.1, the total set of all data tuples has to be separated into several
subsets. In a nutshell, we achieve this by separating the single provided file into several files
named after the corresponding sensor IDs. Figure 3.1 illustrates this procedure.

The gray box in the middle (i.e., the Sensor Data Separator) is implemented very straight
forward: The provided file (full-game) is read line by line. Each line is parsed and appended
to the corresponding sensor file, i.e., to the file named by the sid.

Each of the generated files can be used by a sensor simulator to generate the corresponding

sensor data input stream for the real-time complex event detection system.

Evaluation Problem - Sensor Simulation Environment 25

The advantage of saving each data tuple subset in a file, is that the separation procedure only
has to be performed once. Once separated, the files can be used for simulating the sensors in
all upcoming evaluations. Due to that and since the first version already generated correct

files in reasonable time, we relinquish further improving our implementation.

3.3.2 WeakTrueTime

In order to guarantee that all sensor simulators generate and send data streams containing
data tuples from the same point of time in the match even if the simulators are distributed
onto multiple machines (with different machine clocks), the sensor simulators require a
synchronized physical clock. That is, each sensor simulator needs to have a timestamp,
which is known to not differ more than a specified threshold from the timestamp of any
other sensor simulator.

While Section 3.2.2.2 presented the theoretical advisements regarding this synchronization
problem and discussed existing global clock approaches, this section presents how we imple-
ment WeakTrueTime (WTT).

WeakTrueTime is our approach for synchronizing a global timestamp between several pro-
cesses on different machines. Since this service is not only applicable in the sensor simulation
environment but also in other projects, we implemented it as a standalone Java library and

imported it in the sensor simulator project.

3.3.2.1 Weaker Guarantees

Although, the WeakTrueTime approach is inspired by Google’s TrueTime [13], the guaran-
tees provided by WeakTrueTime are weaker than those provided by TrueTime. While True-
Time synchronizes the correct UNIX timestamp by leveraging GPS or even atomic clocks,
WeakTrueTime simply assumes the time master’s machine clock to be correct. Moreover,
TrueTime returns a time interval which reflects the current clock uncertainty. Instead,
WeakTrueTime only returns a timestamp which is guaranteed to not differ more than T
from the time masters machine timestamp. For our purposes, i.e., for solving the evaluation
problem, the guarantees provided by WeakTrueTime are sufficient. The sensor simulators do
not need to know the correct timestamp but only the same timestamp in order to generate
data streams with data from the same point of time. Moreover, the sensor simulators do
not care about the current timestamp uncertainty as long as the difference does not exceed
a specified threshold.

3.3.2.2 Assumptions

In addition to the weaker guarantees, WeakTrueTime has another limitation. The current
implementation assumes that there are no latencies between the synchronizing machines, i.e.,
between the timeslave deamons and the time master. Hence, we suppose that the current
WeakTrueTime implementation will not work properly for synchronizing the timestamp of
processes running on wireless connected machines or on machines spread all over the world.

However, again, this is not required for solving the evaluation problem since we simulate

Evaluation Problem - Sensor Simulation Environment 26

the sensors on well-connected* machines.

3.3.2.3 Architecture

In WeakTrueTime’s architecture design we distinguish between the time master and the
timeslave deamon component. Each Java process which takes part in a WeakTrueTime syn-
chronization group, has to create a WeakTrueTime instance either as a timeslave deamon or
as a time master. We design WeakTrueTime in a way, that there is only a single time master
but arbitrary many timeslave deamons in each WeakTrueTime synchronization group. The
machine timestamp of the process hosting this single time master instance is the reference
timestamp for the global time synchronization.

The remainder of this section discusses our design considerations and presents the way

WeakTrueTime works.

Design Considerations

There are two possibilities how to distribute the reference timestamp in the WeakTrueTime
synchronization group. First, each timeslave deamon could periodically send a request to
the time master. In this case the time master simply has to answer each incoming request
with its current machine time. Second, the time master could be responsible for periodically
disseminate its current machine time to all interested timeslave deamons (i.e., broadcast).
The advantage of the first approach is that the time master does not have to know and
store the set of timeslave deamons, since it only has to answer requests. Nevertheless, we
implement the broadcasting approach for two reasons. First, the broadcasting approach
requires less packets and thus a project using WeakTrueTime has less network overhead for
time synchronization. Second, if the time master broadcasts its reference time periodically,
all timeslave deamons update an equal number of times. Assume the extreme case where
there is a timeslave deamon in the synchronization group whose machine clock runs only
half as fast as common (i.e., one machine clock second takes two “real” seconds) and all
other clocks are perfect normal clocks. If all timeslave deamons would send every 10 seconds
a request to the time master, the timeslave deamon with the broken machine clock would
actually only sends a request every 20 seconds. Hence, this timeslave deamon would only
receive the reference time half as often as the other timeslave deamons do. In difference, if
the time master broadcasts the reference time in a specified interval, all timeslave deamons
get the reference time equally often even if the time master’s machine clock is broken.

The second design consideration we made is, whether to use TCP or UDP. We use UDP,
since it is faster and we do not need the guarantees TCP gives. In fact, TCP’s guarantees
can even harm our system since resending a lost message with an outdated machine time

harms our system more than missing a time update.

4 More precisely, the latencies between two machines hosting sensor simulators in our simulation environ-
ments (i.e., in the office or the Microsoft Azure Cloud) are below 5ms and thus negligible since the tuple
reading period (tcheckperiod = 50ms) introduces more time differences than disregarding the latencies in
WeakTrueTime.

Evaluation Problem - Sensor Simulation Environment 27

Timeslave Timeslave
Timeins Deamon 1 Time Master Deamon 2

0 —l— J(

1__
2__
3T —
4__

51 < —X
61 —
7__
8__
S —>»
10 1 —

11—~
12 1 ——J
13—+

\J Y Y

Figure 3.2: WeakTrueTime Communication Example. The green arrows denote ALIVE
messages and the blue arrows denote messages containing the reference time. Parameters:
tali'ueperiod = 3000ms, talivetimeout = 8000ms and tsyncperiod = 5000ms

WeakTrueTime at a Glance

WeakTrueTime works in the following way. Each timeslave deamon periodically (every
taliveperiod Milliseconds) sends a dedicated ALIVE message to the time master. The time
master holds a list of all timeslave deamons (or more precisely their IP addresses and ports)
from which it received previously an ALIVE message. If the time master did not receive an
ALTIVE message in the last t4jivetimeont Milliseconds, it removes the corresponding timeslave
deamon from its list. All ¢syncperioq milliseconds the time master broadcasts its current sys-
tem time to all timeslave deamons in its list. Every time a timeslave deamon receives a time
message from the time master, it first checks if the contained timestamp has increased (i.e.,
is larger than the last received timestamp). This is necessary since we need a monotonically
increasing timestamp and in UDP incoming packets can be reordered. If this condition is
fulfilled, we use the contained reference timestamp for the WeakTrueTime calculation (see
next section). Otherwise, the message is dropped. Figure 3.2 illustrates an example for the

WeakTrueTime communication flow.

3.3.2.4 WeakTrueTime Calculation

In this section, we will answer the question how the WeakTrueTime (WTT) is calculated.
Since the time master itself always has access to the time assumed to be the correct time
reference (i.e., its machine time), it does not have to calculate anything, but simply returns
its own machine time as the WeakTrueTime (cf. Equation 3.7).

In contrast, each timeslave deamon has to use the received timestamps from the time master

to calculate its WeakTrueTime. From various possibilities, we decided to choose the following

Evaluation Problem - Sensor Simulation Environment 28

way of calculate the WeakTrueTime since we suppose it to be the one with the minimal error.
Every time a timeslave deamon receives a new timestamp from the time master, it first checks
if the received timestamp is larger than the last received timestamp. This is necessary
since UDP does not prevent message reordering and we require WeakTrueTime to be a
monotonically increasing clock. If this condition is fulfilled, we use the received timestamp
(treceived) to calculate the difference (At) between the timeslave deamon’s machine time
(tmachine) and the received one (cf. Equation 3.6). This value can then be used to calculate
the WeakTrueTime (cf. Equation 3.7).

At = tmachine — treceived (36)

WTT < timachine at the time master (3.7)
tmachine — At at a timeslave deamon

The alternative to this approach is to set the received time as the WeakTrueTime (i.e.,
WTT = treceived) Whenever a time message arrives and in the meantime (until the next
time message arrives) increase the WeakTrueTime in the same way as the local machine
time (tmachine) increases. This could be done either by increasing the WeakTrueTime each
time when the local machine time increases or by increasing it in arbitrary (maybe not even
fixed) intervals by the value by which the local machine time has increased since the last
WeakTrueTime update. The problem of the first option is that we do not have a hardware
interrupt to properly increase the WeakTrueTime every machine clock second. We only
have a software clock and thus not the possibility to guarantee an increment every machine
second. Thus, this option must be discarded. The problem of the second option is that
the deviation between the value stored as the WeakTrueTime (i.e., WT'T) and the real
reference time at the time master (i.e., its machine time) is much bigger than those of the
delta approach we implemented. Assume the simplified case that the clocks have exactly
the same clock speed and there is only a static time shift between the machine clocks (e.g.,
the machine clock of a timeslave deamon is 20 seconds in the past). Moreover, assume
that the alternative approach updates the WeakTrueTime by leveraging the change of its
local machine time approximately every 100 milliseconds. Thus, the maximum error when
using the alternative approach is 100 ms just in the moment before the WeakTrueTime is
updated. In contrast, if one uses the delta approach in this scenario the maximum error is
0.5 ms due to the 1 millisecond quantization of the timestamp. Hence, the delta approach
for calculating the WeakTrueTime as presented above has a much better correctness than

the alternatives.

3.3.3 Sensor Simulator

In this section, we present how we simulate all RedFIR transmitters as single independent
sensors with the correct timing, i.e., how we generate and send the input sensor data streams
with the same timing as if the soccer match would take place at the moment. In other words,

we present how we solve the evaluation problem and thereby construct an evaluation base
for PAN.

Evaluation Problem - Sensor Simulation Environment 29

More precisely, we describe the Sensor Simulator project. The purpose of the Sensor Simu-
lator project is to generate the sensor data input streams for evaluating PAN by simulating
the sensors w.r.t. the real-time constraints presented in Section 3.2.2.2.

A single sensor simulator generates and sends the stream of a single simulated sensor using
the corresponding sensor file (produced by the sensor data separator) and the WeakTrue-
Time library. In the remainder of this section, we will present how single sensor simulators
can be composed to the whole sensor simulation environment. Moreover, we will present
how a single sensor simulator works. Therefore, we first give a rough overview of the Sen-
sor Simulator project architecture. Subsequently, we will present the sensor data stream

generation loop as well as the time provider and the timed tuple reader component.

3.3.3.1 Sensor Simulation Environment

As mentioned in Section 3.1.1, we require the sensor simulation environment to support
both, simulating all sensors on a single machine as well as distributed on multiple machines.
Therefore, we do not implement a single simulation environment project which simulates
all sensors. Instead, we implemented the Sensor Simulator project which only simulates a
single sensor. In order to obtain the whole simulation environment, multiple of these sensor
simulators (one for each sensor) have to be composed.

In practice, this means, that all sensor simulators are started sequentially with different
sensor files by a Bash script. In order to ensure, that all sensor simulators simultaneously
start to generate and send their data streams, the Bash script defines a starting timestamp
(starting TimestampInMs).

If one uses WeakTrueTime as the time provider, one of the sensor simulators has to be
specified to be the WeakTrueTime master and the starting timestamp has to be far enough
in the future to ensure that all sensor simulators have started and at least received one time
message from the WeakTrueTime master until the local machine time exceeds the starting
time. In our experiments defining the starting timestamp to be 60 seconds in the future was
always sufficient. We recommend to run the simulation environment starting script on the
same machine as the WeakTrueTime master, since this ensures that the starting timestamp
has not already been exceeded in the WeakTrueTime. This could happen if the starting
script is executed on a machine whose local machine clock is to far in the past (e.g., 5

minutes).

3.3.3.2 Sensor Simulator Architecture

This section presents the architecture of the Sensor Simulator project and the stream gener-
ation procedure. Appendix A.2 shows a class diagram of the project containing all methods
and the most important attributes. To start a sensor simulator one has to specify the
parameters listed in Appendix B. On startup the sensor simulator first instantiates and
starts a time provider. Typically, a WeakTrueTimeProvider is used. However, the sen-
sor simulator can also leverage other time provider implementations. Afterwards, a timed
tuple reader object is instantiated and initialized. After both components are prepared, a

TCP client socket addressed to the stream receiver is initialized. If this was successful, a

Evaluation Problem - Sensor Simulation Environment 30

Algorithm 1 Sensor Data Stream Generation Loop Pseudocode

curMatchPico < 0

2: halfTimeStartPico < matchStartPico

3: matchStartMachineMilli <— timeProvider.getTimeInMs()
4: while curMatchPico < matchEndPico do

5: sleep(teheckperiod)
6:
7
8

—_

curMachineMilli < timeProvider.getTimelInMs()

curMatchPico < MachineTimeHelper.generateMatchTimestampInPico(curMachineMilli,
matchStartMachineMilli, halfTimeStartPico)

List < Tuple > newTuples < ttr.read TuplesProducesBefore OrAt(curMatchPico)

9: sendTuples(newTuples)
10: if skipHalfTimeBreakInSimulation = true then
11: if curMatchPico > firstHalfEndPico A curMatchPico < secondHalfStartPico then
12: matchStartMachineMilli < timeProvider.getTimeInMs()
13: halfTimeStartPico < secondHalfStartPico
14: end if
15: end if

16: end while

java.io.PrintWriter® (outputToReceiverHost) is created to write on the client socket
output stream.

After establishing the connection to the stream receiver, the sensor simulator waits for a short
while® in order to ensure that a potential WeakTrueTime timeslave deamon has received
the first time message from the time master. Afterwards, the sensor simulator waits until
the time delivered by the time provider instance exceeds the specified starting timestamp
(startingTimestampInMs). When the delivered timestamp exceeded the specified starting
timestamp, the sensor simulator starts its sensor data stream generation loop which keeps
running until the end of the simulated match is reached. A detailed explanation of this
loop is presented in the next paragraph. After finishing the stream generation the sensor
simulator closes its connection as well as the timed tuple reader and stops the time provider

instance.

Sensor Data Stream Generation Loop

In this paragraph, we will present the sensor simulator’s main loop, i.e., the sensor data
stream generation loop. The purpose of this loop is to generate and send the data stream
produced by a single sensor (specified by the filename parameter) w.r.t. the real-time
constraints using the time provider, the timed tuple reader and the TCP client socket.
Algorithm 1 shows the pseudocode of the sensor data stream generation loop.

Prior to explaining the pseudocode in detail, we want to explain the semantic meaning of
the variable names. All variables whose names end with Pico store timestamps in the metric
of the sensor data tuple timestamps provided by the ACM DEBS 2013 Grand Challenge
(see Section 1.1.1.1). That is, the timestamp is stored in picoseconds and is not related to
the UNIX timestamp. In contrast, all variables whose names end with MachineMilli are
stored in the time delivered by the chosen time provider implementation. Hence, the values
are measured in milliseconds and related to the UNIX timestamp.

In the remainder of this paragraph, we will explain the pseudocode in detail:

Before entering the loop, the sensor simulator initializes three variables (see lines 1-3). cur-
MatchPico is designated for storing the current match time, i.e., the simulated timestamp.

Initializing this variable with 0 ensures that the simulation loop is entered. The next two

5 http://docs.oracle.com/javase/7/docs/api/java/io/Print Writer.html (07.08.2014)
' In our experiments we found out that 3 seconds are sufficient.

http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

Evaluation Problem - Sensor Simulation Environment 31

variables are required for calculating curMatchPico during the simulation. halfTimeStart-
Pico stores either the starting time of the match or the starting time of the currently
simulated halftime depending on whether the half time break should be simulated or not.
In any case, it is initializes with the match starting time in the sensor data tuple metric.
All important match timestamps (i.e, the start and end timestamps of both halftimes) are
given in literature [2]. matchStartMachineMilli stores the time delivered by the chosen time
provider implementation when the simulation starts.

The sensor data stream generation loop body (see lines 5-15) is executed until the currently
simulated match time (curMatchPico) exceeds the provided end timestamp of the match
(matchEndPico) (see line 4). In the first loop body line (i.e., line 5) the sensor simulator is
set to sleep for tcpeckperiod Mmilliseconds. Hence, with ¢cpeckperiod One can control how often
the sensor data file is checked for new tuples to send in the stream. We decided to sleep
in the beginning of the loop since immediately after starting the simulation no sensor data
tuples are measured and thus available yet. After sleeping, the get TimeInMs () method of
the chosen time provider implementation is called and the result is stored in curMachineMilli
(see line 6). With this value, the current match time (curMatchPico) can be calculated (see
line 7). Equation 3.8 and 3.9 show the mathematics used for this calculation. Subsequently,
the result is used to fetch the next list of data tuples which has to be sent to the sensor
data stream receiver (see line 8). This list contains all those data tuples which were not yet
retrieved (and thus sent) and which are produced previous to the current point of time in
the simulated match (i.e., tuple.timestamp < curMatchPico). In the next line, these data
tuples are sent to the receiver (or in other words appended to the sensor data stream) by

printing them to outputToReceiverHost.

machineDiffMilli = curMachineMilli — matchStartMachineMilli (3.8)
curMatchPico = halfTimeStartPico + (machineDiﬁ”Milli- 10° - speedup) (3.9)

The remainder of the loop body (see lines 10-15) is required for skipping the halftime break
in the simulation. If this is desired, the sensor simulator checks in each loop iteration if the
current point of time in the simulation is in the halftime break, i.e., between the end of the
first halftime and the beginning of the second halftime (see lines 10-11). If this is the case, the
sensor simulator reinitializes the matchStartMachineMilli as well as the halfTimeStartPico

variable (see lines 12-13).

Time Provider Component

The main purpose of the time provider interface is to abstract the sensor simulator from the
exact way the current timestamp is produced. Currently, we provide two time provider im-
plementations: The LocalMachineTimeProvider and the WeakTrueTimeProvider.
The LocalMachineTimeProvider is a very trivial implementation. It simply returns
the current local machine time. In contrast, the WeakTrueTimeProvider is more So-
phisticated implementation which uses the WeakTrueTime library. If the sensor simulation
environment is executed distributed on multiple machines, we highly recommend to use the

WeakTrueTimeProvider implementation to avoid problems introduced by potential ma-

Evaluation Problem - Sensor Simulation Environment 32

chine clock differences. Moreover, it is possible to design new time providers in future work.
For instance, one could implement a time provider which fetches the current timestamp from

a globally available atomic clock.

Timed Tuple Reader Component

In a nutshell, the timed tuple reader enables us to retrieve all data tuples from a sensor
file (or more precisely from a buffer) which are measured before a given match timestamp.
This functionality is provided by the readTuplesProducedBeforeOrAt (timestamp)
method which returns a list containing all data tuples which were not returned yet and
which were measured during the match before the point of time specified by the timestamp
parameter (i.e., tuple.timestamp < timestamp). Additionally, the method ensures that a
data tuple is not added to the result list if it is measured before the start of the soccer
match (i.e., only adds a tuple if tuple.timestamp > matchStartPico).

However, instead of reading the sensor data file line by line in this method, the timed tuple
reader leverages a buffer. Therefore, it extends the PreBufferedFileReader<T> class
and uses its pollElementFromBuffer () method. The idea of the PreBufferedFile-
Reader<T> is to read larger blocks of lines from a file into a buffer instead of reading
every single line. The purpose of this is to improve the I/O performance. We have decided
to implement the PreBufferedFileReader<T> as a generic solution and thus abstract

from our specific problem (i.e., reading lines from a sensor data file and create tuples).

PAN - P2P Analysis Network

The main focus of this thesis is to develop a generic real-time complex event detection
system. This system should be able to analyze multiple distributed input data streams and
answer several client requests in parallel. Moreover, we require our solution to be scalable
w.r.t. the number of client requests as well as with the data, i.e, with the number of input
streams (e.g., produced by sensors) and with the complexity and number of statistics.

In this thesis, we propose PAN (P2P Analysis Network). PAN is a generic real-time complex
event detection system which is able to analyze multiple distributed input data streams
and handle several client requests. Moreover, PAN distributes its workload onto several
workers in a P2P network. These workers are combined to workflows using a pull-based
publish/subscribe approach. As a result, PAN is scalable in terms of both, data and client
requests. Figure 4.1 illustrates PAN’s position in the overall problem overview picture in-
troduced in Section 1.2.

The remainder of this chapter is organized as follows. Section 4.1 presents the background
of our work (i.e., Jergler’s workflow-based solution [6]) and how we extend and improve
the existing idea. Section 4.2 presents the PAN approach in detail and discusses our design
choices. Finally, Section 4.3 gives some information about our implementation.

For illustration purposes, we will use the extended ACM DEBS 2013 Grand Challenge
scenario (see Section 1.1) in the explanatory figures (e.g., workflows). Please note, that
nevertheless, our approach is generic, i.e., is also applicable for other scenarios depart from

the grand challenge.

4.1 Background

PAN is based on the work of Jergler et. al. [6] (see Chapter 2). Jergler et. al. propose
a workflow-based architecture in which different workers (computing subtasks of the real-
time complex event detection system) are connected with non-blocking ring buffers (LMAX
Disruptor library [10]). This yields a sequential and parallel arrangement and connection of
the workers (i.e., a workflow). The authors state that their idea can also be implemented in
a distributed way by leveraging the publish/subscribe concept. However, they only present

a centralized implementation which only exploits multiple cores but not multiple machines

PAN - P2P Analysis Network 34

—— Qutput Stream 1 _ _
Input Stream1t1 O /7 \ @l — — — —
———————————— Request for
Output Stream 1

_ _OutputStream2 _
~ Requestfor — — T 7
P2P Analysis Network

Output Stream 2
putStream| N\ === Qutput Stream O __ _+
T T 7 T Requestfor — T T 7

Output Stream O

Input Stream 2

Multiple Input Data Streams Multiple Clients Requests
for
Output Data Streams

Figure 4.1: PAN’s Position in the Generic Problem Overview Picture (cf. Figure 1.5). The
cloudy shape denotes PAN’s distributed nature. To simplify the illustration each output
stream is only requested by and sent to one client and each client only requests a single
stream. However, in general, it is possible that an output stream is requested by several
clients and each client can request several streams.

and they do not describe in detail how the distribution can be done. Moreover, since Jergler’s
solution only has a single input buffer (the Distributor Ring-Buffer), it is only able to handle
and analyze a single input data stream. And last but not least, Jergler’s solution does not
fully solve the client request problem extension.

With PAN, we continue Jergler’s architecture idea. More precisely, we extend and improve
Jergler’s work by four aspects. First, we implement the workflow-based architecture idea in a
way that the workers can be distributed onto several machines (e.g., several cloud computing
instances) and thus transform the idea into a very scalable approach. Second, we modify
the architecture in a way, that it is able to handle and analyze multiple distributed input
data streams instead of a single one. Third, we face the problem of how to answer several
different client requests in difference to only providing a single HTML5 client. And fourth,
inspired by the XML-file based data flow definition in TechniBall [8] we provide a JSON-file

based workflow definition.

4.2 Concept
4.2.1 PAN at a Glance

PAN is built to be scalable in terms of both, data as well as the number of client requests (see
Section 1.2). In the PAN approach, we obtain a highly scalable solution by distributing the
workload of the real-time complex event detection system onto multiple machines instead
of running the full system on a single machine. In doing so, we avoid bottlenecks and single
points of failures.

To be precise, PAN distributes its workload onto several workers in a P2P network. As we
state in Section 4.1, PAN is based on the workflow-based architecture idea of Jergler et. al.
[6]. In Jergler’s approach a workflow is composed of several workers (called task elements)

computing subtasks. Hence, the full workload of the real-time complex event detection

PAN - P2P Analysis Network 35

- i
: ;
- 4 0 | N S NN SENSOR105
T Oawnm B
L 55.64,65.65, 3| g Piyer L N__B2_
N Foston e
: Worker 4 Worker 3

i
Niniry ayer oo
N [" L Woﬂufn BT,
\\\1!41“1/ b e
o ~ [} [}
~d as101 > .80 50 | reama e - —— BP/wholeGame A __ _
Sensor Simulation Gy : Ll e l&ess Il s
Environment \ eers - —

P2P Analysis Network

Figure 4.2: ACM DEBS 2013 Grand Challenge PAN Workflow Example. To simplify the
figure multiple streams between two workers are illustrated with a single arrow. Moreover,
the sensor data streams are abbreviated with their IDs (e.g., 106 instead of SENSOR106).

system is splitted onto several workers running on the same machine. In order to distribute
the overall workload of the workflow (and thus also the real-time complex event detection
system) onto multiple peers, we distribute the workers onto several peers in a P2P network.
Figure 4.2 shows an example for such a workflow distribution.

In PAN each worker consumes one or multiple input data streams and analyzes them in
one or multiple internal components. Each internal component generates one or multiple
streams which are offered from the worker to the other PAN workers and clients. In order
to connect these workers and clients, we leverage a publish/subscribe system.

However, we do not use the common push-based approach as for instance in OSIRIS(-SE)
[14, 15]. In the push-based approach, the publisher is responsible for distributing its output
streams to all subscribers. Instead, we use the pull-based approach. That means, that a
subscriber of a certain stream is responsible for fetching the data from the publisher. A
publisher of a certain stream can be retrieved from a publish/subscribe repository which is
accessible by all PAN workers as well as from clients outside of PAN.

The major advantage which we obtain by using the pull-base approach is that we gain more
flexibility than with the common push-based approach. For instance, this choice enables
load balancing since the workflows are easily adaptable during runtime.

In the following sections, we will present in detail how the components of and the concepts

used by PAN work and reason our design choices.

4.2.2 Architecture

PAN’s main idea is to distribute the workload of the real-time complex event detection
system onto several workers which are hosted on peers in a P2P network in order to obtain
a highly scalable and flexible solution.

For doing so, we leverage an unstructured P2P network instead of a structured one. In

PAN - P2P Analysis Network 36

our opinion it is always wise to use a structured P2P network (e.g., Chord [16], Kamelia
[17], etc.), if one can benefit from the introduced structure. In particular, we argue that
it is a good idea to use a structured P2P network, if the architecture can profit from the
lookup (key) method or from the routing tables. However, in PAN this is not the case.
Therefore, we neglect using a structured network to minimize the communication overhead
and increase the freedom of design.

In PAN, a peer, i.e., a physical machine or cloud computing instance, can host a single or
multiple workers. So, in fact, PAN is rather a W2W (Worker-To-Worker) network than a
P2P network. With this design, PAN obtains the maximum degree of flexibility in terms
of workflow definition. On the one hand, the whole workflow can be executed on a single
machine (when hosting all workers on a single peer) if this machine is very powerful or the
workflow has a small workload. On the other hand, a workflow can also be distributed onto
thousands of (weak) cloud computing instances hosting workers which compute only small
subtasks. We argue that this flexibility is fundamental since PAN is designed to be a generic

solution and thus should be applicable for all use cases and deployable on all setups.

4.2.3 Workflow
A PAN workflow is a sequential and parallel composition of PAN workers. Figure 4.2 il-

lustrates an exemplary PAN workflow, which generates the player as well as the team ball
possession statistic streams as defined in the grand challenge specification. For doing so,
various intermediate streams (e.g., the average player position and the ball hits streams)
are generated as output streams at some workers and consumed as input streams at other
workers. For instance, the ball hits stream (i.e., BALLHITS) is produced as an output
stream at the Ball Hit Detector Worker and consumed as an input stream at the Players
Ball Possession Worker. These data exchange between the workers constructs the intra-PAN
workflow. The devices producing the inter-PAN input streams (e.g., simulated sensors pro-
ducing sensor data streams) are the starting points, i.e., sources, of a PAN workflow. Clients
consuming the generated (intermediate) output streams are the sinks of a PAN workflow.
A static set of PAN workers building the intra-PAN workflow can be defined in JSON. A
JSON config file defines the type, the host (i.e., the peer) as well as the expected inter-
PAN input streams for each worker. Appendix E.1.3.1 shows the JSON config file for the
workflow illustrated in Figure 4.2. The actual connection of the workers is done by means
of a pull-based publish/subscribe system which is presented in Section 4.2.5. The clients are
not defined in the JSON config. Instead, they can dynamically join the PAN workflow using
the publish/subscribe repository and leave it by stop fetching the input streams.

To standardize the inter-worker communication, PAN workers always and only share data
via network communication, indifferent if they are hosted on the same or on different peers.
Hence, the intra- and inter-peer communication is performed in the same way. This can be
achieved again be identifying a worker by a combination of the IP address and a parametrized
port. The main advantage of this design specification is that if all communication is done via
network, one does not have to perform case differentiations, i.e., check if two communicating

workers run on the same peer or not.

PAN - P2P Analysis Network 37

External Device - — ntern-1_ | Forwarder ‘\—@—M) PAN Workers & Clients
Component
External Device - — Inter-In-2__ | %PAN Workers & Clients

Internal
PAN Worker mmm,@>< Component‘]* | Outl 5 pAN Workers & Clients
Intra-In-2 Out-2 .
—_— ——2
PAN Worker P@ Internal * PAN Workers & Clients
-In- mponent 2 -
PAN Worker M»@/ Component | Out3 5 pAN Workers & Clients

Out-4

———— > PAN Workers & Clients
- PAN Worker ")

(a) General PAN Worker Architecture. 2 inter-PAN input streams, 3 intra-PAN input streams, 3
internal components, 2 forwarded output streams and 4 generated output streams.

\ BALLHITS

A1-Ad {———————> Players Ball Possession Worker

Avg Player Position Worker 1

Avg Player Position Worker 2 AS-AB

Ball Hit
Detector Comp.

Avg Player Position Worker 3 B1-B4

Avg Player Position Worker 4 B5-BS,

Active Ball Worker ~ACTVIEBALL jp @

_ Ball Hit Detector Worker)

(b) PAN Worker Example: Ball Hit Detector Worker (cf. Figure 4.2)

Figure 4.3: PAN Worker Architecture

4.2.4 Worker

The purpose of a PAN worker is to perform a subtask of the whole real-time complex event
detection. More precisely, a PAN worker performs one step in the intra-PAN workflow which
generates (statistical) output streams using the inter-PAN input streams (e.g., sensor data
input streams) in several sequential and parallel steps. In a nutshell, a PAN worker does the

following:

(1) First, it receives one or multiple input streams. These input streams can be either inter-
PAN input streams (e.g., sensor data input streams) or intermediate intra-PAN data

streams (e.g., average player position streams) produced by workers inside PAN.

(2) Subsequently, the worker uses these input streams in one or several internal components.
These components can perform complex analyses or simply forward the input streams.
In any case, each internal component (and thus the worker) generates one or multiple

(intermediate) output data streams.

(3) Finally, the worker offers these output streams for further processing to other workers.

Moreover, they can be requested by clients.

Figure 4.3(a) illustrates this process as well as the architecture of a PAN worker in general.
To exemplify this general concept, Figure 4.3(b) shows a detailed view on the Ball Hit
Detector Worker (cf. the exemplary workflow in Figure 4.2).

In the remainder of this section, we will present the PAN worker in detail. Section 4.2.4.1
gives information of how the worker handles its input and output streams, i.e., presents

detailed information regarding (1) and (3). Section 4.2.4.2 present how the worker performs

PAN - P2P Analysis Network 38

its analysis tasks in the internal components (i.e., (2)). Finally, Section 4.2.4.3 discusses the

consequences of the PAN worker’s modularization and strict internal component separation.

4.2.41 Input/Output

Jergler et. al. use ring buffers in their architecture to connect two workers [6]. More
precisely, Jergler et. al. use a single non-blocking ring buffer (LMAX Disruptor library [10])
for each intermediate stream, which is filled by the worker producing the stream and read
by the worker consuming the stream. This is possible, since workers are implemented as
tasks running on the same machine and thus able to access the same memory.

In contrast, in PAN, workers are distributed onto multiple peers in a P2P network. As
mentioned earlier, they only share data via network communication. Hence, the produc-
ing worker (i.e., the publisher) and the consuming workers (i.e., the subscribers) cannot
access the same single ring buffer. For instance, in the exemplary workflow the Ball Hit De-
tector Worker producing the BALLHITS stream and the Players Ball Possession Worker
consuming it run on two different peers and thus cannot access the same memory.

We solve this problem, by equipping each worker with its own ring buffer per stream (see
Figure 4.3(a)). Thereby, we differentiate between input and output ring buffers. The input
ring buffers can only be read as input streams but not filled by the internal components.
In contrast, the output ring buffers can only be filled by the internal components as output
streams but not read.

We have to differentiate between intra- and inter-PAN input streams. An intra-PAN input
stream is an intermediate stream produced by another PAN worker (e.g., BALLHITS, A5,
etc.). In contrast, an inter-PAN input stream (e.g., SENSOR4, SENSOR106, etc.) is pro-
duced by a device outside PAN (e.g., a sensor simulator). In the remainder of this section,
we will present how the input as well as the output for these two type of streams is handled
by a PAN worker.

Intra-PAN Input Streams

PAN follows a pull-based publish/subscribe communication approach. That means, that a
consumer (i.e., subscriber) has to fetch the data from the producer (i.e., publisher). The
reasons why we use this approach instead of the common push-based model in which the
publisher is responsible to disseminate new tuples to all subscribers are presented later in
Section 4.2.5.1.

PAN facilitates the pull-based data share model by means of REST-Interfaces. More pre-
cisely, each PAN worker runs a webserver which answers predefined REST-Interface requests
(see Appendix C.2) using its output ring buffers. This REST-Interface can be used by all
other PAN workers to access the workers output ring buffers and fill their own input ring
buffers.

In PAN, a worker can either periodically fetch new tuples of a certain stream using the
publisher’s REST-Interface in a fixed interval in a separate thread or on demand when
requested by an internal component. The advantage of the fetch on demand approach is
that new tuples are only retrieved if they are needed and thus there is no useless network

bandwidth consumption. However, the disadvantage of the fetch on demand approach is

PAN - P2P Analysis Network 39

that if an internal component requests new tuples it has to block until the REST request is
answered. For evaluating PAN with the ACM DEBS 2013 Grand Challenge scenario we use
the automatic periodic fetch approach since for instance the Ball Hit Detector Component

requires many input streams and is very sensitive regarding timing aspects.

Inter-PAN Input Streams

In addition to the intermediate intra-PAN streams which are produced by PAN workers as
output streams and consumed by other workers as input streams for further processing, there
is another kind of input streams, i.e., inter-PAN input streams. Inter-PAN input streams
are the actual input streams for PAN, i.e., for the real-time complex event detection system.
Hence, they are produced by devices outside of PAN. For instance, a sensor data stream
(e.g., SENSOR/) produced by a sensor simulator is an inter-PAN input stream.

We argue, that we cannot require devices generating the inter-PAN input stream to support
our REST-Interface. In fact, we argue that it would be the best to not require anything from
these devices since they are not a part of PAN. Any requirement on the devices producing
the inter-PAN input streams would be an requirement on the scenario and thus reduce PAN’s
generality. Since PAN is thought to be a generic solution, we minimize the requirements as
much as possible. As a result, the only requirement is, that the inter-PAN input streams
are sent to a single predefined (in the JSON config) PAN worker via TCP. Disseminating
the inter-PAN input stream to other interested workers is the job of the PAN worker which
receives the input stream from its origin.

In order to achieve this job, each PAN worker creates an input and an output ring buffer
for each expected (see JSON config) incoming inter-PAN input stream. At runtime, the
worker listens for incoming TCP connections, accepts them and binds the incoming TCP
streams to the corresponding input ring buffers, i.e., fills the input ring buffers with the
incoming tuples. Moreover, a dedicated Forwarder Component periodically reads the tuples
from each input ring buffer and writes them to the corresponding output ring buffer. As
a result, the PAN worker which receives the inter-PAN input streams transforms them to
intra-PAN streams and thereby offers them to all other PAN workers.

4.2.4.2 Internal Components

So far, we have only presented how the workers communicate, i.e., share their data (streams).
In this section, we will present how the actual real-time complex event detection is performed
in the internal components of the PAN workers.

A PAN worker runs one or multiple internal components. Each internal component is per-
formed in a separate thread. Hence, all internal components are performed in parallel.

An internal component can use all input streams for its analysis task. That means, that it is
able to read data tuples from all input ring buffers. Moreover, an internal component is able
to generate one or multiple (intermediate) output data streams, i.e., fill the corresponding
output ring buffers.

In PAN’s design, we do not restrict what an internal component does. In fact, a worker
can perform complex analyses on the input streams or simply forward them. Up to now,

we implemented only two generic internal components: The Forwarder Component and

PAN - P2P Analysis Network 40

PwholoGame A oy Worker 1—BALLHITS

Teams Ball
Possession Worker 2 & Client Players.
Component And
Teams
Ball
Possession
Component

Possession
Component

Worker 2

Worker 2

(a) Interception (b) Merged

BALLHITS BP_A", BP_B" 8P_wholeGame A

Worker 1

Players Ball
Possession
Component

Teams Bal
Possession
Component

Worker 2 Worker 3

(¢) Two Workers

Figure 4.4: Component Separation Problem

the Repeater Component. Both components simply forward their input streams without
changing them. The Forwarder Component forwards all inter-PAN input stream and is
executed on all workers with at least one expected inter-PAN input stream. In contrast,
the Repeater Component forwards intra-PAN input streams to enable load balancing. This
component and our load balancing concept will be presented in detail in Section 4.2.8.
Internal components performing actual analyses depend on the scenario. Thus, implement-
ing them in a generic way is impossible. For evaluating PAN, we implement some components
generating (intermediate) statistical output data streams for the ACM DEBS 2013 Grand
Challenge. For instance, the Ball Hit Detector Component consumes the active ball (AC-
TIVEBALL) as well as all average player position (A1-A8 and B1-B8) streams, detects all
ball hits and generates an output stream (BALLHITS) containing the timestamp of the
latest ball hit and the ID of the player who hits the ball. A list of all internal components
is presented in Appendix D.1.

4.2.4.3 Component Separation and Single-Purpose Workers

In theory, PAN’s architecture allows to perform multiple tasks by performing multiple in-
ternal components at the same worker. That is, for instance, it is possible to perform the
player ball possession stream generation as well as its aggregation (to obtain the team ball
possession streams) at the same worker by performing two components.

However, a worker’s internal components are strictly separated. That means, a component
can only use data from an input ring buffer. Hence, the Teams Ball Possession Component is
not allowed to directly fetch the output of the Players Ball Possession Component. Instead,
the worker has to receive the players ball possession streams as an input from itself (see
Figure 4.4(a)) or the two components have to be merged to a single one producing all
output streams (see Figure 4.4(b)).

The advantage of this design choice is that the worker’s architecture is cleanly modularized
and the way internal components can get input and distribute output data is standardized.
However, the consequence is, that we only use single-purpose workers in our evaluation.

That means, that in our workflows each worker only performs a single task and thus only

PAN - P2P Analysis Network 41

performs a single analysis component or multiple components of the same type (e.g., a single
Player Average Component for each player). We argue that it makes more sense to split the
workload to two subsequent workers, since in this case it is possible to distribute these two
workers onto two different peers (see Figure 4.4(c)). The only exception is that, by design,
each worker which expects inter-PAN input streams performs a single Forwarder Component
which forwards all inter-PAN input streams. A list of all PAN workers we implemented is

presents in Appendix D.2.

4.2.5 Publish/Subscribe

Up to this point, we have neglected the question of how a PAN worker (or a client) can
find a publisher of a certain stream. To solve this problem, we follow Jergler’s suggestion
[6]. Hence, we leverage a publish/subscribe system and implement the workflow as a “set of
subscriptions” [6]. More precisely, we use a pull-based publish/subscribe approach. In the
remainder of this section, we will present in detail how the set of workers is connected to a

workflow and discuss our design considerations.

4.2.5.1 Pull-Based Approach

The general idea how to use a publish/subscribe system to connect workers to a workflow
is simple: Each worker has to publish all its output data streams. As a consequence, these
streams can be subscribed by other workers. Hence, in PAN, each worker has to publish all
its output streams (or output ring buffers) and subscribe all input streams to be able to fill
its input ring buffers.

However, the way we implemented the publish/subscribe system is also PAN’s unique selling
point. The reason for this is that we use a pull-based instead of the common push-based
publish/subscribe approach. In the push-based approach, a publisher is responsible for
distributing its output streams to all subscribers. In contrast, in the pull-based approach, a
subscriber is responsible for fetching the data from the publisher.

This design choice introduces a major consequence: It changes the workflow definition direc-
tion. In the common (i.e., push-based) approach, the workflow is defined from the source to
the sink. Thus, a publisher has to know all receivers (i.e., subscribers) of its output streams.
In contrast, with the pull-based approach, the workflow is defined backwards, i.e., from the
sink to the source. Hence, the publisher does neither have to keep a list of all subscribers of
its output streams nor push new data tuples to all of them. Instead, a subscriber asks for a
publisher of a certain stream and fetches new tuples on its own.

One can easily see with a small example, that the pull-based approach is the more natural
one. Assume, there is a baker who produces bread. In the real-world a baker normally does
not have a list of all customers who may want bread and delivers bread to all of them if new
bread is available. Instead, a customer searches for a baker who has bread and gets it by
itself whenever the customer needs bread.

The major advantage of the pull-based approach is that it is more dynamic and flexible than
the push-based approach. First, the pull-based approach enables subscribers to fetch data

on demand or with different intervals. For instance, if a subscriber only needs the latest

PAN - P2P Analysis Network 42

tuple once per second, it has no benefit from receiving all tuples which are produced with
100Hz at the publisher. Thus, supporting this feature can reduce the traffic enormously,
especially since also client requests are implemented by means of subscriptions (see Section
4.2.6). While fetching new data tuples with different intervals (or even on demand) comes
for free with the pull-based approach, one has to implement this feature on top of the
push-based approach. Moreover, the pull-based approach facilitates adapting the workflow
easily during runtime. The reason for this is that the publishers do not need to know the
subscribers. Thus, the workflow can be modified by adding new workers without changing
anything at the preceding workers. Especially new clients can join the workflow, fetch some
data tuples, and leave the system without any changes in the intra-PAN workflow. In fact,
the PAN workers do not even notice the joining and leaving clients apart from an increasing
or decreasing number of REST requests. Furthermore, this enables load balancing by adding
new Repeater Workers during runtime if the number of client request grows. More details
to this topic are presented in Section 4.2.8.

However, the pull-based approach has also a disadvantage compared to the push-based
approach. When using the push-based approach a publisher sends new tuples immediately
after generating them. Hence, the subscriber receives the new tuples as early as possible. In
contrast, in the pull-based approach there is an additional time gap (At) between generating
a new tuple and receiving it at the subscriber. This time gap is regulated by the time interval
(tfetehintervar) in which a subscriber fetches new tuples (cf. Equation 4.1). Unfortunately,
this time interval cannot be arbitrarily small, since a too small interval would introduce an
enormous number of REST requests at the publisher. Thus, using the pull-based approach
increases the query delay, i.e., the time the system needs to generate the output streams

using the inter-PAN input streams (see Section 5.2.2), in any case.

max At = tfetch]nter'ual (41)

In fact, the tfetchintervar introduces a trade-off between a small query delay and a small
network consumption and computational effort. As decreasing the interval decreases the
query delay, it also increases the network consumption and the computational effort on
the workers hosting the webservers. In contrast, increasing the interval reduces the network
consumption and the computational effort but increases the query delay. Finding the perfect
fetch interval depends on the scenario, i.e., on the velocity of events.

Nevertheless, we argue that the flexibility introduced by the pull-based approach outweighs
this disadvantage since it enables us to fully benefit from the P2P network which underlies

PAN.

4.2.5.2 Publish/Subscribe Repository

The remaining question to answer is how to perform a subscription. Both approaches, i.e.,
the push-based as well as pull-based one, require the possibility to retrieve the publisher of
a certain stream. More precisely, a subscriber needs the contact information (i.e., the IP
and port) of the publisher. In the push-based approach, a subscriber uses these contact

information to inform the publisher of its interest. In PAN (i.e., the pull-based approach)

PAN - P2P Analysis Network 43

Subscribe
B5

Contact
Infos W1

Pub/Sub
Repository

Contact
Infos W1

P2P Analysis Network

Figure 4.5: Publish/Subscribe Process

the subscriber needs the contact information to fetch data tuples using the REST-Interface
(see Section 4.2.4.1).

We implement a central publish/subscribe repository, which stores the publisher contact
information for each stream. The repository stores a mapping from the stream identifier to
a list of publishers or more precisely to a list of contact informations. The ability to store

multiple publishers is required for enabling load balancing (see Section 4.2.8).

Data Stream — List<Publisher>
(e.g., B5 — [Workerl, Worker8] = [1.2.3.4:1234, 1.2.3.5:5678])

As the PAN workers, PAN’s publish/subscribe repository runs a webserver which answers
predefined REST-Interface requests (see Appendix C.1) for communication purposes. Thus,
the publish/subscribe repository is simply a distributed accessible map.

At runtime, each worker has to publish all its output streams by means of this REST-
Interface. Subsequently, all intra-PAN workers and clients outside PAN can retrieve the
contact information of this publisher by subscribing the published stream via the REST-
Interface. Figure 4.5 illustrates this process.

We implement a central publish/subscribe repository for the first version of PAN. We argue,
that this does not harm the PAN approach, as the central repository is currently no bottle-
neck since each PAN worker only contacts the repository once in the beginning for each of
its subscriptions. Later only clients contact the repository once per subscription. All the
data transmissions are done in a P2P way between two workers or between a worker and
a client. Thereby, PAN’s P2P network is comparable to Napster. The publish/subscribe
repository is the central component which is only accessed once per subscription to get the

contact information. All other communication is done in a P2P fashion.

PAN - P2P Analysis Network 44

In our future work, we plan to eliminate this central component to obtain a fully distributed
and thus scalable system. We suggest to replace the central publish/subscribe repository
by an distributed one. Therefore, it could be beneficial to use a structured instead of an
unstructured P2P network and use the possibilities provided by a DHT (e.g., Chord [16]).
Alternatively, one could implement the contact information retrieval (i.e., subscription) by
means of group communication techniques in the P2P network. In this case, one could

remove the publish/subscribe repository and neglect publishing output streams.

4.2.6 Client Requests

Another advantage of the pull-based publish/subscribe approach is, that it enables clients
to join the workflow as sinks as well as leave it without changing anything in the intra-PAN
workflow. Thus, client requests can be implemented by means of subscriptions.

More precisely, a client outside PAN simply acts like a PAN worker to obtain an (intermedi-
ate) output data stream. That means, that a client first has to contact the publish/subscribe
repository to retrieve the contact information of a publisher for a certain stream (see Figure
4.5). Subsequently, the client can use the received contact information to fetch the data
tuples from the publishing PAN worker’s output ring buffer just in the same way as other
PAN workers do, i.e., by using the REST-Interface (see Section 4.2.4.1).

With this design choice, we also limit the client requests. A client is only able to receive
data streams, which are output streams of an arbitrary PAN worker. This includes all inter-
PAN input data streams as well as all generated (intermediate) output data streams. For
instance, in the exemplary workflow (see Figure 4.2) a client can request the ball possession
stream for team A (BP_wholeGame_A), the average position stream of player B2 (B2) or
the sensor data stream of the referee’s left shin guard (SENSOR105). But, a client cannot
perform more complex queries (e.g., “SELECT playername WHERE ballPossession > 10
%7) unless a PAN worker generates an output stream with results for exactly this query. If
a client needs such complex queries, it has to subscribe for all necessary data streams (e.g.,

the ball possession streams of all players) and implement the query by itself.

4.2.7 Consequences of the REST-Interface Communication Approach

As we presented in the previous sections all communication between PAN workers, clients
and PAN’s publish/subscribe repository is done via REST-interfaces with JSON objects.
This encompasses fetching output streams (i.e., new data tuples) from PAN workers as well
as publishing and subscribing streams at the repository. To enable this, each PAN worker
and the publish/subscribe repository run a webserver which is able to answer a predefined
set of REST requests (see Appendix C) with JSON objects.

The main benefit of using REST-Interfaces for data transfer is that REST-Interfaces are
language independent. Hence, it is possible to write clients in all languages which are able
to perform HTTP requests. For instance, we implement Java as well as lightweight Python
clients for evaluating PAN (see Section 5.2).

However, the disadvantage of REST-Interfaces is that they introduce avoidable communica-
tion overhead (i.e., the HTTP Header and the JSON syntax) and computational effort for

PAN - P2P Analysis Network 45

running the webserver. Especially in scenarios with traffic intensive workflows, this can be
a problem. Hence, we plan to facilitate using binary JSON or even other communication
technologies (e.g., Java RMI or SOAP) at least for the intra-PAN communication between

PAN workers in our future work.

4.2.8 Load Balancing

So far, we have only presented how we achieve PAN to be scalable w.r.t. the data. Increasing
the amount of data, i.e., the number of statistics or the number of input streams, or the
complexity of the data, i.e., the complexity of the analyses in the internal components,
results in an increase of computational effort. In PAN we accomplish this by distributing
the overall workload onto multiple peers in a P2P network. More precisely, we distribute
the PAN workers onto multiple peers and connect them with a pull-based publish/subscribe
approach.

But, as presented in Section 1.2, we further want our system to be able to scale with an
increasing number of client requests. Up to now, each stream is only published by one PAN
worker. This is either the worker which generates the stream in an internal component (e.g.,
the Teams Ball Possession Worker for the BP_wholeGame_A stream) or the receiver and
thus forwarder of the inter-PAN input stream (e.g., Forwarder Worker 2 for SENSOR105).
In any case, there is only one publisher for each stream.

Assume that for instance in the 2014 FIFA World Cup final match thousands or even millions
of clients request the ball possession statistics stream of the German team after shooting
the match-winning goal in the extra time. A single PAN worker would not be able to answer
all these requests. Both, the network connection and the computational power of the peer
hosting this worker would become a bottleneck.

In such situations it is necessary to perform load balancing, i.e., to distribute the client
requests for a certain stream to multiple publishers of this stream. As mentioned in the
previous sections, PAN enables load balancing. More precisely, the current version of PAN
is able to balance the subscriptions for a certain stream onto the set of publishers of this
stream and by this distribute the load of the incoming client requests.

In order to be able to create additional publishers of a certain stream, we introduce the
Repeater Component. The Repeater Component simply forwards a given (in the JSON
config) set of intra-PAN input streams which are published from another PAN worker without
changing them. Therefor, the repeating worker has to perform a subscribe request for the
stream at the repository to retrieve the contact information of the publisher, send a publish
request to the repository to add itself as a publisher for the stream and repeat the stream
by fetching the tuples from the producers output ring buffer and adding them to its own
output buffer.

As we mentioned in Section 4.2.5.2, the publish/subscribe repository is able to store a list
of worker contact information. Moreover, as a first trivial load balancing we implemented
the repository in a way that it returns a random publisher out of the set of publishers
for a certain stream. Unfortunately, this is not sufficient to avoid all anomalies which we

summarize in Figure 4.6.

PAN - P2P Analysis Network 46

_ _ _)_SENSOR105
(no tuples)

Sensor Simulator Sensor Simulator

SENSOR105

| P _ O\ _SENSOR105
i 1 (no tuples)
! | Repeater | |
| (Worker 1 |
SENSOR105 ﬁ

‘ ! | Repeater |- — — _ _SENSOR %
Sensor Simulator omerz) o ﬁ

P2P Analysis Network

SENSORY05

" SENSOR15
Sensor Simulator

P2P Analysis Network

(c) Desired 3 Peers (d) Problem 3 Peers

Figure 4.6: Replicator Problem

Assume a simplistic scenario with a forwarder worker (i.e., Forwarder Worker) producing
the stream (SENSOR105) and a single repeater worker (i.e., Repeater Worker 1). Figure
4.6(a) shows the desired workflow for this scenario. However, without further provisions it is
also possible that the workflow illustrated in Figure 4.6(b) emerges. This is due to the fact
that all PAN workers publish their output streams, before they subscribe the input streams.
This is necessary since otherwise a worker cannot subscribe a stream published by another
worker. But, this can also result in the repeater worker retrieving itself as the publisher for
the stream it want to repeat. The trivial solution for this problem is to forbid a repeater
worker to accept itself as a publisher for an input stream. Unfortunately, this is still not
sufficient if we extend the scenario by a second repeater worker (i.e., Repeater Worker 2).
Figure 4.6(c) illustrates the desired workflow for this scenario. However, also the workflow
shown in Figure 4.6(d) can arise.

In the current implementation of PAN we solve this problem by means of the rep parameter
in the publish request. This parameter indicates if the published stream is generated by a
repeater component. The publish/subscribe repository stores this information jointly with
the contact information of the publisher. Moreover, the subscribe request is enriched with
a norep parameter. If this parameter is set to true, the repository only returns the original
producer of the stream.

In our future work, we plan to replace this boolean model with a level model in order to
facilitate hierarchical repeater structures (see Figure 4.7). In this new model, each publisher
has a repeater level indicating its position in the hierarchical structure. This level is passed
with the publish request and stored in the repository. Moreover, the repository is only
allowed to return worker contact information of a worker preceding the repeater level of the
subscriber.

Furthermore, as we state in Section 4.2.5.1, the flexibility we gain by using the pull-based

PAN - P2P Analysis Network 47

[e - SENSOR105_
SENSOR105gg
' | Repeater j

| ((Worker 3

SENSOH " | Repeater

CWworkert)\ s

o] ‘ I =

| Forwarder SENSOR105gg
. |_ Worker | | Repeater

o) S N ﬁ
: Peer 5)
GEREPERIE— — = — — — — — — —— — — — — == ’
| Worker 2 !

Peer 3 { —‘
SENSORM SEN

Peer 1
SENSOR

Sensor Simulator

|| Repeater
+ (\Worker 5

Peer 6

P2P Analysis Network

Repeater Level Repeater Level Repeater Level
0 1 2

Figure 4.7: Hierarchical Repeater Structure

approach, enables adding new repeaters at runtime. More precisely, it is possible to observe
the load in the system and dynamically add new repeater workers if the existing publishers
cannot handle all client requests. These new repeater workers could be hosted on new cloud
instances which join PAN’s P2P network at runtime. If the number of clients decreases, a
cloud instance could leave the P2P network and be shutting down. Hence, with the flexibility
of the pull-based approach, we can benefit from the pay-as-you-go cloud computing model.
We plan to implement such an observer and evaluate PAN w.r.t. its flexibility in our future
work.

4.3 Implementation

In this section, we want to give some information about our current implementation of the
PAN concept. The purpose of the first prototype is to evaluate if the PAN approach, i.e.,
distributing a real-time complex event detection system onto multiple workers in a P2P
network which are connected to a workflow using a pull-based publish/subscribe system, is
feasible.

We decided to implement the first PAN prototype fully in Java in order to obtain a platform-
independent prototype. The prototype performs properly on Ubuntu 12.04 as well as on
Mac OS X 10.7.5 machines. Moreover, it should also be possible to run a PAN worker or
the publish/subscribe repository on a Windows machine. Obviously, the performance of the
prototype could be increased by implementing it in C++ or another low level programming
language. However, we neglect that for the first prototype and postpone implementing a
faster prototype to future work.

In the remainder of this section, we want to give some brief information about the libraries
we use in the prototype. Moreover, Section 4.3.4 states which ACM DEBS 2013 Grand

Challenge queries (see Section 1.1.1.3) can be answered with the current implementation.

PAN - P2P Analysis Network 48

4.3.1 Ring Buffer

As we summarized in Section 2.2, three out of six grand challenge solutions explicitly state
that they use ring buffers in their solutions. So we do in PAN. Jergler et. al. [6], i.e., the
work PAN bases on, as well es Wu et. al. [5] both leverage the LMAX Disruptor library [10]
in their implementation.

As presented in literature [18], the LMAX Disruptor library significantly outperforms all
existing (bounded) queue approaches for linking processing stages in pipelines. The reason
for this is that the LMAX Disruptor, is designed to address all problems of queues when
used for binding producers and consumers. Evaluations confirm that the LMAX Disruptor
library is the perfect component for linking processing stages in a pipeline.

Distributing the complex event detection system onto several linked workers (i.e., a workflow)
is also a kind of a processing pipeline. Hence, albeit the LMAX Disruptor is designed for
linking different threads on a single machine and not different processes distributed on several
peers, we considered using the LMAX Disruptor library for implementing the worker input
and output ring buffers in PAN.

Unfortunately, it is no option to use the LMAX Disruptor in our PAN prototype since the
LMAX Disruptor follows an event-based consuming approach. More precisely, in the LMAX
Disruptor approach, a consumer does not decide on its own when to read new entries from the
ring buffer (cf. pull-based). Instead, a consumer is notified on new entries (cf. push-based)
and has to handle these events in a callback method. This fundamentally disagrees with
PAN’s design concept, since PAN follows the pull-based approach, i.e., in PAN the subscribing
worker is responsible for fetching new data stream tuples from the output ring buffer of the
publisher by sending a REST request. In consequence, an event-based consuming approach
in which the publisher sends new entries and the subscriber handles received entries is not
reconcilable with PAN’s design concept. Hence, we cannot benefit from the existing open
source LMAX Disruptor library.

Unfortunately, the java.util.concurrent .ArrayBlockingQueue’, which is used as
an evaluation reference to the LMAX Disruptor and stated to have “the highest performance
of any bounded queue” [18] is not applicable for implementing the ring buffers in PAN. The
reason for this is that the ArrayBlockingQueue blocks on putting a new element in the
queue if the queue is full. In contrast to this behavior, we want to override the oldest
element.

Therefore, we decided to implement our own ring buffer which is adapted to fit PAN’s needs.
More precisely, we build a wrapper around an array. Thereby, we ensure immutability from
outside and a proper synchronization. Moreover, we took into account the considerations

presented in literature [18].

4.3.2 REST-Interfaces
As we presented in Section 4.2, each PAN worker as well as PAN’s publish/subscribe reposi-

tory run a webserver for answering incoming REST requests. In our prototype implementa-

7 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ ArrayBlockingQueue.html (07.08.2014)

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ArrayBlockingQueue.html

PAN - P2P Analysis Network 49

tion we leverage the Jetty library® [19]. More precisely, we use Jetty for two purposes. First,
we use Jetty’s HT'TP server to implement our REST request handlers, i.e., the webservers
answering incoming REST requests at the repository and at the workers. Second, we use
Jetty’s HT'TP client to perform the requests at the PAN workers, i.e., to perform publish as
well as subscribe requests and to fetch data tuples from other workers.

The REST-Interfaces return JSON objects for all requests. The sole exception are the /debug
requests which are answered with a HTML page. In our prototype, we use the Google Gson

library? [20] for converting Java objects into JSON objects.

4.3.3 Logging

In distributed systems, and especially in the first prototype of a distributed system, logging
is indispensable for finding bugs. Therefore, we leverage the Log4j library!® [21]. More
precisely, we use the Log4j library for performing logs in the PAN workers, PAN’s pub-
lish/subscribe repository and in the sensor simulation environment. Moreover, we bind the
existing logging mechanism of Jetty to our Logdj config using SLF4J!! [22]. During the
evaluation we printed all log messages with an error level higher or equal to INFO to the

console and into dedicated log files.

4.3.4 ACM DEBS 2013 Grand Challenge Workflow

In order to evaluate PAN we implemented internal components and workers for two work-
flows. The first workflow (Full Game, see Appendix E.1), generates ball possession streams
for the players as well as for the teams. Thereby, this workflow answers the ball possession
queries as specified in the ACM DEBS 2013 Grand Challenge (see Section 1.1.1.3). The
second workflow (Heat Map, see Appendix E.3) generates streams for the heat map queries
in different resolutions for a single player.

We neglect, implementing a workflow which produces streams for all queries in parallel
as required of a grand challenge solution for two reasons. First, we only want to use the
extended ACM DEBS 2013 Grand Challenge scenario as an evaluation base for PAN. Thus,
we relinquished writing internal components for all queries but instead spent the limited
time for this thesis on improving PAN. Second, when using the current prototype, such a
workflow would require too many cloud instances, since, unfortunately, our resources in this
thesis were limited to 14 Windows Azure cloud instances.

Appendix D lists all internal components and workers we implemented for these two work-
flows. Our implementations are highly inspired by the published ACM DEBS 2013 Grand
Challenge solutions (see Chapter 2) and thus no new (and not our own) ideas. Moreover,
we suppose that the implementation of our components is not optimal but can be improved.
However, as we mentioned above, we only used them as an evaluation based for PAN and

thus neglect further improving them.

8 Jetty version: jetty-9.1.3.v20140225 - 25 February 2014
9 Google Gson version: 2.2.4

10 Log4j version: 2.0 rcl

11 SLF4j version: 1.7.6

PAN - P2P Analysis Network 50

4.3.5 Launch and Deployment Scripts
In order to evaluate PAN, we have written Python and Bash scripts for deploying and
launching PAN on multiple machines (e.g., Microsoft Azure cloud instances). In a nutshell,
these scripts use SCP to deploy the prototype on the machines and SSH to start the workers
as well as the publish/subscribe repository.

Evaluation

In this chapter, we present how PAN performs in a distributed environment under various
conditions. However, prior to this, we will briefly evaluate our sensor simulation environment
in order to make sure that we have a proper evaluation base, i.e., proper input data streams.

Subsequently, in Section 5.2 we will present and discuss the evaluation results of PAN.

5.1 Sensor Simulation Environment

In order to evaluate PAN it is necessary that we have a proper evaluation base. That means,
that we have to make sure, that our sensor simulation environment generates sensor data
input streams in the same way as if they were produced by sensors measuring a currently
ongoing soccer match.

As we mentioned in Section 3.1.3.2, the most important is to ensure that all sensor simulators
generate data streams with data from the same point of time in the match. We further
argued, that this can be achieved by guaranteeing that the time difference between two
input data streams does not exceed a certain threshold. In this section, we will confirm
that our sensor simulation environment (see Section 3.3), i.e., the Sensor Simulator using
our WeakTrueTime library, is able to guarantee this and thus generates input data streams
which are a proper evaluation base for PAN.

For doing so, we generate the sensor data streams on a corrupted environment and measure
the time difference of the incoming sensor data streams at a dedicated Debugging Stream
Receiver. More precisely, we simulate all 42 sensors on a single as well as distributed onto two
machines. These two machines are connected via ethernet and have a ping around 1.6ms'2.
In the distributed case, the sensor simulators are equally distributed onto both machines,
i.e., each machine simulates 21 sensors. In order to corrupt the distributed environment,
we manipulate the machine clock of the second machine, i.e., we set it approximately 20
seconds into the past.

Appendix F.1 shows the configuration of the sensor simulator we use for the evaluation,

i.e., lists the values of all configuration parameters. The sole parameter we vary during the

12 Ping statistics: rtt min/avg/max/mdex = 0.913/1.575/2.923/0.284 ms

Evaluation 59

evaluation is the USE_WFEAK_TRUE_TIME variable. That means, that we evaluate the

3

sensor simulation environment with WeakTrueTime!? as well as the local machine time as

the time provider. As a result we obtain four evaluation setups:

(1) Single machine, without WeakTrueTime
(2) Single machine, with WeakTrueTime
(3) Distributed (two machines), without WeakTrueTime

(4) Distributed (two machines), with WeakTrueTime

In our evaluation, we simulate the full game in real-time (i.e., no speedup) for all four setups.
That means, that we run the whole sensor simulation environment four times. During each
run the debugging stream receiver calculates time difference statistics in a 5 seconds interval.
More precisely, every 5 seconds the standard deviation of the timestamps of the last received
tuple of all sensor data streams is calculated (cf. Equation 5.1). Moreover, the median
difference to mean (cf. Equation 5.2) is calculated. In addition, a moving average with a

sliding windows size of 10 is calculated for both statistics.

1 _
s = n_1§(xi—x) (5.1)
d= median |z; — 1 (5.2)

cey

n
where T = %sz , n =42 and z; = latest timestamp of the ith sensor
i=1
Figure 5.1 compares the moving averages of the standard deviations for all four setups.
As one can easily see, the time differences in setup (1), (2) and (4) follow approximately
the same schema. Up to approximately 23.5 minutes (= 1.4E6ms) and between the 41th
minute (=~ 2.5E6ms) and the end of the simulation (= 70min = 4.2E6ms), i.e., during the
second half time, the value fluctuates between 100 and 1000ms. We argue, that this can be
regarded as the same situation in the game. As expected using WeakTrueTime as the time
provider has no effect in the single machine setup. However, using WeakTrueTime as the
time provider compensates the corrupted environment in setup (4). In contrast, in setup (3)
the value slightly varies around 10 seconds. This exactly meets our expectations, since 10
seconds is the half of the time difference between both machines. Moreover, this confirms
that the WeakTrueTime library works and is required for executing the sensor simulation
environment distributed onto multiple machines since one cannot exclude clock differences.
Unfortunately, the time difference explodes between the 24th and the 41th minute, i.e., in
the end of the first half time and during the half time break. In this time interval, none of the
four setups could produce sensor data streams with an acceptable time difference statistic.

However, we argue that this is not a problem of sensor simulation environment but of the

13 The first machine with the correct clock is the WeakTrueTime time master.

Evaluation 53

Compare Differences between Incoming Timestamps
Simulated all 42 sensors; full game with half-time break (no speedup);
50ms check period; 10ms check period for simulation start time;
statistics measured every 5000ms; Standard deviation (sliding window size = 10)

1e+06 T T T T T - T - T T
single machine, without WTT ———
single machine, with WTT
distributed, without WTT ———
distributed, with WTT ———
100000 | .
[%2]
€
£
5 10000 I \ .
E ’
>
[0
: |
©
& 1000 i
2 L
[} ‘n‘ A A . 1‘ N \
7 AL AT S LN
100 ! T .
10 1 1 1 1 1 1 1 1
? 6\000 ,sxo "% Q?S’Xo e“% %xo Q‘% 7@"0 &
% 5 % 3 % 3 % s >

Time in ms (since tuples of at least 2 sensors are received)

Figure 5.1: Comparison of the time difference of incoming sensor data streams produced
by the sensor simulator environment in milliseconds for four different setups. The graph
shows the standard deviation (sliding window average) for all four setups.

provided evaluation data. The organizers of the ACM DEBS 2013 Grand Challenge state,
that the active ball sensor had problems in the end of the first half time'*. We suppose that
the technical problems even started earlier. Moreover, we suppose that there are no proper
sensor data during the halftime.

Appendix G.1 presents additional graphs containing the remaining statistics. In a nutshell,
the median difference to mean statistic (c¢f. Equation 5.2) has the same trend as the stan-
dard deviation statistic. However, the median difference is always lower than the standard
deviation. This indicates, that the standard deviation is biased by outliers with large time
differences.

In conclusion, we state that our sensor simulation environment fulfills the requirements.
More precisely, our implementation is able to produce data streams from the same point of
time in the game, i.e., with a small time difference, even if it is executed on a corrupted
distributed environment. Hence, the our sensor simulation environment can be used as an

evaluation base for evaluating PAN.

14 Quotation: “Towards the end of the 1st half we had technical issues with the locating system so that the
last 2.5 minutes are without the active ball transmitter (see without ball above). Hence, the shot on goal
and ball possession query cannot produce valuable information for that time.” [3]

Evaluation 54

5.2 PAN

In this section, we will present the evaluation of the main contribution of this thesis, i.e., the
evaluation of PAN. In this evaluation we will explore PAN’s applicability and performance

characteristics. Therefor, we will answer the following questions:

e Where can PAN be deployed? Are there any requirements on the peers (e.g., their CPU

power) or on the way they are connected, i.e., on the intra-PAN network properties?

e What are the performance characteristics of PAN? Is PAN able to answer the queries
specified in the ACM DEBS 2013 Grand Challenge in real-time? And how long does
PAN need to generate the result stream for a certain query, i.e., how large is PAN’s

query delay?

e Which degree of distribution is useful and beneficial? That is, how many peers are
required to perform a certain workflow in real-time? And does it harm PAN’s perfor-

mance to further distribute the workflow?

e Does PAN, or more precisely our implementation of the DEBS specific internal com-
ponents, generate correct statistical data streams? And are these results consistent

and reproducible?

e Does PAN’s load balancing feature work? That means, is PAN able to scale w.r.t. an

increasing number of client requests?

The remainder of this section is organized as follows. First, Section 5.2.1 presents the settings
and the setup for our evaluation and Section 5.2.2 presents our metric for evaluating PAN’s
performance, i.e., the query delay metric. Section 5.2.3 contains all evaluations we performed
on the big exemplary workflow presented in Chapter 4. The evaluation results of the load
balancing feature are presented in Section 5.2.4. Subsequently, Section 5.2.5 presents the
visualization clients. A concluding discussion of the evaluation results is given in Section
5.2.6.

5.2.1 Setting

In order to evaluate PAN with the largest degree of distribution as possible, we leverage
a virtual machine setup (i.e., the Microsoft Azure Cloud). More precisely, each peer in
the evaluation workflows is a Microsoft Azure cloud instance'®. In contrast, the other
components, i.e., the sensor simulators and the clients, are performed on a laptop'®. This
is due to the way the query delay is measured (see Section 5.2.2). The sole exception of
this segmentation, are the lightweight Python clients in the load balancing evaluation (see
Section 5.2.4). These clients are performed on cloud instances which are not in use for

hosting PAN workers.

15 Cloud instance specifications: Small VM (Standard A1), 1 core 1.6GHz CPU, 1.75GB RAM
16 Laptop specifications: Lenovo ThinkPad W530, Intel Core i7-3820QM CPU @ 2.70GHz, 12GB RAM

Evaluation 55

The ping between two peers, i.e., cloud instances, is approximately 0.9ms!7 and the ping
from the laptop to a peer in the cloud is around 21ms8.

The operating system of the laptop as well as the cloud instances is Ubuntu 12.04 (LTS).
In order to modify the network conditions for the intra-PAN network properties evaluation
(see Section 5.2.3.3) we leverage two tools, i.e., TC and Wondershaper.

Appendix F presents the configuration of the sensor simulator and PAN. In addition, it
contains the client configuration we use for the visualization clients and the query delay
client which measures the query delay during the evaluation. More precisely, it lists the
values for all important configuration variables. The sensor simulator configuration is the
same we use for evaluating the sensor simulation environment (see Section 5.1).

As we state in the previous section, the sensor simulation environment is not able to produce
proper input data streams for evaluating PAN in the end of the first half time and during the
half time break. Therefore, we simulate only the first 25 minutes'? of the soccer match in the
PAN evaluations. More precisely, we start the simulation at timestamp 10753295594424116
and stop it when the query delay client receives a tuple with a timestamp greater than
or equal to 12253295594424116. As a consequence, PAN only receives and analyzes proper
inter-PAN input streams during the evaluation. We argue that this is legal since in our
opinion it is useful to evaluate PAN first under perfect conditions. Otherwise, the corrupt
input data streams may corrupt the evaluation results of PAN and probably even conceal

trends or conceptual problems.

5.2.2 Query Delay Metric

In the published ACM DEBS 2013 Grand Challenge solutions (see Chapter 2) the authors
mainly use two metrics to evaluate their systems, i.e., the throughput and the query delay.
The throughput is either measured in analyzed events per second or an event processing
speedup value, i.e., how much faster than real-time the system is able to analyze the input
stream and generate the output streams. We neglect evaluating the throughput since the
current prototype implementation of PAN is only a proof of concept and thus not able to
compete the published solutions in terms of throughput performance. In fact, as we will
show in Section 5.2.3.2, we need to distribute the exemplary workflow which does not even
answer all specified queries at least onto 6 peers. However, in contrast to the published
solutions our system is able to scale further in terms of data.

The query delay denotes, how long the system needs to calculate and generate a certain
statistic, i.e., a certain output stream. In other words, the query delay measures how long
the system needs to answer a query. In our evaluation, we use this metric to measure
PAN’s performance. More precisely, we use this metric to measure how PAN’s performance
changes with its degree of distribution and with the internal network properties, i.e., to
discover PAN’s characteristics and limitations. Moreover, we leverage it to evaluate the load

balancing feature.

17 Intra-PAN ping statistics: rtt min/avg/max/mdex = 0.556/0.920/5.118/0.303 ms
18 Tnter-PAN ping statistics: rtt min/avg/max/mdex = 17.642/21.005/182.466/13.643 ms
19 Simulation length: 12253295594424116ps — 10753295594424116ps = 1.5E15ps = 1500s = 25min

Evaluation 56

Relevant Sensor Data
Input Stream 1

TRelevant Sensor Dafa
Input Stream |

Request for
Output Stream

Sensor Simulation
Environment

Query Delay
Client

,,

Figure 5.2: Query Delay Metric Setup

Figure 5.2 illustrates the setup for measuring PAN’s query delay. The query delay is cal-
culated by means of the machine time (MT) when sending a sensor data tuple at a sensor
simulator and the machine time (MT) when receiving the corresponding output data stream
tuple at the client (cf. Equation 5.3). Hence, since different machines may have different
machine timestamps at the same moment, all sensor simulators and the query delay client

have to be executed on the same machine.

QueryDelay = MT — MT (5.3)

Each data tuple has a unique match timestamp in picoseconds (¢). We use this timestamp
to identify the sensor data tuples. More precisely, a sensor simulator which generates a
relevant sensor data stream logs the machine timestamp for each tuple by writing match-
timestamp-machine-timestamp pairs in a dedicated file. Relevant are those sensors which
may affect an output data stream for which the query delay is measured, i.e., whose match
timestamp may be the resulting event timestamp of an output data stream tuple received
at the query delay client at the other end of the workflow. Usually, the event timestamp,
i.e., the match timestamp of an (intermediate) output stream, is the maximum timestamp
of all input tuples which influence the output tuple. For instance, the event timestamp of
the average player position stream can be the match timestamp of all sensors the player is
equipped with (e.g., SENSOR63 and SENSORG4 for B2). Thus, these sensors are relevant
for the average player position stream.

The Query Delay Client is a Java implementation which uses the Jetty HTTP client to
periodically (with max. 50Hz?°) fetch the latests tuples of all streams (for which one wants
to measure the query delay) from PAN, i.e., from PAN workers publishing these streams. As
at the sensor simulators, the query delay client logs a match-timestamp-machine-timestamp
pair for each received data tuple in a dedicated log file per output stream.

At the end of the simulation, i.e., after 25 minutes, a small Java program (the Query Delay

Calculator) calculates the query delay for each received tuple. For this purpose, it iterates

20 The fetching thread sleeps 20ms after fetching tuples before it starts again.

Evaluation

57

Sensor Simulation
Environment

Sensor Simulation
Environment

P2P Analysis Network

Sensor Simulation
Environment

Sensor Simulation
Environment

P2P Analysis Network P2P Analysis Network

Laptop Laptop

(c) 8 Peers (d) 14 Peers

Figure 5.3: Full Game Workflow with four different Degrees of Distribution. Larger graphs
can be found in Appendix E.1.

through each output stream log file and searches for a matching pair in the sensor simulator
logs relevant for this stream and stores the resulting query delay (i.e., the difference of the
machine timestamps) in a query delay list. In doing so it skips duplicate tuples in the
output stream logs, i.e., it calculates the minimal query delay only once per received tuple.
Subsequently, we iterate through the query delay list and calculate common statistics as the
average, variance, median and so on.

Please note, that our query delay metric measures not only the time PAN needs for analyzing
the sensor data input streams and generating the output stream inside PAN but also the
time for sending the input stream to the first PAN worker and fetching them from the last
PAN worker.

5.2.3 Big Workflow Evaluations
In this section, we leverage the exemplary workflow used in Section 4.2 to explain the PAN
concept with different degrees of distribution to evaluate PAN’s performance characteristics,

its requirements on the environment and its consistency.

5.2.3.1 Workflow

Figure 5.3 illustrates the Full Game workflow with four different degrees of distribution.
This workflow consumes all sensor data streams as inter-PAN input streams and generates
ball possession streams for all players as well as both teams.

In order to evaluate PAN’s performance, we periodically fetch three output streams at the

Evaluation 58

query delay client. Namely, we fetch the sensor data stream of the referee’s left shin guard
(SENSOR105), the average player position stream of player B2 (B2) and the whole game
ball possession statistic stream for team A (BP_-wholeGame_A). The reason for choosing
these three streams is that they reflect three different kind of streams, i.e., a forwarded
input stream, an intermediate output stream as well as a complete statistical output stream
defined by the ACM DEBS 2013 Grand Challenge. Hence, they are also produced at different
positions (i.e., after a different number of steps) in the intra-PAN workflow. This fact is
particularly important for evaluating the influence of the intra-PAN network properties on
PAN’s performance characteristics.

Apart from the evaluation in which we want to explore the influence of the degree of dis-
tribution and find the perfect number of peers for this workflow (see Section 5.2.3.2), we
will relinquish evaluating PAN with all four degrees of distribution. Instead, we will use
only the 14 peers workflow as illustrated in Figure 5.3(d) in order to evaluate PAN with the
maximum degree of distribution. We argue that this is reasonable, since above all PAN is
designed to be scalable by distributing the workflow in a P2P network. Thus, a workflow

which is distributed as much as possible is the best scenario for evaluating PAN.

5.2.3.2 Degree of Distribution

In the first evaluation row, we vary the degree of distributions, i.e., the number of peers on
which the workflow is distributed. In this way, we want to explore the impact of the degree of
distribution on PAN’s performance. More precisely, we will show that increasing the number
of peers can solve computational bottleneck problems. Moreover, we will discuss the perfect
number of peers for distributing this workflow in this environment (i.e., on such peers or
more precisely Windows Azure cloud instances) and explore the effect of distributing the
workflow more than necessary.

In order to evaluate this, we leverage the four different workflows illustrated in Figure 5.3.
In a nutshell, we perform a single run, i.e., simulate and analyze the first 25 minutes of the
soccer match, for each of these four workflow distributions and measure the query delays
during these runs.

Figure 5.4 illustrates the results of this evaluation. More precisely, it shows the average
query delay in Figure 5.4(a) and the number of retrieved tuples at the query delay client
in Figure 5.4(b). Further graphs as well as a table listing all measured statistics is given in
Appendix G.2.1.

While the query delay of SENSOR105 first decreases (from the 3 peers to the 6 peers setup)
but then increases with the number of peers and has its maximum when distributed on 14
peers, the query delay of BP_wholeGame_A decreases up to the 8 peer distribution, increases
a little in the 14 peer setting but has its maximum in the 3 peer distribution. However, we
argue that these are only small fluctuations and the average query delays of the SENSOR105
and the BP_wholeGame_A stream are rather constant in this evaluation row.

In contrast, the query delay of the B2 stream has a huge value (2923.73ms) in the 3
peers setting which is approximately 20 times higher than the query delay in the remaining
three distributions. In these distribution the query delay keeps comparatively constant (i.e.,
123.99ms, 165.68ms and 114.72ms). The reason for the huge query delay in the 3 peers

Evaluation 59

Average Query Delay for Increasing Number of Peers Total Number of Retrieved Tuples during Data Fetching for Increasing Number Of Peers

10000 14000

" SENSOR105
BP_wholeGame_A

" SENSOR105
BP_wholeGame_A

12000
10000
1000 |

8000

6000

Average Query Delay in ms
Total Number of Relrieved Tuples

100 |
4000

2000

L L L L L L L L L L L L L L L L L L L
3 4 5 6 7 8 9 10 1 12 13 14 3 4 5 6 7 8 9 10 1 12 13 14
Number of Peers Number of Peers

(a) Average Query Delay (b) Number of Retrieved Tuples

Figure 5.4: Statistics for SENSOR105, B2 and BP_wholeGame_A in Increasing Number of
Peers Evaluation. More statistics can be found in Appendix G.2.1.

setup is that in this setup Peer 1 and Peer 2 each have to generate the average player posi-
tion streams for eight players. In all other distribution schemes, each peer hosts maximally
a single Average Player Position Worker and thus only has to generate the average player
position streams for four players. This confirms, that PAN is able to solve computational
bottlenecks by distributing the workflow.

The number of retrieved tuples which is illustrated in Figure 5.4(b) denotes how many
different tuples (i.e., without duplicates) of a certain stream the query delay client received
during the evaluation run, i.e., how many query delays are measured. As one can see in
this and all subsequent evaluation results, this number is one order of magnitude smaller
for the BP_wholeGame_A stream as for the SENSOR105 and B2 stream. The reason for
this, is that the query delay client ignores duplicates. A RedFIR transmitter measures
its position, velocity and acceleration with 200Hz. Hence, a sensor data stream and thus
SENSOR105 has a new tuple every 5ms. The same is true for B2 since the Player Average
Component fetches new sensor data tuples all 5ms and produces a tuple by averaging these
tuples. Hence, for these two streams the fetch interval of the query delay client is the
limiting factor. In contrast, the BP_wholeGame_A stream only has a new tuple if the Ball
Hit Detector Component detects a new ball hit which is of course a more rarely event.
While the number of retrieved tuples increases monotonically with the number of peers in
the BP_wholeGame_A case, there is a different trend for the SENSOR105 and B2 stream.
For both streams, the number of retrieved tuples strongly increases when increasing the
number of peers from 3 to 6 and strongly decreases when decreasing the number of peers
from 8 to 14. This shows that increasing the number of peers can increase the number of
retrieved tuples. However, this also indicates that increasing the number of peers and thus
the degree of distribution can also harm PAN.

In conclusion, we argue that the perfect distribution for this workflow is distributing it on
6 peers as illustrated in Figure 5.3(b). As one can easily see, the 3 peers setup is no option
since it is not sufficient for generating all average player positions streams. Regarding only
the statistics, the 8 peer setup is also an option. However, we argue that there is no reason
for using two additional peers if there is no benefit from using them. And last but not least,

we recommend against using the 14 peers setup in practice, since again there is no benefit

Evaluation 60

sudo tc gdisc add dev eth0 root netem delay 10ms

Listing 5.1: Bash script for adding an additional delay of 10ms to the ethernet network
adapter.

but even a disadvantage since the number of retrieved tuples decreases when using 14 instead
of only 6 peers. Nevertheless, we use the 14 peers workflow as illustrated in Figure 5.3(d)

for the subsequent evaluations for the reasons we have stated earlier.

5.2.3.3 Intra-PAN Network Properties

In the next two evaluation rows, we evaluate the impact of the intra-PAN network properties
on PAN’s performance, i.e., its query delay. In this way, we explore in which environments
PAN can be deployed or more precisely PAN’s requirements on the intra-PAN network prop-
erties.

In order to do so, we use the 14 peers Full Game workflow illustrated in Figure 5.3(d) and
simulate worser network conditions for the intra-PAN network than we have in the Microsoft
Azure Cloud. More precisely, in the first evaluation row we increase the latency of all peers

and in the second evaluation row we limit their bandwidth.

Latency

The purpose of the first network properties evaluation row is to evaluate how the peers
hosting PAN workers can be distributed w.r.t. their locality. In other words, we explore if
all peers have to be positioned in the same building (e.g., cloud compute center) or if they
can be distributed in Switzerland, Europe or even on the whole world.

In our evaluation setup all peers are cloud instances in the same Microsoft Azure Cloud
region (i.e., Furope West). Hence, we simulate the spatial distribution in this evaluation
row by artificially increasing the latencies in the evaluation environment. More precisely,
we add an additional delay to the ethernet network adapter of each peer by means of the
TC tool (see Listing 5.1). Please note, that this additional delay is only added to network
communications with other peers and not with the localhost.

In the evaluation row, we start with an additional delay of Oms (i.e., with the normal setup)
and increase it by bms in each run up to a maximal additional delay of 35ms. Unfortunately,
we are not able to further increase the delay in this evaluation row, since doing so results in
problems in our prototype implementation when using the 14 peers workflow. We suppose
the reason for this is that the overall latency aggregates to much in the 14 peers workflow.
Wo plan to further analyze and fix this problem in our future work.

Figure 5.5 shows the results of this evaluation row. As one can see in Figure 5.5(a) the
average query delay increases linearly with the latency. The sole exception of this trend is
the B2 stream in the 5ms run. Moreover, the gradients of the curves?! indicate the position
of the PAN worker publishing the corresponding stream in the intra-PAN workflow. More

precisely, the more intermediate steps are needed to generate the stream, the higher the

21 SENSOR105: 130426074 1 g9 pp: 205:39-9247 &y 393 BP_wholeGame A: 1300:17-906:31 ~ 19 g7

Evaluation 61

Average Query Delay for Increasing Latency Total Number of Retrieved Tuples during Data Fetching for Increasing Latency
16000

" SENSOR105 —+— " SENSORT105 —+—
e v

1600 |- BP_wholeGamb_A R BP_wholeGame_A
14000 |

12000
10000

8000

6000

Average Query Delay in ms
@
8
8

Total Number of Relrieved Tuples

4000

— 1 2000 -

L L L L L L L L L L L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Latency in ms Latency in ms

(a) Average Query Delay and Standard Deviation (b) Number of Retrieved Tuples

Figure 5.5: Statistics for SENSOR105, B2 and BP_wholeGame_A in Increasing Latency
Evaluation. More statistics can be found in Appendix G.2.2.

gradient is. These observations exactly match our expectations.

As illustrated in Figure 5.5(b), the number of retrieved tuples decreases when increasing
the latency. This general trend meets our expectation. However, the curves are not linear.
Although, the decrease of the BP_wholeGame_A appears to be linear at first glance it is not
(cf. Table G.2). Moreover, the curves of the SENSOR105 and the B2 stream are even rem-
iniscent of an exponential decay. To confirm that the number of retrieved tuples decreases
like an exponential decay when increasing the latency, we have to perform evaluations with
higher latencies in order to explore if this trend continues. As mentioned earlier, this is
planned for future work.

In conclusion, we have shown that extending the spatial distribution, i.e., increasing the
latencies between the peers, as expected increases the query delay. Moreover, we have
shown, that the query delay does not increase dramatical but linear with the latency and
that the gradient of the increment depends on the position of the publisher.

In addition, this evaluation confirms that PAN can be deployed onto peers which are spatially
distributed. The results show, that distributing the peers in Switzerland or even Europe
indeed increases the query delay but is possible. However, at least when using the current
prototype, a distribution around the whole world is not possible since the minimal latency
(I;min) to a peer on the other side of the world is approximately 67ms?2, but PAN can only

cope with latencies up to 35ms.

Bandwidth

In the second network properties evaluation row, we evaluate how PAN’s performance
changes if we limit the bandwidth of the peers hosting the PAN workers and the pub-
lish /subscribe repository. For doing so we shape the down- as well as the uplink of each
peer using the Wondershaper tool (see Listing 5.2). More precisely, we start with shaping
the bandwidth to 50000kb/s (= 6250kB/s) and decrease the limit in each run by 2500kb/s
down to 2500kb/s (= 312.5kB/s) in the last run.

Figure 5.6 illustrates the results of this evaluation row, i.e., the average query delay and the

P

22 iy = Degrth = 400T4Rm — 20037k — lypin = 22 & 6Tms

Evaluation 62

sudo wondershaper eth0 40000kbps 40000kbps

Listing 5.2: Bash script for limiting the bandwidth (down- and uplink) of the ethernet
network adapter to 40000kb/s.

Average Query Delay for Decreasing Bandwidth Total Number of Retrieved Tuples during Data Fetching for Decreasing Bandwidth
18000

100000
" TsENsoRts—— | o f ~ T T T T T T T SENSOR105'—+ —

16000 [~ BP_wholeGame_A - BP_wholeGame_A

14000 | 10000 |- %z:f’\/ .
E 12000 | £
z z 1000 |
& 10000 (- 8
g 5
G 8000 <1
2 2 100 |-
g g
T 6000 [1
H H

4000 10

2000

D T T
o % g PN NN R N ENE T T R T o s Tn R a R D B B % O G D T T D
% % % %, %, 0, 0, 0,y 0, 0 0, 0, % % % 0,0 0, 0, 0, % 0 e W % U
Bandwidth in kBit/s Bandwidth in kBit/s
(a) Average Query Delay and Standard Deviation (b) Number of Retrieved Tuples

Figure 5.6: Statistics for SENSOR105, B2 and BP_wholeGame_A in Decreasing
Bandwidth Evaluation. More statistics can be found in Appendix G.2.3.

number of retrieved tuples.

The statistics of the SENSOR105 and the B2 stream have exactly the same schema. As
long as the bandwidth limit is greater than or equal to 17500kb/s (= 2187.5kB/s), the
average query delay and the number of retrieved tuples is approximately constant. The
query delay of SENSOR105 and B2 fluctuates around 61ms and 90ms, respectively, and
thus matches the values of the Oms run in the previous evaluation row. The same is true
for the number of retrieved tuples. However, if the bandwidth limit falls below 17500kb/s,
the statistics change. Unfortunately, the query delay is not inversely proportional and
the number of retrieved tuples is not proportional with the bandwidth limit. Instead, the
curves show anomalies for bandwidth limits below 17500kb/s. More precisely, the query
delay increases when decreasing the bandwidth to 15000kb/s, decreases down to 10000kb/s
and then increases again until the bandwidth limit reaches its minimum. The same trend
can be observed in the number of retrieved tuples curve.

The average query delay statistic of the BP_wholeGame_A stream shows a similar schema
as those of the SENSOR105 and the B2 stream but with a different boundary. As long
as the bandwidth limit is greater than or equal to 32500kb/s (= 4062.5kB/s), the average
query delay keeps constant around 1100ms. However, this value does not match the value
of the Oms run in the increasing latency evaluation row. When the bandwidth falls below
32500kb/ s, the query delay starts increasing exponentially. In contrast to the average query
delay, the number of retrieved tuples is not constant for bandwidth limits greater than or
equal to 32500kb/s, but starts decreasing from begin on. However, the number of retrieved
tuples decreases faster when the bandwidth limit is below 32500kb/s. We argue, that the
values for bandwidths below 15000kb/s are not meaningful and thus can be neglected, since
in these runs the query delay client was only able to measure less than 20 query delays. The
sole exception is the 7500kb/s case but we suppose that this is only a single outlier.

Apart from some anomalies below the minimal required bandwidth, the observations we

Evaluation 63

Team A Whole Game Ball Possession Comparison for different Runs Player B2 Average X-Position Comparison for different Runs.
60000

T tstwn
2nd tun
3rd run
3 run

80 - 5th run

&th run

50000 -
40000

30000 -

Average X-Position

20000 -

1strun
2nd run
3rd

Team A Whole Game Ball Possession in %

10000 | b
4th
5th ru

run
un
run
 6thun

o
o

91+090°}
91+080'}
oktaLL
ozLL
oyl
91+091|
9l+aglL
91+oz'L
9k+ozz |
9k+arg L
91+090'+
91+080'+
9l+eL'L
91+ozLt
9l+apLL
4oLt -
oi+egLl -
9l+ez'L
9k+azz |
9k+arg L

Ball Possession Event ts in picoseconds Average Player Tuple Timestamp in picoseconds

(a) Percentage Component of BP_wholeGame_-A (b) X-Position Component of B2

Figure 5.7: Output Stream Comparison for six different Runs. More graphs can be found
in Appendix G.2.4.

made for the SENSOR105 and B2 stream meet our expectations. As long as the bandwidth
limitation is greater than or equal to the minimal required bandwidth, PAN’s performance
does not benefit from having more bandwidth at disposal. Instead, the average query delay
and the number of retrieved tuples for the SENSOR105 and B2 stream are constant and
match those of the Oms run of the previous evaluation. However, if the available bandwidth
is below the minimal required bandwidth, PAN’s performance collapses. Investigating and
solving the issue that the statistics of the BP_wholeGame_A stream does not match these

schema in all points requires further evaluations and is postponed to our future work.

5.2.3.4 Consistency

In this evaluation row, we want to measure if our implementations of the DEBS specific
internal components generate correct statistical data streams. More precisely, we want to
evaluate if the results are consistent, i.e., if PAN produces the same or at least very similar
streams in each run.

In order to evaluate that, we performed six runs without additional latency or bandwidth
limitations. During these runs, the Teams Ball Possession Component logs the percentage
value (and the corresponding event timestamp) of each produced BP_wholeGame_A tuple.
The same is done for the position of the B2 stream in the Player Average Component.
Moreover, we log the player who hit the ball as well as the time difference between the
active ball timestamp and the player timestamp in the Ball Hit Detector Component for
each ball hit.

Figure 5.7 illustrates the results of this evaluation. More precisely, Figure 5.7(a) shows how
the ball possession percentage of team A changes during the match. Figure 5.7(b) shows
how player B2 moves along the x-axis by illustrating the x-position component of the B2
stream.

As one can easily see, the team ball possession statistic is not consistent. In particular, in the
beginning of the match (i.e., up to the match timestamp 1.1E16ps) the values distinguish
significantly. Although, the differences decline during the match, they persist during the
end of the simulation. In contrast, the Player Average Component generates a consistent

stream. The resulting tuples differ not or only slightly.

Evaluation 64

P20 Anaysis etwr] P20 Anayis P20 Ansysis Nt
o)) LB W W 4
P Laptop - [Laptop - [Laptop D

(a) 1 Forwarder (b) 1 Forwarder, 1 Repeater (c¢) 1 Forwarder, 2 Repeaters

Figure 5.8: Sensor Forwarding Workflows. Larger graphs can be found in Appendix E.2.

In consequence, we suppose that the reason for the inconsistencies in the team ball possession
statistics are problems in the internal components and not general problems of the PAN
approach. As the organizers of the ACM DEBS 2013 Grand Challenge state, a "reliable
detection of a ball hit is difficult* [2]. Among other things, the ball hit detection is very
time-critical. For instance, deferring the ball hit detection only a few milliseconds can result
in identifying a different player as the nearest player and thus as the player who hit the
ball. The same is true for intra-PAN time differences, i.e., time differences between the
input streams of a PAN worker which are introduced by the intra-PAN workflow and have
to be handled by the internal component itself if necessary (e.g., by means of buffering).
The problems of the Ball Hit Detector Component are illustrated in Figure G.18 and G.19
in Appendix G.2.4. Since ball hits are comparatively rare events and the ball possession
streams base on the BALLHITS stream, missing or falsely detecting a single ball hit can
harm the whole team ball possession statistics. None more so than the beginning of the
match. This explains the inconsistencies in Figure 5.7(a). Hence, we argue that one has
to improve the DEBS specific internal components instead of the general PAN approach to

eliminate the observed inconsistencies.

5.2.4 Stream Repeaters and Load Balancing

This section presents the evaluation of PAN’s load balancing feature. The workflow we use
in this evaluation as well as the way we changed the evaluation setup presented in Section
5.2.1 in order to obtain an increasing number of client requests will be presented in Section

5.2.4.1. Subsequently, Section 5.2.4.2 presents and discusses the results.

5.2.4.1 Workflow and Setup Modification

The purpose of this evaluation is to evaluate how PAN scales w.r.t. an increasing number
of client requests and how its scalability can be improved by means of the load balancing
feature, i.e., by means of distributing the client requests onto multiple publishers. Hence, in
order to evaluate the load balancing feature we require a workflow in which at least a single
stream has multiple publishers.

Figure 5.8 illustrates the workflows we use for evaluating the load balancing feature. In
contrast to the Full Game workflow, which generates multiple (intermediate) statistical
output streams and encompasses several different workers distributed onto multiple peers,
these workflows are designed to be as simple as possible. All workflows have in common that
they only receive a single inter-PAN input stream (SENSOR105) and publish this stream

Evaluation 65

to clients outside PAN. The point in which they differ is the number of publishers of this
stream. While there is only a single publisher (i.e., the Forwarder Worker) in the single
peer workflow illustrated in Figure 5.8(a), the two peers workflow (see Figure 5.8(b)) has an
additional Repeater Worker which repeats the sensor data stream and thus is an additional
publisher of this stream. The three peers workflow contains two Repeater Workers and thus
provides even three publishers for the sensor data stream. Hence, the load of the client
requests is distributed onto one, two or even three peers.

We argue, that it is not only legal but even reasonable to leverage new workflows instead
of enriching the Full Game workflow with additional publishers. First, in a more complex
workflow the probability that side effects corrupt the evaluation results and thus maybe
even conceal the real trends increases. Moreover, we need the remaining cloud instances to
host the huge number of clients we require for this evaluation.

In the evaluation setup we have presented in Section 5.2.1 and used for all previous evalu-
ations there is only a single query delay client executed on the laptop which purpose is to
measure the query delay and thus PAN’s performance. We modify this setup by increasing
the number of query delay clients which are executed on the laptop to 20. This number is
fixed during the following evaluation rows. The query delay statistics are measured by all
query delay clients and averaged to obtain a single set of statistical values (i.e., average,
median, etc.). Moreover, we host lightweight Python clients whose only task is to subscribe
the SENSOR105 stream in the beginning and fetch the latest data tuple from the retrieved
publisher all 20ms. For doing so the lightweight Python client leverages the urllib2 library?3.
The number of these clients is not fixed but increased during each evaluation row (from 20
to 80). Since the laptop is not able to execute all these clients, the lightweight python clients
are equally distributed onto 10 cloud instances which are not in use for hosting PAN workers.

5.2.4.2 Results

In order to evaluate how PAN scales w.r.t. the number of client requests and if the load
balancing feature works as expected we perform three evaluation rows, i.e., one evaluation
row for each workflow illustrated in Figure 5.8. In each of these evaluation rows, we increase
the number of client requests from 40 to 100. More precisely, we increase the number of
lightweight Python clients from 20 to 80 by 10 in each run. Hence, overall we performed 21
runs for evaluating the load balancing feature.

Figure 5.9 illustrates the results for all 3 evaluation rows. Each evaluation row is illustrated
as a curve in the graph. If one concentrates on a single evaluation row, one can observe how
PAN'’s performance scales w.r.t. the number of client requests for a constant number of pub-
lishers. In a nutshell, the query delay increases and the number of retrieved tuples decreases
with the increasing number of client requests. Thus, as we expected, PAN’s performance
decreases if the load introduced by the client requests increases.

In order to evaluate the load balancing feature, one has to compare the different evaluation
rows. As one can see, the more peers publish a stream, the better is the performance. More

precisely, the average query delay is always the smallest in the 3 peers workflow and the

23 urllib2: https://docs.python.org/2/library/urllib2.html (07.08.2014)

https://docs.python.org/2/library/urllib2.html

Evaluation 66

Average Query Delay for Increasing Number of Clients Total Number of Retrieved Tuples during Data Fetching for Increasing Number Of Clients
400 T T T T T 26000

3 Peers | 24000 2 poars
22000

20000 -

18000
16000 \
14000 |

12000

oor 7 4 10000 - \
= ¥ 8000 | —

Average Query Delay in ms
\
Total Number of Relrieved Tuples

50 F i 1 1 i I 1 6000 |- B
0 ‘ ‘ ‘ ‘ ‘ 4000 ‘ ‘ ‘ ‘ ‘
40 50 60 70 80 90 100 40 50 60 70 80 920 100
Number of Clients Number of Clients
(a) Average Query Delay and Standard Deviation (b) Number of Retrieved Tuples

Figure 5.9: Statistics for SENSOR105 in Increasing Number of Clients Evaluation. More
statistics can be found in Appendix G.2.5.

highest in the 1 peer workflow. Moreover, the number of retrieved tuples is higher the more
peers publish the stream. The sole exception of this trend is the 50 clients case in which
the average query delay in the 3 peers workflow exceeds the average query delay of the 2
peers workflow. In addition, the gradients with which the query delay increases appeals to
be the smaller the more peers publish the stream. In order to make sure that this is true, we
plan to perform evaluations with a larger extend (i.e., with more clients) in our future work.
But, notwithstanding the above, the evaluation results confirm that PAN’s load balancing

feature works.

5.2.5 Visualization

In order to answer the last remaining question, i.e., to evaluate that PAN is able to generate
not only consistent but also correct statistical data streams for the queries specified in the
ACM DEBS 2013 Grand Challenge in real-time, we leverage a visualization. More precisely,
we visualize some (intermediate) output streams in Java Processing clients. These clients
use the same code to fetch data tuples as the query delay client does. However, instead
of logging the arrival time they visualize the result by means of the Processing library?*.
Appendix F.3 lists the values of the most important configuration parameters we used during

the evaluation.

5.2.5.1 Full Game

The first visualization client visualizes all players (i.e., their average positions) and balls.
Two orange circles highlight the active ball as well the player who actually is in possession
of the ball, i.e., the last player who hits the ball. Moreover, bar diagrams at the bottom
visualize the current team ball possession statistics for all time windows.

Figure 5.10 shows two screenshots of the client. A video of the whole simulation is available

25

on Vimeo®’. As one can see in the video, PAN is able to analyze the match in real-time.

24 Processing library: https://www.processing.org/ (07.08.2014)
25 Full Game Visualization on Vimeo: https://vimeo.com/album/2972208/video/102009212 (07.08.2014)

https://www.processing.org/
https://vimeo.com/album/2972208/video/102009212

Evaluation 67

(a) 02:36 (b) 20:32

Figure 5.10: Full Game Workflow Visualization. Visualizes all players, the active ball and
the team ball possession statistics for both teams and all time windows.

SENSOR47,
- SENSOR16

Sensor Simulation
Environment

Client

P2P Analysis Network

MT MT
Laptop

Figure 5.11: Heat Map Workflow for Player A2

That means, it is able to detect the active ball as well as the most ball hits and generate

proper team ball possession statistics for different time windows.

5.2.5.2 Heat Map

The second visualization client visualizes the heat map of player A2. More precisely, it
visualizes the HM_wholeGame_32c50_A2 stream, i.e., the heat map of player A2 with the
32 x 50 resolution for the whole game time window. In order to produce this heat map, we
leverage the workflow illustrated in Figure 5.11.

Again, two screenshots of the client are shown in Figure 5.12 and a video of the whole
simulation is available on Vimeo2®. This video confirms, that PAN is able to generate the

heat map for a single player on a single peer in real-time.

26 Heat Map Visualization on Vimeo: https://vimeo.com/album/2972208/video/102604325 (07.08.2014)

https://vimeo.com/album/2972208/video/102604325

Evaluation 68

(a) 02:36 (b) 20:32

Figure 5.12: Heat Map Workflow Visualization. Visualizes the average position (A2) as
well as the whole game 32 x 50 heat map (BP-wholeGame_32z50-A2) of player A2.

5.2.6 Discussion

Overall, we performed 59 evaluation runs. That means, we have simulated and analyzed the
first 25 minutes of the soccer match 59 times under various conditions, in order to evaluate
PAN. Using the (query delay) statistics we captured during these runs, we were able to make
several observations regarding PAN’s applicability and performance characteristics.

First, the evaluation results show that PAN is able to eliminate computational bottlenecks
by distributing the workflow onto several peers in a P2P network which are connected by
means of a pull-based publish/subscribe system. This is exactly what PAN is designed for.
However, the same evaluation row also indicates that increasing the degree of distribution
more than necessary can also harm PAN or more precisely its performance. We found out
that the perfect distribution of the exemplary workflow (in the cloud environment) is the
six peers setup.

Moreover, the evaluation confirms that PAN can be deployed onto peers which are spatially
distributed and thus not positioned in the same building (e.g., cloud computing center). We
have observed, that extending the spatial distribution (i.e., increasing the latencies between
the peers) as expected increases the query delays. However, the average query delay increases
not dramatically but linearly with the latency. Furthermore, the gradient with which a query
delay increases indicates the position of the publisher in the intra-PAN workflow. As a result,
we argue that the workflow can be performed on peers which are spatially distributed in
Switzerland or even Europe. Merely distributing the workers onto peers positions in the
whole world is not possible when using our current prototype implementation.

Apart from some anomalies, the results of the bandwidth evaluation row meet our expecta-
tions. As long as the available bandwidth is greater that or equal to the minimal required
bandwidth, PAN’s performance does not benefit from having more bandwidth at disposal.
However, if the available bandwidth is below the minimal required bandwidth, PAN’s per-
formance collapses.

Both visualizations confirm that PAN is able to analyze the soccer match and generate
correct statistical output streams for the queries specified in the ACM DEBS 2013 Grand

Evaluation 69

Challenge in real-time. We further suggest, that the reason for the inconsistencies we have
observed in the time-critical streams (e.g., BP_wholeGame_A) are not general problems
of the PAN approach but problems of the current implementation of some DEBS specific
internal components.

In addition, the evaluation results show that, as we expected, PAN’s performance decreases
if the load introduced by the client requests increases. Hence, PAN is not able to handle
an arbitrarily large number of client requests for a certain stream if there is only a single
publisher for this stream. However, the evaluation results confirm that PAN’s load balancing
feature works and thus can be used for solving this problem. Hence, PAN’s performance can
benefit from its pull-based approach. More precisely, the evaluation confirms that the more
peers publish a stream (i.e., the more the load is balanced), the better is the performance.
Based on the observations we made, we even suggest that the gradient with which the
performance decreases when the number of client requests increases is the smaller the more
peers publish the requested stream. We plan to repeat this evaluation row with a larger
extend (i.e., with more clients) in order to verify this suggestion.

As we mentioned in Section 5.2.2, the current PAN prototype cannot compete the published
grand challenge solutions (see Chapter 2) in terms of throughput or query delay. In conse-
quence, we cannot fulfill Jergler’s prediction?’, that the throughput of its architecture could
be improved by distributing the workflow.

However, implementing a distributed real-time complex event detection system which out-
performs other CEP engines is not our target. Instead, the purpose of this thesis is to proof
if the PAN approach works, i.e., if it is possible to distribute the workflow onto multiple
peers connected with a pull-based approach. Thus, this thesis is a proof of concept.
Moreover, the main focus of the PAN approach (i.e., of using a pull-based system) is not
its performance on relatively small workflows, but its scalability and especially its flexibility
(during runtime). We argue that the evaluation results confirm PAN’s scalability and thus
that the first goal could be achieved. Implementing observer systems which utilize PAN’s
flexibility, i.e., add new repeaters or redistribute the whole workflow during runtime, and
evaluating PAN’s flexibility by means of these systems is out of the scope of this thesis but

planned in our future work.

27 Quotation: “Although, a distributed publish/subscribe based system would probably provide a higher
througput, it may increase the latency at the same time.” [6]

Related Work

The general idea to distribute a workflow, i.e., its workers, in a P2P network and combine
the workers by means of a publish/subscribe system is not novel. Already in the beginning
of the 21st century the OSIRIS approach [14] was developed. OSIRIS is a “scalable P2P
process management system” [14]. In a nutshell, it executes the steps of a static (prede-
fined) workflow at several distributed service providers. For this purpose, OSIRIS leverages
global repositories. OSIRIS-SE [15] extends the OSIRIS approach by enabling it to handle
streams. In consequence, OSIRIS-SE is a distributed CEP (Complex Event Processing)
system. The authors demonstrated this with a health monitoring application. Besides scal-
ability, OSIRIS(-SE)’s main focus is reliability and fault-tolerance. However, OSIRIS-SE
leverages the common push-based approach, i.e., a publisher is responsible for disseminat-
ing its output stream. As a result, CEP systems based on OSIRIS may achieve a higher
throughput than PAN but are less flexible due to the reasons we mentioned earlier in this
thesis.

In the last ten years, many research regarding distributed CEP systems was done and
published especially in the context of the annual ACM DEBS (Distributed Event-Based
Systems) Conference®®. However, to the best of our knowledge, PAN is the first system which
uses a pull-based instead of the common push-based approach to distribute the workload of
a workflow-based CEP system in a P2P network.

As PAN does in our evaluation scenario also [23] addresses the problem of how to detect
events in distributed sensor data streams. However, in contrast to PAN, [23] is specialized
on sensor networks. Its main target is to reduce the traffic in the sensor network. For this
purpose, the sensors only forward the data tuples which are necessary for answering any
user query (i.e., subscription).

Curracurrong [24] is another CEP system for detecting events in sensor networks. But, in
contrast to [23], it focuses on the energy efficiency. More precisely, Curracurrong encom-
passes a query language which tries to find a “good trade-off between productivity, flexibility,
and energy efficiency” [24] as well an “energy-efficient operator placement” [24] heuristic.

Curracurrong Cloud [25] extends the applicability of the Curracurrong approach towards

28 ACM DEBS Conferences: http://dl.acm.org/event.cfm?id=RE268 (07.08.2014)

http://dl.acm.org/event.cfm?id=RE268

Related Work 71

detecting events in cloud environments (e.g., monitoring the load of the cloud instances) in-
stead of only in wireless sensor networks (WSNs). Although Curracurrong’s sense operator
is time-triggered, in contrast to PAN, Curracurrong is no pull-based but a common push-
based approach. This is due to the fact, that the sense operator is performed on the sensor
(or the cloud instance) itself and thus does not fetch the data via network communication.
Moreover, all other Curracurrong operators are event-triggered.

SCTXPF [26] is a platform for distributed complex event detection. As PAN, SCTXPF
is generic, scalable and able to analyze multiple distributed input data streams. However,
in contrast to PAN, SCTXPF’s focus is on high throughput instead of flexibility during
runtime. SCTXPF tries to distribute the CEP rules to the available event processors (EPs)
(i.e., workers) as optimal as possible. Hence, SCTXPF’s linchpin is its “CEP rule allocation
algorithm” [26]. This algorithm, distributes the CEP rules onto the EPs in a way that those
“CEP rules that shared the same state information were allocated to the same EPs” [26]
while at the same time balances the load between the EPs.

Another distributed CEP system is DHEP [27]. The authors of DHEP argue, that state of
the art distribute CEP system are not used in industry since they do not provide all features
of centralized CEP systems (e.g., “user friendly interfaces” [27]). The DHEP approach
solves this problem by connecting existing centralized CEP systems to a distributed CEP
system with all features of the centralized CEP systems. Hence, DHEP’s main focus is
“supporting interoperability between heterogeneous event processing systems” [27]. In order
to achieve this, DHEP introduces a “powerful object oriented definition language, that
enables efficient, tool-aided designing of big industrial CEP applications” [27]. In contrast,
PAN combines small workers to workflows and supports heterogeneity by means of REST-
Interfaces. However, both approaches have in common that they are flexible during runtime.
As PAN for instance enables adding new repeater workers (on new peers) or removing old
ones during runtime, DHEP enables adding or removing centralized CEP systems.
Moreover, there are several approaches handling the problems of distributed CEP systems
which are introduced by moving mobile users.

[28] focuses on moving range queries. Range queries are queries which “return data relative
to a consumer-specified spatial range” [28]. Thus, answering moving range queries requires
a continuous data stream with range query results for changing locations. The authors of
[28] argue, that existing CEP systems cannot answer such queries without massive useless
computation overhead since these systems have to place a “set of CEP operators for each
potential range of interest” [28]. The authors fix this issue by means of “dynamic reconfigu-
ration of CEP operators“ [28] and computing only those range queries which are requested
by any consumer.

As stated in [29, 30], CEP operators have to be placed near to the user (i.e., “at the edge of
the network” [30]) in order to achieve a good performance (i.e., low latency). MigCEP [29]
faces the problem, that those CEP operators have to be migrated to new locations if the user
moves. The authors argue, that “each migration comes with a cost beacause operators are
associated with local states” [29]. To minimize those costs, the authors propose a migration
algorithm which leverages the migration plan concept. That is, the costs are estimated

and the best migration target is determined (by means of “predicted mobility patterns”

Related Work 72

[29]) beforehand in order to avoid unnecessary migration costs. RECEP [30] face the issue,
that “supporting a large number of consumers in a dynamic environment” [30] requires a
huge amount of resources. However, the authors state that especially at the “edge of the
network” [30] the resources are limited. RECEP solves this problem, by means of “reusing
computations and streams between operators” [30] and tolerating little errors.

In its current version, PAN does not solve these mobile user problems. However, we plan
to face these issues in our future work. Moreover, we suppose, that the flexibility we gain
by using the pull-based instead of the push-based approach is beneficial regarding these
problems.

Conclusion

In this thesis, we have shown that it is possible to construct a scalable and flexible real-
time complex event detection system by distributing the workload onto multiple workers
hosted on peers in a P2P network and combining these workers to a workflow by means of
a pull-based instead of the common push-based publish/subscribe approach.

Therefor, we have developed and implemented the PAN approach. PAN is based on the
workflow-based architecture idea proposed by Jergler et. al. [6]. Jergler et. al. split
the overall workload into subtasks which are performed by different workers (called task
elements). These workers are connected by means of ring buffers to a workflow. However,
all workers are executed on the same machine. Hence, Jergler’s architecture is not scalable.
In order to change this, we followed Jergler’s suggestion and distributed the workflow by
means of a publish/subscribe system. Thereby, we transformed Jergler’s architecture idea
into a scalable solution.

The general idea to distribute a workflow onto several machines by means of a publish/sub-
scribe system is not novel. However, to the best of our knowledge, PAN is the first system
which uses a pull-based publish/subscribe approach instead of the common push-based ap-
proach to distribute the workload of a CEP system. As a result, in PAN, not the publisher
of a certain stream is responsible for disseminating new tuples to all subscribers but each
subscriber is responsible for fetching the tuples from the publisher. Hence, the workflow def-
inition direction changes. This enables the dynamic extension of the workflow at runtime,
i.e., adding repeaters for load balancing or new clients as sinks, without changing anything
in the existing workflow. In consequence, PAN is not only scalable in terms of data but also
w.r.t. the number of client requests.

Evaluations with the extended ACM DEBS 2013 Grand Challenge scenario show that PAN
is able to analyze the input streams of and generate correct statistical output streams for the
captured soccer match in real-time. Moreover, they confirm that PAN is able to eliminate
computational bootlenecks by distributing the workflow on more machines and that its load
balancing feature enables PAN to scale w.r.t the number of client requests. In addition, the
evaluations give some indications about PAN’s requirements on the environment, i.e., show

that the PAN workers can be geographically distributed in Europe.

Bibliography

Amazon Kinesis. http://aws.amazon.com/de/kinesis/. Last accessed: 07.08.2014.

Mutschler, C., Ziekow, H., and Jerzak, Z. The DEBS 2013 Grand Challenge. In Pro-
ceedings of the Tth ACM International Conference on Distributed Event-based Systems,
DEBS ’13, pages 289-294. ACM, Arlington, Texas, USA (2013).

ACM DEBS 2013 Grand Challenge description. http://www.orgs.ttu.edu/debs2013/
index.php?goto=cfchallengedetails. Last accessed: 07.08.2014.

Jacobsen, H.-A., Mokhtarian, K., Rabl, T., Sadoghi, M., Sherafat Kazemzadeh, R.,
Yoon, Y., and Zhang, K. Grand Challenge: The Bluebay Soccer Monitoring Engine.
In Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems, DEBS ’13, pages 295-300. ACM, Arlington, Texas, USA (2013).

Wu, Y., Maier, D., and Tan, K.-L. Grand Challenge: SPRINT Stream Processing
Engine As a Solution. In Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems, DEBS 13, pages 301-306. ACM, Arlington, Texas,
USA (2013).

Jergler, M., Doblander, C., Najafi, M., and Jacobsen, H.-A. Grand Challenge: Real-
time Soccer Analytics Leveraging Low-latency Complex Event Processing. In Proceed-
ings of the 7th ACM International Conference on Distributed Event-based Systems,
DEBS ’13, pages 307-312. ACM, Arlington, Texas, USA (2013).

Madsen, K. G. S., Su, L., and Zhou, Y. Grand Challenge: MapReduce-style Processing
of Fast Sensor Data. In Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems, DEBS 13, pages 313-318. ACM, Arlington, Texas,
USA (2013).

Gal, A., Keren, S., Sondak, M., Weidlich, M., Blom, H., and Bockermann, C. Grand
Challenge: The TechniBall System. In Proceedings of the 7th ACM International Con-
ference on Distributed Event-based Systems, DEBS ’13, pages 319-324. ACM, Arling-
ton, Texas, USA (2013).

Badiozamany, S., Melander, L., Truong, T., Cheng, X., and Risch, T. Grand Challenge:
Implementation by Frequently Emitting Parallel Windows and User-defined Aggregate
Functions. In Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, DEBS 13, pages 325-330. ACM, Arlington, Texas, USA (2013).

http://aws.amazon.com/de/kinesis/
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

Bibliography 75

[10]

[11]

[12]

[13]

[15]

[17]

[19]

[20]

[21]

LMAX Disruptor Library. https://github.com/LMAX-Exchange. Last accessed:
07.08.2014.

Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
munications of the ACM , 21(7):558-565 (1978).

Mattern, F. Virtual Time and Global States of Distributed Systems. In Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pages 120-131.
Chateau de Bonas, France (1988).

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J. J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H.,
Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y.,
Szymaniak, M., Taylor, C., Wang, R., and Woodford, D. Spanner: Google’s Globally-
distributed Database. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 251-264. USENIX Association,
Hollywood, California, USA (2012).

Christoph Schuler, Roger Weber, Heiko Schuldt, Hans-J. Schek. Scalable Peer-to-Peer
Process Management - The OSIRIS Approach. In Proceedings of the IEEE International
Conference on Web Services, ICWS ’04. IEEE, San Diego, California, USA (2004).

Brettlecker, G. and Schuldt, H. The OSIRIS-SE (stream-enabled) infrastructure for
reliable data stream management on mobile devices. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, SIGMOD 07, pages 1097—
1099. ACM, Beijing, China (2007).

Stoica, 1., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord: A
Scalable Peer-tp-peer Lookup Service for Internet Applications. In Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’01, pages 149-160. ACM, San Diego, California,
USA (2001).

Maymounkov, P. and Mazieres, D. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In Druschel, P., Kaashoek, F., and Rowstron, A., editors,
Peer-to-Peer Systems, volume 2429 of Lecture Notes in Computer Science, pages 53—65.
Springer Berlin Heidelberg (2002).

Thompson, M., Farley, D., Barker, M., Gee, P., and Steward, A. Disruptor: High perfor-
mance alternative to bounded queues for exchanging data between concurrent threads.
Technical Paper (2011). URL http://disruptor.googlecode.com /files /Disruptor-1.0.pdf.

Jetty - Servlet Engine and Http Server. http://www.eclipse.org/jetty/. Last accessed:
07.08.2014.

Google Gson. https://code.google.com/p/google-gson/. Last accessed: 07.08.2014.

Apache Logdj. http://logging.apache.org/logdj/2.x/. Last accessed: 07.08.2014.

https://github.com/LMAX-Exchange
http://disruptor.googlecode.com/files/Disruptor-1.0.pdf
http://www.eclipse.org/jetty/
https://code.google.com/p/google-gson/
http://logging.apache.org/log4j/2.x/

Bibliography 76

[22]

[23]

[25]

[28]

Simple Logging Facade for Java (SLF4J). http://www.slf4j.org/. Last accessed:
07.08.2014.

Jurca, O., Michel, S., Herrmann, A., and Aberer, K. Processing Publish/Subscribe
Queries over Distributed Data Streams. In Proceedings of the 8rd ACM International
Conference on Distributed Event-Based Systems, DEBS ’09, pages 21:1-21:4. ACM,
Nashville, Tennessee, USA (2009).

Kakkad, V., Attar, S., Santosa, A. E., Fekete, A., and Scholz, B. Curracurrong: a
stream programming environment for wireless sensor networks. Software: Practice and
Ezperience, 44(2):175-199 (2014).

Kakkad, V., Dey, A., Fekete, A., and Scholz, B. Curracurrong cloud: Stream processing
in the cloud. In Data Engineering Workshops (ICDEW), 30th International Conference
on Data Engeneering, ICDE 14, pages 207-214. IEEE, Chicharo, Illinois, USA (2014).

Isoyama, K., Kobayashi, Y., Sato, T., Kida, K., Yoshida, M., and Tagato, H. A scalable
complex event processing system and evaluations of its performance. In Proceedings of
the 6th ACM International Conference on Distributed Fvent-based Systems, DEBS 12,
pages 123-126. ACM, Berlin, Germany (2012).

Schilling, B., Koldehofe, B., Pletat, U., and Rothermel, K. Distributed Heteroge-
neous Event Processing. In Proceedings of the 6th ACM International Conference on
Distributed Event-based Systems, DEBS 12, pages 150-159. ACM, Berlin, Germany
(2012).

Koldehofe, B., Ottenwélder, B., Rothermel, K., and Ramachandran, U. Moving Range
Queries in Distributed Complex Event Processing. In Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems, DEBS ’12, pages 201-
212. ACM, Berlin, Germany (2012).

Ottenwélder, B., Koldehofe, B., Rothermel, K., and Ramachandran, U. MigCEP: Op-
erator Migration for Mobility Driven Distributed Complex Event Processing. In Pro-
ceedings of the Tth ACM International Conference on Distributed Event-based Systems,
DEBS ’13, pages 183-194. ACM, Arlington, Texas, USA (2013).

Ottenwalder, B., Koldehofe, B., Rothermel, K., Hong, K., and Ramachandran, U. RE-
CEP: Selection-based Reuse for Distributed Complex Event Processing. In Proceedings
of the 8th ACM International Conference on Distributed Event-Based Systems, DEBS
'14, pages 59-70. ACM, Mumbai, India (2014).

http://www.slf4j.org/

Class Diagrams

WeakTrueTime Class Diagram

A1

jusuodwo Jajsej awi]

jusuodwo) uowea(aAe|S Wil

ues|ooq :(109[qQ :0)sjenba +
Jur:()opogusey +

ues|ooq :()1elseNs! +
()doss +
Buo] :()owLon1 1 YEaAab +

{AlUOPEaJ) SSEIPPVIAU] :SSBIPPE +
{Aluopeas} yui :pod +

UoHEWIOJULIBAIBOYOAR S|

1L
UOWEBJBARISAW | “UOWESJBAEISS
UB3|00q :IBISEINS! -

owijeni yesm

Class Diagrams

78

A.2 Sensor Simulator Class Diagram

MatchTimeHelper

SensorSimulator

- timeProvider: TimeProvider

- ttr: TimedTupleReader

- clientSocket: Socket

- outputToReceiverHost: PrintWriter

- desil tingTi long

- tingTi long

- halfTimeStartingTimestampInPicoseconds: long

+ start()
- sendTuples(tuples: List<Tuple>)

SensorSimulatorStarter

PR - Stringll

Tuple

+ timestamp: long {readOnly}
+ data: String {readOnly}

Sensor Simulator Parameters

Parameter name

Description

filename The name/path of the sensor data file of the sensor which has
to be simulated.

receiverHostName The hostname or IP address of the sensor data stream receiver.

receiverHostPort The port of the sensor data stream receiver.

startingTimestampInMs

The timestamp at which the sensor simulator should start
generating the sensor data stream.

isWTTMaster Defines if the sensor simulator should create a time master or
a timeslave deamon WeakTrueTime instance.

myWTTPort The local WeakTrueTime port.

master WTTHostName The time master’s WeakTrueTime hostname or IP address.

masterWTTPort The time master’s WeakTrueTime port.

REST-Interfaces

C.1 Publish/Subscribe Repository
Target Description Parameter Parameter Description
/debug Get a HTML overview | — -
of the current map-
ping. That is, a list of
all published streams
and the corresponding
publisher(s).
/publish Add a new publisher 7s=<identifier> Identifier of the stream
to the repository. which is published
Returns a JSON Th=<hostname> Hostname (e.g., IP) of the
result status object. publisher
Tp=<port> Port of the publisher
Trep=<isRep> True if the publisher is a
repeater for this stream.
Optional parameter:
isRep = false if not speci-
fied.
/subscribe | Returns a publisher ?7s=<identifier> Identifier of the subscribed

for a certain stream in
a JSON result object.

stream

Tnorep=

< isRep Unallowed >

True if the retrieved pub-
lisher must not be a re-
peater.

Optional parameter:

isRep Unallowed = false if

not specified.

REST-Interfaces

81

C.2 Worker

Target

Description

Parameter

Parameter Description

/debug

Get a HTML overview
of all subscribed input
as well as all published
output data streams

of the worker.

/data

Returns a list of
tuples for a certain
output stream as a
JSON object. The
tuple list can be
further specified by

the parameters.

s=<identifier>

Identifier of the stream

ti=<index> Tuple list only contains tuples
with a larger allTimelndex
(i.e., tuple.allTimelndex > index).
Optional parameter:
allTimelndex = —1 if not speci-
fied.

N=<limit> Tuple list only contains the latest

limat tuples.
Optional parameter: limit = oo if

not specified.

Workers and Components

This appendix contains a list of all internal components and PAN workers we implemented

in our prototype for evaluating the PAN approach.

D.1 Internal Components

D.1.1 Generic
Name Input(s) Output(s) Description
InterPanStream- List of all input | All input | Forwards received inter-
ForwarderComponent | streams to for- | streams PAN input streams and
ward thus transforms them
into intra-PAN streams.
IntraPanStream- List of all | All input | Repeats intra-PAN in-
RepeaterComponent streams to | streams put streams in order to
repeat enable load balancing.

Workers and Components

83

D.1.2 ACM DEBS 2013 Grand Challenge Specific

specific player
(e.g., SEN-
SOR97 and

SENSOR98 for
B2)

this player (e.g.,
B2)

Name Input(s) Output(s) Description
ActiveBallComponent | All ball sensor | ACTIVEBALL | Detects the active ball
data streams and generates an out-
(i.e., SENSOR/, put stream containing
SENSORS, the ID of the active ball
SENSOR10 and as well as its position,
SENSOR12) acceleration and velocity
data.
BallHitDetector- The active ball | BALLHITS Detects ball hits by
Component stream (i.e., means of the ball’s ac-
ACTIVEBALL) celeration as well as the
as well as all player who hit the ball.
average player
position streams
(i.e.,, A1-A8 and
B1-BS8)
HeatMapComponent A single average | Heat Map | Generates Heat Map
player position | streams for this | Streams for 3 resolu-
stream (e.g., | player tions (16 x 25, 32 x 50
B2) and 64 x 100) and 5 time
windows (1, 5, 10, 20
minutes as well as the
whole game) as specified
in the ACM DEBS 2013
Grand Challenge.
PlayerAverage- All sensor data | Average posi- | Generates a single
Component streams for a | tion stream for | stream for a specific

player by averaging the
position, velocity and
acceleration data of all
sensor data streams.

PlayersBallPossession-
Component

The ball hits
stream (i.e.,

BALLHITS)

Ball Possession
streams for all
players

Generates ball posses-
sion streams for all play-
ers as specified in the
ACM DEBS 2013 Grand
Challenge.

TeamsBallPossession-
Component

The ball posses-
sion streams of
all players

Ball Possession
streams for all
teams

Generates ball posses-
sion streams for both
teams for 5 different
time windows (1, 5, 10,
20 minutes as well as the
whole game) as specified
in the ACM DEBS 2013
Grand Challenge.

Workers and Components

84

D.2 Workers

D.2.1 Generic
Name Component(s)* Description
OnlyInterPanStream- | — Forwards all received inter-PAN input
ForwardingWorker streams and thus transforms them

into intra-PAN streams.

IntraPanStream- IntraPanStream- Repeats all intra-PAN input streams
Repeater Worker RepeaterComponent in order to enable load balancing.

*Please note, that each worker which expects inter-PAN input streams (see JSON config)

additionally performs a single InterPanStreamForwarderComponent.

Workers and Components

85

D.2.2 ACM DEBS 2013 Grand Challenge Specific

Name Component(s)* Description

ActiveBallWorker ActiveBallComponent | Detects the active ball and generates
an output stream containing the ID
of the active ball as well as its posi-
tion, acceleration and velocity data.

AvgPlayerPosition- 1 PlayerAverageCom- | Generates a single stream for each

Worker ponent per player given player (e.g., BI-B4) by aver-

aging the position, velocity and ac-
celeration data of their sensor data
streams.

BallHitDetector Worker

BallHitDetector-
Component

Detects ball hits by means of the
ball’s acceleration as well as the
player who hit the ball.

HeatMapWorker

1 HeatMapComponent
per player

Generates Heat Map Streams for 3
resolutions (16 x 25, 32 x 50 and
64 x 100) and 5 time windows (1, 5,
10, 20 minutes as well as the whole
game) as specified in the ACM DEBS
2013 Grand Challenge for each given
player.

PlayersBallPossession-

PlayersBallPossession-

Generates ball possession streams for

Worker Component all players as specified in the ACM
DEBS 2013 Grand Challenge.

TeamsBallPossession- TeamsBallPossession- Generates ball possession streams for

Worker Component both teams for 5 different time win-

dows (1, 5, 10, 20 minutes as well as
the whole game) as specified in the
ACM DEBS 2013 Grand Challenge.

Workflows

This appendix contains graphs illustrating the workflows used in the PAN evaluation (see
Section 5.2) as well as an exemplary JSON config. An explanation of the PAN workers used
in the following workflows is given in Appendix D. Please note, that for illustration purposes
the sensor data streams are abbreviated with their IDs (e.g., 106 instead of SENSOR106)
in the Full Game graphs.

E.1 Full Game
E.1.1 Full Game on 3 Peers

BP A", BP B

Sensor Simulation =
Environment |, O\ 7 o3 _ _ _ ____________

P2P Analysis Network

MT

Laptop

Figure E.1: Full Game Workflow distributed on 3 Peers

Workflows

87

E.1.2 Full Game on 6 Peers

P2P Analysis Network

Figure E.2: Full Game Workflow distributed on 6 Peers

E.1.3 Full Game on 8 Peers

P2P Analysis Network

Figure E.3: Full Game Workflow distributed on 8 Peers

Workflows 88
E.1.3.1 JSON Config
{
"workflowName": "Full Game Cloud 8 Peers",
"author": "Lukas Probst",
"pubSubRepository": {
"logFileName": "PubSubRepository",
"hostName": "10.0.0.4",
"port": "8080",
"sshPort": "22"
by
"workers": [
{
"name": "Forwarder Worker 1"
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.
OnlyInterPanStreamForwardingWorkerStarter",
"logFileName": "Forwarderl",
"hostName": "10.0.0.8",
"sshPort": "22",
"outputPort": "51001",
"interPanInputStreamsReceiverPort": "50001",
"interPanInputStreams": ["SENSOR4", "SENSOR8", "SENSOR10", "SENSOR12
"1,
"additionalParametersString": ""
by
{
"name": "Forwarder Worker 2"
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.
OnlyInterPanStreamForwardingWorkerStarter",
"logFileName": "Forwarder2",
"hostName": "10.0.0.4",
"sshPort": "22",
"outputPort": "51002",
"interPanInputStreamsReceiverPort": "50002",
"interPanInputStreams": ["SENSOR105", "SENSOR106", "SENSOR13", "
SENSOR14", "SENSOR97", "SENSOR98", "SENSOR47", "SENSOR1l6", "
SENSOR49", "SENSOR88", "SENSOR19", "SENSOR52"],
"additionalParametersString": ""
by
{
"name": "Forwarder Worker 3",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.
OnlyInterPanStreamForwardingWorkerStarter",
"logFileName": "Forwarder3",
"hostName": "10.0.0.5",
"sshPort": "22",
"outputPort": "51003"
"interPanInputStreamsReceiverPort": "50003",
"interPanInputStreams": ["SENSOR53", "SENSOR54", "SENSOR23", "SENSOR24
", "SENSOR57", "SENSOR58", "SENSOR59", "SENSOR28"],
"additionalParametersString": ""
by
{
"name": "Forwarder Worker 4",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.
OnlyInterPanStreamForwardingWorkerStarter",
"logFileName": "Forwarder4",
"hostName": "10.0.0.6",
"sshPort": "22",
"outputPort": "51004"
"interPanInputStreamsReceiverPort": "50004",
"interPanInputStreams": ["SENSOR61", "SENSOR62", "SENSOR99", "
SENSOR100", "SENSOR63", "SENSOR64", "SENSOR65", "SENSOR66", "

SENSOR67", "SENSOR68"],

Workflows

89

"additionalParametersString": ""

"name": "Forwarder Worker 5",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.

OnlyInterPanStreamForwardingWorkerStarter",

"logFileName": "Forwarder5",

"hostName": "10.0.0.7",

"sshPort": "22",

"outputPort": "51005"

"interPanInputStreamsReceiverPort": "50005",

"interPanInputStreams": ["SENSOR69", "SENSOR38", "SENSOR71", "SENSOR40
", "SENSOR73", "SENSOR74", "SENSOR75", "SENSOR44"],

"additionalParametersString": ""

"name": "Active Ball Worker",

"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.
ActiveBallWorkerStarter",

"logFileName": "ActiveBall",

"hostName": "10.0.0.8",

"sshPort": "22",

"outputPort": "51006"

"interPanInputStreamsReceiverPort": "50006",

"interPanInputStreams": [],

"additionalParametersString": ""

"name": "Average Player Position Worker 1",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.

AvgPlayerPositionWorkerStarter",

"logFileName": "PlayerAveragePositionl",
"hostName": "10.0.0.4",

"sshPort": "22",

"outputPort": "51007"
"interPanInputStreamsReceiverPort": "50007",

"interPanInputStreams": [],
"additionalParametersString": "REFEREE:@SENSOR105, SENSOR106Q@%A1:

@SENSOR13, SENSOR14, SENSOR97, SENSOR98Q%A2 : €SENSOR47, SENSOR16Q@%A3:

@SENSOR49, SENSOR88E%A4: @SENSOR19, SENSOR52@"

"name": "Average Player Position Worker 2",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.

AvgPlayerPositionWorkerStarter",

"logFileName": "PlayerAveragePosition2",
"hostName": "10.0.0.5",

"sshPort": "22",

"outputPort": "51008"
"interPanInputStreamsReceiverPort": "50008",

"interPanInputStreams": [],
"additionalParametersString": "A5:Q@SENSOR53, SENSOR54@%A6:@SENSOR23,
SENSOR24@%A7:@SENSOR57, SENSOR58@%$A8: @SENSOR59, SENSOR28@"

"name": "Average Player Position Worker 3",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.
AvgPlayerPositionWorkerStarter",

"logFileName": "PlayerAveragePosition3",
"hostName": "10.0.0.6",

"sshPort": "22",

"outputPort": "51009"
"interPanInputStreamsReceiverPort": "50009",

"interPanInputStreams": [],

Workflows

90

"additionalParametersString": "B1:Q@SENSOR61, SENSOR62, SENSOR99,
SENSOR100@%B2:@SENSOR63, SENSOR64@%B3: @SENSOR65, SENSOR66Q@%$B4 @
@SENSOR67, SENSOR68@"

"name": "Average Player Position Worker 4",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.

AvgPlayerPositionWorkerStarter",

"logFileName": "PlayerAveragePosition4",
"hostName": "10.0.0.7",

"sshPort": "22",

"outputPort": "51010"
"interPanInputStreamsReceiverPort": "50010",

"interPanInputStreams": [],
"additionalParametersString": "B5:@SENSOR69, SENSOR38@%B6:@SENSOR71,
SENSOR40@%B7:@SENSOR73, SENSOR74@%B8:@SENSOR75, SENSOR44@"

"name": "Ball Hit Detector Worker",

"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.
BallHitDetectorWorkerStarter",

"logFileName": "BallHitDetector",

"hostName": "10.0.0.9",

"sshPort": "22",

"outputPort": "51011",

"interPanInputStreamsReceiverPort": "50011",

"interPanInputStreams": [],

"additionalParametersString": ""

"name": "Players Ball Possession Worker",
"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.

PlayersBallPossessionWorkerStarter",

"logFileName": "PlayersBallPossession",
"hostName": "10.0.0.10",

"sshPort": "22",

"outputPort": "51012",
"interPanInputStreamsReceiverPort": "50012",

"interPanInputStreams": [],
"additionalParametersString": ""

"name": "Teams Ball Possession Worker",

"mainClass": "ch.unibas.cs.dbis.pan.worker.starter.debs.
TeamsBallPossessionWorkerStarter",

"logFileName": "TeamsBallPossession",

"hostName": "10.0.0.11",

"sshPort": "22",

"outputPort": "51013"

"interPanInputStreamsReceiverPort": "50013",

"interPanInputStreams": [],

"additionalParametersString": "A:QAl,A2,A3,A4,A5,A6,A7,A8Q@%B:@B1,B2,B3

,B4,B5,B6,B7,B8@"

Listing E.1: fullGameCloud8Peers.json

Workflows

91

E.1.4 Full Game on 14 Peers

P2P Analysis Network

Figure E.4: Full Game Workflow distributed on 14 Peers

Workflows

E.2 Sensor Forwarding
E.2.1 1 Forwarder

e e N

(

|

I
NSOR105 _ — =~

Increasing

|
|
_ i Number of
,,,,, ! Lightweight
| Clients
|
|

Peer 4 - 14
~~~~~ SENSOR105 it

P2P Analysis Networl

Figure E.5: Single Stream Publisher (1 Forwarder)

E.2.2 1 Forwarder, 1 Repeater

Increasing
Number of
Lightweight
_______________ Clients

—————————————— Peer4 - 14

P2P Analysis Networl

Figure E.6: Two Stream Publishers (1 Forwarder, 1 Repeater)



Workflows

93

E.2.3 1 Forwarder, 2 Repeaters

P2P Analysis Networl

Figure E.7: Three Stream Publishers (1 Forwarder, 2 Repeaters)

 ~Increasing

Number of
Lightweight
Clients



Workflows

94

E.3 Heat Map

SENSOR47,
_SENSOR16

P2P Analysis Network

Figure E.8: Heat Map Workflow generating the Heat Maps for Player A2




Evaluation Settings

F.1  Sensor Simulator Config
Config file: global/Constants.java

Variable name Value
MIN_BUFFER _SIZE 100
MAX_BUFFER_SIZE 500
MATCH_START_TIMESTAMP_IN_PICOSECONDS 10753295594424116
FIRST_HALF_END_TIMESTAMP_IN_PICOSECONDS 12557295594424116
SECOND_HALF_START_TIMESTAMP_IN_PICOSECONDS 13086639146403497
MATCH_END_TIMESTAMP_IN_PICOSECONDS 14879639146403497
SKIP_HALF_TIME_BREAK_IN_SIMULATION false
TIME_TO_WAIT_FOR_THE_TIMEPROVIDER._ 3000
TO_INITIALIZE_IN_MS

CHECK_PERIOD_BEFORE_START_SIMULATION_IN_MS 10
CHECK_PERIOD_IN_MS 50
STATISTICS.CALCULATION_PERIOD_IN_MS 5000
MATCH_SIMULATION_SPEEDUP 1.0
USE_-WEAK_TRUE_TIME true
WTT_SYNC_PERIOD_IN_MS 1000
WTT_ALIVE_PERIOD_IN_MS 5000
WTT_ALIVE_TIMEOUT_IN_MS 17000




Evaluation Settings

96

F.2 PAN Config
Config file: ch/unibas/cs/dbis/pan/helper/Config.java

Variable name

Value

DEFAULT_WORKER_IO_RING_BUFFER_SIZE

100

HEATMAP IO_RING_BUFFER_SIZE

50

INTER_PAN_STREAM_FORWARDER_INTERVAL_IN_MS

20

INTRA_PAN_STREAM_REPEATER_INTERVAL_IN_MS

20

WAITINGTIME_BEFORE_SUBSCRIBE_IN_MS

10000

ENABLE_AUTOMATIC_PERIODICALLY_PULL_FROM_
OTHER-WORKER

true

PLAYER_AVERAGE_INTERVAL_IN_MS

ACTIVE_BALL_INTERVAL_IN_MS

BALL_HIT DETECTOR_INTERVAL_IN_MS

PLAYERS_BALL_POSSESSION_INTERVAL_IN_MS

500

TEAM_BALL_POSSESSION_INTERVAL_IN_MS

1000

HEAT _MAP_INTERVAL_IN_MS

1000

GRAB_INTERVAL_FOR_LONG_TERM_STATISTICS_IN_MS

100

HTTP_CLIENT_TIMEOUT

15000




Evaluation Settings 97
F.3 Client Config
Config file: ch/unibas/cs/dbis/pan/debsdebugging/helper/Config.java
Variable name Value
DATA _GRABBER_INTERVAL_IN_MS 20
PUBSUB_REPOSITORY_HOSTNAME 10.0.0.4
PUBSUB_REPOSITORY_PORT 8080
HTTP_CLIENT_TIMEOUT 15000
DRAW FIELD WIDTH 900
DRAW_X_MARGIN 150
DRAW_Y_MARGIN 150
DRAW_VELOCITY _DIVISOR 50000000
HEAT_MAP_PREFIX HEATMAP _wholeGame_32x50_
MATCH_START_TIMESTAMP _IN_PICOSECONDS | 10753295594424116
STOP_MATCH_TIMESTAMP_IN_PICOSECONDS 12253295594424116




Evaluation Results

G.1 Sensor Simulation Environment

The followings graphs show time difference statistics of incoming sensor data streams pro-
duced by the sensor simulator environment in milliseconds. The statistics were measured
every b seconds at a dedicated Debugging Stream Receiver. All 42 sensors are simulated in
real-time. In the distributed setups the sensors are equally distributed onto two machines.
The machine clock of the second machine was manually set approximately 20 seconds into

the pasts. The sliding window size for the moving averages is 10.

Compare Differences between Incoming Timestamps
Simulated all 42 sensors; full game with half-time break (no speedup);
50ms check period; 10ms check period for simulation start time;
statistics measured every 5000ms; Standard deviation (sliding window size = 10)

1e+06 T T T T - T . T T
single machine, without WTT ———
single machine, with WTT
distributed, without WTT ———
distributed, with WTT ———
100000 | E
(2]
€
£
s 10000 \ E
kS|
>
[
a
©
© 1000 B
©
5 - i
2 f A Al [
? i Wy
N \\‘A -
10 1 1 1 1 1 1 1 1
? 6000 £3 {‘%x , %\X %"0 K S £2 K s,
(22} (X % (X % (3 % A

Time in ms (since tuples of at least 2 sensors are received)

Figure G.1: Time Difference Comparison. Compares the standard deviation (sliding
window average) for all four setups.



Evaluation Results 99

Differences between Incoming Timestamps without WTT
Simulated all 42 sensors on a single machine; full game with half-time break (no speedup);
50ms check period; 10ms check period for simulation start time;
statistics measured every 5000ms; Standard deviation (sliding window size = 10)

1e+06 T T T T T T — T
standard deviation
median difference to mean
rd deviation (sliding window avg) ———
100000 erence to mean (sliding window avg) —— |
10000 i
[%2]
1S
£
° 1000 i
3
©
>
100 | w‘m\ m;"\(‘mwv‘m” A ‘(\‘ f _
i A ! (R TIY
10 | i
1 1 1 1 1 1 1 1 1

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+0€
Time in ms (since tuples of at least 2 sensors are received)

Figure G.2: Time Difference Statistics for Single Machine Setup without WeakTrueTime

Differences between Incoming Timestamps with WTT
Simulated all 42 sensors distributed on a single machine; full game with half-time break (no speedup);
50ms check period; 10ms check period for simulation start time;
statistics measured every 5000ms; Standard deviation (sliding window size = 10)

1e+06 T T T T T T T
standard deviation
median difference to mean
stapdard deviation (sliding window avg) ——
100000 - ifferance to mean (sliding window avg) ——— |

10000

1000

Value in ms

100

N It i
Al I AN RN L T
RN T | M Al Y el h I \ym‘“ﬂr AN |

VAT N \ Al
U il W T O
v

V W

10 F 1

1 1 1 1 1 1 1 1 1
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+0€
Time in ms (since tuples of at least 2 sensors are received)

Figure G.3: Time Difference Statistics for Single Machine Setup with WeakTrueTime



Evaluation Results 100

Differences between Incoming Timestamps without WTT
Simulated all 42 sensors distributed on two machines; full game with half-time break (no speedup);
50ms check period; 10ms check period for simulation start time;
statistics measured every 5000ms; Standard deviation (sliding window size = 10)

1e+06 T T T T T T —T
standard deviation
median difference to mean
dard deviation (sliding window avg) ———
i i nce to mean (sliding window avg)
100000 | 7 AR E
y x
/ \
/ \\
[ |
) 10000 |- <AJ \ B
IS
<
(]
=]
[
> 1000 - i
100 |- E
1 0 1 1 1 1 1 1 1 1
o S 7 Ve o) @ % 14
2 % % Q?S’Xo "% % R % R
% 6 % 3 % 3 % 6 >

Time in ms (since tuples of at least 2 sensors are received)

Figure G.4: Time Difference Statistics for Distributed Setup without WeakTrueTime

Differences between Incoming Timestamps with WTT
Simulated all 42 sensors distributed on two machines; full game with half-time break (no speedup);
50ms check period; 10ms check period for simulation start time;
statistics measured every 5000ms; Standard deviation (sliding window size = 10)

1e+06 T T T T T T T
standard deviation
X median difference to mean
standard deviation (sliding window avg) ——
100000 | / rmedTarrdrffere\nce to mean (sliding window avg) ———
‘u
10000 | ‘ g
1000 |

Value in ms

100 M e A M | l WWWNRWW

N N
L)) mw,\ﬁ,mN \‘u

[N \
‘“ \W‘ “ fo it

10 |

1 1 1 1 1
S 7 7 < 2 S @ % <z
0000 S, .%x S, ~%x %, "%, S :
) (3 06’ (3 06‘ (3 06‘

NXe

Time in ms (since tuples of at least 2 sensors are received)

Figure G.5: Time Difference Statistics for Distributed Setup with WeakTrueTime



Evaluation Results 101

G.2 PAN

This section contains graphs and tables for all values measured in the course of evaluating
PAN. The average (avg), variance (var) and standard deviation (std) are rounded to two dec-
imal places. #retrieved Tuples denotes the number of different (w.r.t. the tuple timestamp)

retrieved tuples during the data fetching at the query delay client.



102

Evaluation Results

Degree of Distribution

G.2.1

Evaluation data for Section 5.2.3.2.

Table

G.2.1.1

uoryenyeAr]

SI99J JO IoqUUNN SUISBAIOU] Ul | 2WDH))0YN g PUR g ‘GOIHOSNAS I0] So19s1ie)S (1Y) o[qelL,

cel | evie 60LT et w26 | vie 807L8 | cOV6SSET | 90°196 T
889 | Lgqq V161 9zt 106 | ¥iz | Lvver | SV19L8ST | vhsve g | .

V-ourena[oym- g

699 | 66161 0062 00T <20l | ove | v19s9 | co61v69y | €180l 9

veq | 2099 196¢ 7801 vI0r | a1z C6299 | U IGLoPy | LOTHIL ¢

Q080T | 991¢ 068 871 w1 | e 1676 | 798006 | clbil v
ovrel | otls Svee 671 96 | 62 00879 | 00°69800¢ | 89°991 8 a

88VTL | 61881 a0zl 161 98 | o2 00808 | Le79876 | 666l 9

6128 | 06089 vogeT 0ze el | 1e | e9LeLot SEGTT | £L6262 ¢

0298 | €891 iz It 78 | L¢ aror || 112618 9688 T

60L0T GeLE V1¢e 701 89 61 06°'19 SV 1E8¢ 6L°€L 8
: - : 2 GOTHOSNHS

19901 | ovLel Zo1 08 09 | oc 62281 | 9692028 19°99 9

V.LV8 Vavl i 7444 76 €9 61 I1°€¢ GL°0C8¢T 9.°69 e
so[dn[,poaorijol# 4 XeIN | 010 66 | 0104 06 | URIPOIN 4 ury 4 PIS Iep SAy 4 S100J# weals




Evaluation Results

103

G.2.1.2 Graphs

Average Query Delay for Increasing Number of Peers

10000 ' T T T T T T T T
SENSOR105 —+—
B2 —<—
BP_wholeGame_A

17

€ 1000 } |
£

>

©

©

a

>

)

=1

a

o

o

o

g 100 | —
= IR

A —
10 ! L 1 L 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12 13 14

Number of Peers

Figure G.6: Average Query Delay for Increasing Number of Peers

Average Query Delay and Standard Deviation for Increasing Number of Peers

' ' ' ' ' ' ' SENSOR105
B2 +——<—
BP_wholeGame_A

10000
[72]
E 1000 }
£
>
o
[0
a
>
(0]
>
(@]
[
(o2}
S
2 100 |
<<
10
3

4 5 6 7 8 9 10 11 12 13 14
Number of Peers

Figure G.7: Average Query Delay and Standard Deviation for Increasing Number of Peers



Evaluation Results

104

10000
[%2]
E
£ 1000
>
3
[
[a]
>
(]
=
ej
2
E
[4]
g
S 100
o
[e2)
10

90 Percentile Query Delay for Increasing Number of Peers

' ' ' ' ' ' ' SENSOR105 —+—
B2 —<—
BP_wholeGame_A
L ]
R
1 1 1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12 13 14

Number of Peers

Figure G.8: 90 Percentile Query Delay for Increasing Number of Peers

14000

12000

10000

8000

6000

Total Number of Retrieved Tuples

4000

2000

Total Number of Retrieved Tuples during Data Fetching for Increasing Number Of Peers

SENSOR105

o

B2
BP_wholeGame_A

1 1 1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12 13 14
Number of Peers

Figure G.9: Total Number of Retrieved Tuples during Data Fetching for Increasing
Number of Peers



105

Evaluation Results

G.2.2 Latency

Evaluation data for Section 5.2.3.3 (Latency).

Table

G.2.2.1

uoryenyear] Aouoye  SUISBSIOUT Ul [ 2WDL)IoYN-Jg Pue gqg ‘COTHOSNAS I0J SO1IsIyeIs :g°5) a[qe],

€8¥ | 806€ €602 66LT IvET 67 | 6C'T9E | TE'S0vECT LT°09€T g€
¥cs | ¥8ge 1961 LELT 96¢C1T G0S | 8L'IVE | CY'TI8ITT G260€T 0¢
L89 | 991¢ L06T 991 1121 86% | 06°€EE | CE'I6VITI LLL0TT 14
¢19 | ¢80T 1261 8€91 C8IT 0TV | €V'CvE | 9€09CLIT €C°6811 0¢ YowRDIOYM Jg
869 1762 LV8T j£498 T0TT 60€ | 88'8EE | ¥E'OVSVIT | L8°00TT ST
1T 9628 6GLT 6051 G101 88C | §9°6€€ | VI'96CSTT cE670T 0T
L2L | VVIE 090¢ 1971 <96 CLT | €59°0LE | €T'06CLET £€¢°¢00T g
€EL 80V SV91 LVET 168 681 8T'6VE | 99°9C6ICT 1€°906 0
€0CL | L68T 33 €4¢T T0g 80T 81°6¥ T0°61¥7¢C 6€°50C g€
VGLL 51959 L2T¢ 0€¢T V81 66 88°CY VL v01¢ 8¢ L8T 0¢
9G¥8 | LOTT 0Te 184 €LT 9L 9.°8€ 80°C0OST L9°GLT 14
20€6 15448 £8¢ 881 0ST LL 19°¢¢ 02'89¢1 99°€41 0¢ g
06201 1091 89¢ 891 VeI g9 9C' 7€ 8L'ELTT €9°9€1 ST
00STT €841 (454 44! VIl [49 9¢°6¢ LE°90TT 9911 0T
L9T€ET VeV [4%4 €21 96 154 [14 69°1T99 05°86 g
0.L8ST €41¢e 10¢ STI 8. G¢ | S8T'LIT G0'0€LET LV'C6 0
¥eI19 | S0ST ¥6¢C <91 €cl 69 [OR34 £€€°048T croel g€
94699 8L9 8¢ 8GT €11 qg 06°0% 79°¢L9T 96°611 0€
CLIL L09 L9¢ 671 (498 67 8V'LE 6€VOVT LTLTT G¢
TI8L 999 g€ €€1 T0T 154 veve 9€'CLIT ¢6°€0T 02
; ; ; SOTHOSNUS
€L98 | 9Icl 63T 121 06 9¢ 86°€€ IV PSIT ¥v'€6 ST
G6¥6 | 9Pt 002 80T 6. €€ 19°c¢ 69°€90T £6°C8 (0]
16L0T 80¢ <91 G6 69 LT 08°¥¢ Ca'ST19 681 g
V61€T 14 et €8 6¢ 0¢ G4'Ce §G'80¢ ¥.'09 0
soTdn,posdrijor# 7 XeIA 7 019d 66 0I19d 06 | URIPaIN 7 ury 7 P1s Tep Say | sw ur Aouajery wrealg




Evaluation Results

106

G.2.2.2 Graphs

Average Query Delay for Increasing Latency
1800 T T T T

1600 |

1400 |

1200 -

1000 -

800

600

Average Query Delay in ms

400 -

200 T

-200 1 1 1 1 1

SENSOR105
B2

BP_wholeGame_A

[ —
——i

0 5 10 15 20 25
Latency in ms

35

Figure G.10: Average Query Delay and Standard Deviation for Increasing Latency

90 Percentile Query Delay for Increasing Latency

1800 T T T T

1600 |

1400 -

1200 -

1000 -

800 -

600

90 Percentile Query Delay in ms

400

200

SENSOR105 —
B2
BP_wholeGame_A

o

0 5 10 15 20 25
Latency in ms

Figure G.11: 90 Percentile Query Delay for Increasing Latency

35



Evaluation Results

107

16000

14000

12000

10000

8000

6000

Total Number of Retrieved Tuples

4000

2000

Figure G.12:
Latency

Total Number of Retrieved Tuples during Data Fetching for Increasing Latency

' ' ' ' SENSOR105 —+—
B2 —<—
BP_wholeGame_A
1 1 1 1 1 1
0 5 10 15 20 25 30 35
Latency in ms
Total Number of Retrieved Tuples during Data Fetching for Increasing



108

Evaluation Results

G.2.3 Bandwidth
Evaluation data for Section 5.2.3.3 (Bandwidth).

Table

G.2.3.1

uoIen[eAT] [IpLapueg SuIsea1doq Ul ¢)JYOSNAS 103 SOUSIRIS gD OB

8929 | 9261 G9¥ 102 44" v €018 CE'9999 | 6CLST 005¢

62¢C8 1091 €8¢ 9¢1 <6 8¢ cL'LG €8°1€6¢E 91°'66 0004

L618 | €€0T 0.2 (49} 68 9€ L6°GY LTETIC G2'G6 0052
980¢T 6€81 €1I¢ 78 09 61 86'9¢ 0L°L9CT §6°C9 0000T
[44418 8TLL j£44 86 L 0% | 99°€ST 956°085€¢T 9€ VL 009CT

9648 | clcl ¢9¢ 8TT 98 L€ e 0V 9¢°9e91 6L°16 000¢T
ICIET .86 V81 a8 09 61 ¥v'6¢ V998 0629 0081
062¢1 Tagt L61 €8 69 61 11've 6L°69TT L9°'19 0000T
LGCET | L96T 88T €8 64 61 9€°67 IV'9EVT ¥v'c9 009¢T
€0¢€l €0TT L91 €8 69 8T G98'CE L0°6L0T L9°'19 000¢¢T

; ; ; GOTHOSNYS
8CVET 89 961 €8 64 61 L¥'9T 98004 CG'19 0082
cesel £€¢6 91 c8 64 61 8€'LC ¥9'6V.L LL09 0000€
8VEET V.6 TLT €8 64 61 02°6¢ 89248 0€°'19 009ce
clsel 16€T 8GT c8 8¢ 61 059°6¢ £0°0L8 £8°09 000¢€
LTIET 60T VLT €8 8¢ 61 £€9°0€ 8€'8€6 ST'19 008.L€
626€1 689 991 €8 64 61 1.°6¢2 L6°099 66°09 00007
OTPET | LOVI L8T €8 69 61 11°2¢ C6°0€0T 9V’ 19 00gcy
covel 996 991 €8 64 61 £9'8¢ LV'618 IT°19 000¢¥
CETET V8L GLT €8 69 02 8L°G¢C 9L°799 §6°09 008L¥
06C€T | LE8I 791 €8 64 61 00'9¢ 98°96C1T Ge'19 0000%
sordn,possrijor 7 XeIN 7 '019J 66 019 06 | URIpOIN 7 utN 7 P1S Tep Say 7 s/qy ur yipimpueg wrea1}s




109

Evaluation Results

uoryenyesr] yiprapueyg SuIsesIds( Ul gg I0f so1snels 5 9[qel,

6LCL (4414 9G4 992 V91 69 | ©S'8IC | 6S'TGLLY | 6C5°00T 0092

L086 | 994¢€ 6% €91 (0] 67 | 19°9¢1 LT°LTSVE | SL9CT 000¢

€896 | L.LcTE ¥9¢ VLI V0T Gv | GLgel 80°068LT ¥8°9¢CT 0082
98841 §c8¢ 8¢ ITT 6. ¥¢ | 06°0ST 61°0LLCC G466 0000T
66€€T 68V.L 00€ (448 a8 9¢ | €8°091 L€°L98GC 01°86 00521
94201 ¥c0€ LG¢€ ovl c0t ¢V | 08611 §6°096V1 (41N 000ST
€LLGT GLLT €43 154} 6L ¥¢ | 6L°0TT €L°€LTTT 16°€6 00GLT
£9091 16€2C c0¢ 911 8L LT ¥8°08 8L¥€499 0L°68 00002
80091 897¢€ €43 60T 8L GC | L8'6TI CV'89¢EVI L0°26 0052C
<9091 6V1¢€ 18¢ 911 8. 9¢ | LTE01 TL7990T 0€¢°06 00052 za
LTEIT 1434 ¥9¢ L0T LL LG €€'8. £€9°9€19 96°¢8 0052
78691 0.L8T CLT L0T LL gc 9¢'8L ¥0'¥219 L€°98 0000&
Y6191 898€ 168 80T LL 9C | LV OVI 12 €EL6T £€7°06 00sce
09691 669¢ 8LC L0T LL ¥e £9'88 LL'GG8L 99798 0005€
Z8¥91 LG8¢C CLT L0T LL 9¢ 33’86 629796 G0'L8 006LE
GCI91 929¢ |9X4 VIl 8L gc 05'88 C8'CE8L 0.°88 0000¥%
6.L291 Ge0g LLT 80T LL §c LETL 8€°LETS L€°98 00sey
67691 c9LE 6.C 901 9L 8¢ | 96VEIL €V’ €181 V.88 000S¥
6841 g8ge L0€ 61T 8L 9¢ | 06°GET G8°L9¥8T €T V6 00SL¥
60191 190€ £€6¢C T1T 8. g¢c | 08°0cl 8665V 1 89°16 0000¢

sordn [, paastijols 7 XeIN 7 ‘019 66 0194 06 uRIpSIN 7 Ut 7 P1s IeA 3ay 7 s/qy ul yipimpueg wea1)g




110

Evaluation Results

uoryenyesr] Yiprmpueg SUISLaIdd(] Ul [/ 9wWDH)a)oym J& I0J SO1ISIIRIS G Y) 9[qe],

¢ | 8S0TT 8G0TT 8G0TT 8G0TT 19201 06°86¢ GG'T088ST 06659901 00S¢
6 | vLeETT VLECT VLECT Gv6L V01€ | 8L'0¥PC | ¥S'80¥LS6S TT°LE8L 000¢
67 184 184 SITE 45144 €621 6€°LLS 68°€8EEEE L9°¢L2T 0082
91 | Lv<6l LVS61 700L1T GLTV1 61601 8€'C8GC | €L79998999 | 88'0E6ET 0000T
8T [445)8 [445)8 (42145 VEETT 9YPL | 06°CTSC | LS'PI9VIE9 T19'8GGTT 00S2T
1T 16701 16701 76101 €LTL c06¢ | <S0°'1961 66°9CLGT8¢ 606018 000ST
19 | €990T £€590T 6108 Y019 G09¢ | 0S§'c0sT LE'6TSLETT VET6£9 00S.T
99 11€6 1166 49889 c00¢ 677¢ | 00°'88¢T L9°96499¢61 G9'68I¢ 00002
c6 8478 8478 9919 198¢ I8¢ ST'VCLT 60'70LCL6C 6579.8€ 0052T
€41 L969 L0L9 (431594 0861 ¥ve | 99°€0¥1 L8'€866961 G0'TLET 00052 Vowreneoum- I
LET LT69 LV6¥ [44t14 LLET 661 LG'T06 657908018 €0°LVST 0082
¥4¢ 674S €697 16€C 60€T £9¢ GL9T8 C¢9'cL0L99 T1°99%1 0000¢
1143 ovsy [45438 8TLI L0TT [4%4 69°TTS 67 TE8TIC CETATIT 00¢ce
¥6¢ 184¢ 798¢ 6891 Q1T 04T 657097 LE'EVICIT 9G°9CI1T 0005€
1394 £4cy G69¢ 6GST 8G0T 11¢ 1S4 L6°8L9¥0CT LT°L80T 006.L€
vy L2€S L9€¢ 09¢T L80T 61T 62671 17" 198102 9V'101T 0000¥%
L9V LVSY 816¢C G8SGT LEOT €61 96°65¥ 09°L9STTC €8°'790T 00scy
<6V 155343 108¢T 9¢91 9901 661 1675V L2'0¥690T 66 VITT 00057
€0¢ veee L62C 9G¢eT S8TOT 1§44 69°0c¥ TE€'8LEILT I8°TS0T 00SL¥
€19 ¢ce0¢ 01€¢ Svel 666 £€¢C L0°0cv CC'9GVILT 617701 0000¢
so1dn ], peAatior# _ XeIN '0I19d 66 019 06 | URIpOIN utN P1S Tep 3ay _ s/q3 ul yyprmpueg ureaa)s




Evaluation Results

111

G.2.3.2 Graphs

Average Query Delay for Decreasing Bandwidth

18000 T T T T T T T T T T T T T T T T T T
SENSOR105
B2 r—x—
16000 | BP_wholeGame_A 4
14000 |- -
£
c 12000 1
>
3
& 10000 |- -
>
S
5 8000 | -
(0]
[o)}
o
S 6000 - -
<
4000 | 1
2000
0 1 ¥ e o & & & 3% 3% % 5 5 5 4 ¥ ES
O X Wy B 9 R T T Y, 0 Yy, Y, o Yy, B, R Ty, T Y
Y % % %% % % B % % % B % B B % % B % %

Bandwidth in kBit/s

Figure G.13: Average Query Delay and Standard Deviation for Decreasing Bandwidth

90 Percentile Query Delay for Decreasing Bandwidth

18000 T T T T T T T T T T T T T T T T T T
SENSOR105 —+—
B2 —=—
16000 BP_wholeGame_A _
14000 —
1%
€
c
. 12000 | E
Kl
[}
a
> 10000 - —
[}
=1
€]
o 8000 E
<
@
o
o 6000 E
o
o
&
4000 E
2000 s
0 P —; ) " ¥ ) v ) v ) ) Y Y Y " v v oy
O X Ny Y 9 R W T Y, 0 Y, Y, B Ny, B, R T, T Y
o, ©0, ‘0, 0, 8§ ‘o & 0, 8§ o & 0, 8 0 & 0 5 0, 5 0O
0 0 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OOGA

Bandwidth in kBit/s

Figure G.14: 90 Percentile Query Delay for Decreasing Bandwidth



Evaluation Results 112

Total Number of Retrieved Tuples during Data Fetching for Decreasing Bandwidth

100000 T T T T T T T T T T T T T T T T T T
SENSOR105 —+—
B2 —x—
BP_wholeGame_A
10000 L y ///f,,,,,,ﬁr\\*/ E— ' : } } —»——H—Hf%—»—of—»i_
="

[%2]
€
£

z 1000 e
[}
a
e
[}
=
¢}

o 100 | B
o
[}
>
<

10 | B

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 X g X
2% 2

7o 76 78 Y D A O Q) Oy O Oy T, Ty T Ty S
%, %, 0, 8,0, %, 0, 8, B, S8, 0, S X, S, N, S, X
(% (% (

% 2 2
P % D D DD D D D > D D %
Bandwidth in kBit/s

Figure G.15: Total Number of Retrieved Tuples during Data Fetching for Decreasing
Bandwidth



Evaluation Results 113

G.2.4 Consistency
Evaluation data for Section 5.2.3.4.

Player B2 Average X-Position Comparison for different Runs

60000 T T T T T T T T
50000 - ‘ -
\“
il
I \ |
c 40000 - e
Qo !
:‘ﬁ
[e]
a | I
X 30000 | ! B
(0]
(=)
o
[
>
< 20000 | | R
1strun
2nd run
10000 - 3rdrun ——— 7]
4thrun ———
5th run
6th run
O 1 1 1 1 1 1 1
5 5 2 " = 2 Z o R N
(2] [e2] (o] n B (2] [ec] [} N S
(0] [0 + [} (0] (0] (0] + [} (0]
+ + — + + + + — + +
b b > X 4 b b > by X
[} [} (o2} [} (2] » (2] [}

Average Player Tuple Timestamp in picoseconds

Figure G.16: Player B2 Average X-Position Comparison for different Runs

Team A Whole Game Ball Possession Comparison for different Runs

100 T T T T T T T T
1strun ——
2nd run
* 3rdrun —
o: 4thrun ——
< 80 5th run E
2 6th run
‘»
(%]
o}
7]
(%]
o
o 60 E
©
m
©
IS
©
O] 40 4
<@
<]
<
=
<
£ L ]
= 20
©
'_
‘ 1 1 1 1 1 1 1 1
0
o o N o N N w o S o
=3 & ) n ~ o ) @® N S
@ @ + @ ) @ @ + @ )
+ + - + + + + - + +
AN AN > AN AN AN AN > AN AN
) o ) o =) ) =) =)

Ball Possession Event ts in picoseconds

Figure G.17: Team A Whole Game Ball Possession Comparison for different Runs



Evaluation Results 114

Nearest Player Comparison for different Runs
25 T T T T T T T

1stru;1
2nd run
3rd run
4th run
20 - 5th run ]
6th run
; \“ \\‘ | n u
g 15 | \\‘h 1| {f il | U ““ Il | |
2 \ H | ‘\1 l 1 1 I
g i L. ‘ Y |
g 1l | m‘\ VN Bt J u‘ i |
2 1l 1 b
@ 10 - | | ‘ I Il / } ‘ u
3 | | ‘ | A | (t
- \~ i e (0T
i AR RIRETN A e
5F ‘f‘ H “ “ H‘H‘ | ‘ !‘ ‘ [ J } J“M ‘H“‘ ‘ “ ‘\““H‘ ' “H ‘ | | _
UL L L L I L
( ‘ | ‘ [ ( | |
\ ( ‘U ‘ \ } ’ [l ' I LI (‘ '
0 1 1 1 ! L | . )
3 3 > R S > 3 o N iv
i ? > ? b4 ¢ ? + ® o
> > @ > > > = > p p

Ball Hit Tuple Timestamp in picoseconds

Figure G.18: Nearest Player Comparison for different Runs. 1-8 denote players A1-AS.
11-18 denote players B1-BS.

Ball Hit Event Timestamp Comparison for different Runs
10000 T T T T T T

Do “ e L 2:2:%2 _
: B ” L MM o W‘“‘“"*"1‘&)\'5"4\ i ﬂ m i "[ i ‘»\ fy _
o P

Ball Hit Tuple Timestamp in picoseconds

Figure G.19: Ball Hit Event Timestamp Comparison for different Runs



115

Evaluation Results

G.2.5 Stream Repeaters and Load Balancing

Evaluation data for Section 5.2.4.

Table

G.2.5.1

‘SenfeA ()g 9Sey) JI2A0 odeIonr CLept

SUIRIU0D J[(e} OY ], "SIUSID Ae[op A1onb poxy (g oY) JO [Oed }e POINSedU SI JI)SIJe)s [Ied UOIJen|eAd
ot} Surm(] UOYEN[RAT] SYUSI[D JO JoqUIN SUISedIOU] UL ¢)TFOSNAS 10§ SAISHRIG 19'D) SR,

G6°E€CILT ¢'L13C 98°L9¢ SC'191 O°TTT §¢'0€ 0999 68°LTLV | O8'STI 00T
09°L9061 G0'0€TT 9'9¢€¢ 8'G¥T 6701 g'1e (4 09'881C | €T0TI 06
GLVSTIT 6°T991 €9°494¢c L'621 1’16 G'LT €0'vs V1'¢91€ 91°L6 08
0§°¢vove 9668 ¥'50C ST°60T S'6L G¢'€T 9L°9¢€ CG'aLET L9¢8 0 €
60°08€ST 96°099 S8 VI GL'86 §1°GL §¢'€C V.'ve 947979 819 09
G0°6€L5C <7699 SvveEl ¢'96 1'¢eL §L'Ce GL'€g 18°€8¢ ST'7L 0¢
0€°1895¢T S467E ST°0€T G€°00T 0'LL 1've 65°1C 0g' L9V 18°LL 04
G€°960CT 6°L9SY L'64¢€ G¢G6'LCT S8 TVI 8'T¢ | 61°LCT 06°L098T | ¥L'6GT 00T
0€°LTLCT §991¥¢€ €g9cse 7'g1c g6°0€1 L'6C | LV'CIL 1L 780ST Se9vl 06
SV EV8aT §e'IveY C'48¢ T°L91 70Tt G4'8¢ ¥§L8 96'¥.26 | 9T°0CT 08
G6°91CLI §0°CI¥e 1'65¢ €'9V1 QL6 | §GLVC 12°69 688999 | 9.°G01 0. 4
S1°0¥<0T G'€98¢ 8'0T¢ V1€t 6’76 9'9¢ Gg09 I¥'C8EV | #2001 09
00°0507¢C 8'¢091 987611 8'V6 G 0L §€'ce Y9V G1'86¢¢ LV'EL 0¢
GL'0L9ST €179 Gg'8€T c'v6 V' IL 8'CT 05°7¢ T9'809 8G°CL 04
00°'8T6S €841V 6°L6G gg'18¢ L7€8T 9'CT T1E€°LVT 9T ¥GLIT | €9°60T 00T
05°€20. L0981 98'9¢S 1'cee 9'8GT G1'C¢ | 6C°¢Cl | LE'SL6VI 09281 06
00°CTLL GE'L69C @8'1SY [4uS LLVT L'TC | 9V LIT TS VP8ET G8°891 08
G9°1LE0T GGE9VT 6°6L€ €9'1¢¢C G8'8TI §€'CC £C'V8 67°00TL | CLVEL 0L T
Sv'1EeEct SGV'€618 ge€’oce 9181 9°€0T 1’12 TL'GL 87 '6€LG T1°9T1 09
00°676€1 GLLIVI S6°€8¢ 9g€91 GL'06 | 98°0¢ 89'8¢ 16°cSPe | 997201 0¢
GG 08181 G0°60ST 1144 98'9TT 6°GL 661 ST'LY 64°L3TC ge'es 0¥
so[dn,posdrijor# 7 XeIN 0194 66 o19d 06 | URIPAN 7 urn 7 P3IsS TIep Say 7 Squal[)# 7 s109 J# 7




Evaluation Results 116

G.2.5.2 Graphs

Average Query Delay for Increasing Number of Clients
400 T T T T

I1 Peer —+—
2 Peers ——=—

3 Peers
350 B

300 il 1
250 1

200 1

150 - — //

100 — — e K i

Average Query Delay in ms

o | ! i i | :

0 1 1 1 1 1
40 50 60 70 80 90 100

Number of Clients

Figure G.20: Average Query Delay and Standard Deviation for Increasing Number of
Clients

90 Percentile Query Delay for Number of Clients
400 T T T T

1Peer —+
2 Peers =

3 Peers «
350 |- / .

-

300 -
250 y

200

90 Percentile Query Delay in ms

150

100

50 1 1 1 1 1
40 50 60 70 80 90 100

Number of Clients

Figure G.21: 90 Percentile Query Delay for Increasing Number of Clients



Evaluation Results

117

Total Number of Retrieved Tuples during Data Fetching for Increasing Number Of Clients

26000 |
24000 |
22000 |
20000 [
18000
16000
14000

12000

Total Number of Retrieved Tuples

10000

8000 |

6000 -

4000

1I Peer —+—
2 Peers —=—
3 Peers

40

50

60

70
Number of Clients

100

Figure G.22: Total Number of Retrieved Tuples during Data Fetching for Increasing

Number of Clients



118

Evaluation Results

UNI yoRa Ul sIoySI[qnd s[R[IeAR 91} Usom)aq PoadUR[R( ST SJUSID POXy ()g ) JO PRO[FIOM
QU MOY “O'T ‘GOTYOSNHS SUIASLIJOI I0] SIUID Ae[op A1onb poxy (g oy Aq posn oae sioysiqnd yorgym moys sydelr) -gumour[eg prOT €7 L) 9In3Ig

squal) Q0T ‘s199d ¢ (n) sjuel[) 06 ‘S199d € (1) SIWSI[D (8 ‘S19d ¢ (s) sWaID QL ‘S109d ¢ (1) sjuar[) 09 ‘s10ad ¢ (b) spual[) g ‘swod ¢ (d) sjuar) OF ‘s109d ¢ (0)

SYUBI[) 08 ‘S199d ¢ (1) SIWSID 0L ‘S100d ¢ () syuelD 09 ‘s100d g ([)  spuer) 0g ‘swod g (1) syl oF ‘swed ¢ (1)

squal[) Q0T ‘100d T (8) sjuel[) 06 ‘“10d T (§)  sjudl[) 08 “Wdd T (9)  sjuer) L ‘109d T (P)  sIudl) 09 ‘100d T (9)  SIWLID (G ‘“100d T (q)  sjuel[) OF ‘109d T (®)




UNIVERSITAT BASEL

PHILOSOPHISCH-NATURWISSENSCHAFTLICHE FAKULTAT

Declaration on Scientific Integrity
(including a Declaration on Plagiarism and Fraud)

Beaetretors-/ Master’s Thesis (Please cross out what does not apply)

Title of Thesis (Please print in capital letters):

PAN - A P2P Approach for Scalable Complex Event Detection in Distributed Data Streams

Lukas Probst

First Name, Surname (Please print in capital letters):

09-050-402

Matriculation No.:

[ hereby declare that this submission is my own work and that I have fully acknowledged the
assistance received in completing this work and that it contains no material that has not been
formally acknowledged.

I have mentioned all source materials used and have cited these in accordance with recognised
scientific rules.

In addition to this declaration, I am submitting a separate agreement regarding the publication of or
public access to this work.

O Yes B No

Basel, 08.08.2014

Place, Date:

Signature: M’j W

Please enclose a completed and signed copy of this declaration in your Bachelor’s or Master’s thesis .



	Acknowledgments
	Abstract
	Table of Contents
	Abbreviations
	Figure Legend
	1 Introduction
	1.1 Motivation Scenario
	1.1.1 The ACM DEBS 2013 Grand Challenge
	1.1.1.1 Setting
	1.1.1.2 Requirements
	1.1.1.3 Queries

	1.1.2 Scenario Extension
	1.1.2.1 Multiple Sensor Data Streams
	1.1.2.2 Client Requests


	1.2 Problem Statement

	2 Background
	2.1 Proposed Grand Challenge Solutions
	2.2 Comparison
	2.3 Scenario Extension Consideration

	3 Evaluation Problem - Sensor Simulation Environment
	3.1 Problem
	3.1.1 Additional Requirements
	3.1.2 Sensor Data Separation
	3.1.3 Real-World and Real-Time Simulation
	3.1.3.1 Real-World
	3.1.3.2 Real-Time


	3.2 Theory
	3.2.1 Sensor Data Separation
	3.2.2 Real-World and Real-Time Simulation
	3.2.2.1 Real-World
	3.2.2.2 Real-Time


	3.3 Implementation
	3.3.1 Sensor Data Separator
	3.3.2 WeakTrueTime
	3.3.2.1 Weaker Guarantees
	3.3.2.2 Assumptions
	3.3.2.3 Architecture
	3.3.2.4 WeakTrueTime Calculation

	3.3.3 Sensor Simulator
	3.3.3.1 Sensor Simulation Environment
	3.3.3.2 Sensor Simulator Architecture



	4 PAN - P2P Analysis Network
	4.1 Background
	4.2 Concept
	4.2.1 PAN at a Glance
	4.2.2 Architecture
	4.2.3 Workflow
	4.2.4 Worker
	4.2.4.1 Input/Output
	4.2.4.2 Internal Components
	4.2.4.3 Component Separation and Single-Purpose Workers

	4.2.5 Publish/Subscribe
	4.2.5.1 Pull-Based Approach
	4.2.5.2 Publish/Subscribe Repository

	4.2.6 Client Requests
	4.2.7 Consequences of the REST-Interface Communication Approach
	4.2.8 Load Balancing

	4.3 Implementation
	4.3.1 Ring Buffer
	4.3.2 REST-Interfaces
	4.3.3 Logging
	4.3.4 ACM DEBS 2013 Grand Challenge Workflow
	4.3.5 Launch and Deployment Scripts


	5 Evaluation
	5.1 Sensor Simulation Environment
	5.2 PAN
	5.2.1 Setting
	5.2.2 Query Delay Metric
	5.2.3 Big Workflow Evaluations
	5.2.3.1 Workflow
	5.2.3.2 Degree of Distribution
	5.2.3.3 Intra-PAN Network Properties
	5.2.3.4 Consistency

	5.2.4 Stream Repeaters and Load Balancing
	5.2.4.1 Workflow and Setup Modification
	5.2.4.2 Results

	5.2.5 Visualization
	5.2.5.1 Full Game
	5.2.5.2 Heat Map

	5.2.6 Discussion


	6 Related Work
	7 Conclusion
	Bibliography
	A Class Diagrams
	A.1 WeakTrueTime Class Diagram
	A.2 Sensor Simulator Class Diagram

	B Sensor Simulator Parameters
	C REST-Interfaces
	C.1 Publish/Subscribe Repository
	C.2 Worker

	D Workers and Components
	D.1 Internal Components
	D.1.1 Generic
	D.1.2 ACM DEBS 2013 Grand Challenge Specific

	D.2 Workers
	D.2.1 Generic
	D.2.2 ACM DEBS 2013 Grand Challenge Specific


	E Workflows
	E.1 Full Game
	E.1.1 Full Game on 3 Peers
	E.1.2 Full Game on 6 Peers
	E.1.3 Full Game on 8 Peers
	E.1.3.1 JSON Config

	E.1.4 Full Game on 14 Peers

	E.2 Sensor Forwarding
	E.2.1 1 Forwarder
	E.2.2 1 Forwarder, 1 Repeater
	E.2.3 1 Forwarder, 2 Repeaters

	E.3 Heat Map

	F Evaluation Settings
	F.1 Sensor Simulator Config
	F.2 PAN Config
	F.3 Client Config

	G Evaluation Results
	G.1 Sensor Simulation Environment
	G.2 PAN
	G.2.1 Degree of Distribution
	G.2.1.1 Table
	G.2.1.2 Graphs

	G.2.2 Latency
	G.2.2.1 Table
	G.2.2.2 Graphs

	G.2.3 Bandwidth
	G.2.3.1 Table
	G.2.3.2 Graphs

	G.2.4 Consistency
	G.2.5 Stream Repeaters and Load Balancing
	G.2.5.1 Table
	G.2.5.2 Graphs



	Declaration on Scientific Integrity

