
Data Stream Management and Digital Library
Processes on Top of a Hyperdatabase and Grid

Infrastructure

Manfred Wurz, Gert Brettlecker, and Heiko Schuldt

University for Health Sciences, Medical Informatics and Technology
Innrain 98 A–6020 Innsbruck Austria

[manfred.wurz|gert.brettlecker|heiko.schuldt@umit.at]

In: Pre-Proceedings of the 6th Thematic Workshop of the EU Network of Excellence DELOS: Digital
Library Architectures - Peer-to-Peer, Grid, and Service-Orientation (DLA 2004), pages 37-48, Cagliari,
Italy, June 2004, Edizioni Progetto Padova.

Abstract. Digital libraries in healthcare are hosting an inherently large
collection of digital information. Especially in medical digital libraries,
this information needs to be analyzed and processed in a timely manner.
Sensor data streams, for instance, providing continuous information on
patients have to be processed on-line in order to detect critical situations.
This is done by combining existing services and operators into streaming
processes. Since the individual processing steps are quite complex, is is
important to efficiently make use of the resources in a distributed sys-
tem by parallelizing operators and services. Grid infrastructures already
support the efficient routing and distribution of service requests. In this
paper, we present a novel information management infrastructure based
on a hyperdatabase system that combines the process-based composition
of services and operators needed for sensor data stream processing with
advanced Grid features.

1 Introduction

Digital libraries in healthcare are increasingly hosting an inherently large and
heterogeneous collection of digital information, like electronic journals, images,
audios, videos, biosignals, three dimensional models, gene sequences, protein
sequences, and even health records. Medical digital libraries therefore have to
organize repositories managing this medical information [1] and to provide ef-
fective and efficient access to it. In addition, a central aspect is the collection,
aggregation, and analysis of relevant information.

Due to the proliferation of sensor technology, the amount of continuously
produced information (e.g., biosignals or videos) in medical digital libraries will
significantly grow. These data streams need sophisticated processing support in
order to guarantee that medically relevant information can be extracted and
derived for further storage, but also for the on-line detection of critical situ-
ations. Biosignals, like a ECG recording, contain relevant information derived
from the evaluation of characteristic parameters, e.g., the heart rate, and their
deviance from average. In some cases, even the combination of different biosig-
nals is needed for the extraction of relevant information, such as a comparison

of heart rate and blood pressure. Data stream management (DSM) addresses
the continuous process streaming data in real-time. Due to the streaming ori-
gin of parts of the information stored in medical digital libraries, the latter will
significantly benefit from infrastructures incorporating DSM.

Due the service-orientation and the distributed nature of digital libraries
(i.e., information is made available by means of services), Grid infrastructures
are very well suited as basis for digital library applications. The composition of
services and DSM operations can be realized by means of processes. The Grid
then supports the efficient routing of service requests among different service
providers. A very challenging aspect in process-based service composition on
top of a Grid environment is that processes itself can be seen as services and
therefore can be used within other processes again. This, in a way, adds recursive
nature to processes and implements the well known composite pattern [2] for
processes on the Grid. Moreover, also the runtime support for process execution
can be considered as a special, inherently distributed Grid service.

In this paper, we introduce an integrated hyperdatabase and grid infrastruc-
ture that supports the processing of continuous data streams and that is able to
distribute the processing of computationally expensive services within a Grid.
By this, the requirements of efficiently processing continuous data that can be
found in digital medical library applications can be seamlessly supported.

The paper is structured as follows. Section 2 describes a sample telemonitor-
ing application in a digital healthcare library to motivate the need for a joint
hyperdatabase and grid environment. In Section 3, we present a process-based
approach to data stream management. The dynamic process parallelization by
using Grid concepts is introduced in Section 4. Section 5 discusses related work
and Section 6 concludes.

2 A Sample Application in a Digital Healthcare Library

In this section, we introduce a sample healthcare application to motivate the
need for a flexible and reliable information management infrastructure that sup-
ports process management, data stream processing and management, and that
provides Grid computing capabilities.

The left hand side of figure 1 illustrates a telemonitoring system which takes
care of elderly patients suffering from chronic diseases (e.g., diabetes, heart dis-
eases, or other age related problems like Alzheimer). This telemonitoring system
is one of the information providers of the underlying medical digital libraries. Pa-
tients are equipped with an array of sensors, as for example the LifeShirt-System
[3], that continuously measure the patient’s body signals (e.g., ECG). Addition-
ally, sensors integrated in the patient’s home are detecting context information
that describes what the patient is currently doing (e.g., if the patient is sleeping).
This information is important to evaluate the medical meaning of vital signs —
for example, the ECG signal has to be interpreted differently when a person is
sleeping, compared to the case where she is active. In addition to medical mon-
itoring, context information is also used to integrate a patient support system

Stream
Operation

Process
Activity

Grid-enabled

Stream Operation

Grid-enabled
Process Activity

Process
Activity

Process
Activity

Stream

Operation

Stream
Operation

Data Stream Management

Process
Management

Fig. 1. Data Stream and Process Management in a Medical Digital Library

in this scenario. Patients can be remembered to turn off the oven or take their
pills. In order to make use of the vast amount of sensor information, the incom-
ing sensory data has to be processed in real-time. Medically relevant results may
be stored in a digital library containing the patient’s health record. Results with
unknown characteristics are stored in repositories to support medical research.
Critical results may request immediate intervention by the caregiver. In this
case, appropriate processes (e.g., calling the emergency service or contacting a
physician) have to be triggered.

Access to the contents of a medical digital library is supported by special
services and user defined processes that combine several of these services (il-
lustrated on the right hand side of figure 1). As described above, processes for
contacting the caregiver (e.g., by sending a SMS to a mobile device of a physi-
cian), or even for triggering some rescue activities in case of critical situations
have to be invoked if necessary. If the physician needs more detailed information
or wants to request data on previous treatments or prescriptions, he has to be
served with the data in a timely fashion. For all these purposes, appropriate pro-
cesses have to be available (or have to be defined) and to be executed efficiently
by the underlying infrastructure.

Our infrastructure for telemonitoring applications is based on a combined
hyperdatabase system [4] and Grid environment [5]. It supports the definition
and execution of processes on top of (web) services but also allows to imple-
ment continuously running processes for analyzing, processing, and managing
data streams in real-time. Since processing data streams for evaluating the pa-
tient’s health state requires the invocation of computationally intensive services,
Grid concepts are exploited to support the distributed computation on top of
heterogenous resources. Therefore, the different data streams coming from the
various sensors of a patient are distributed within the Grid for parallel process-
ing. Finally, the streams have to be joined in order to combine different sensor
signals for rating medical relevance. The combination of process management
and Grid concepts allows for the composition of existing services and for the
efficient distribution of single service invocations within the Grid.

3 Data Stream Management for Medical Digital Libraries

In this section, we introduce an extended hyperdatabase system for the support
and management of continuous data streams.

3.1 Challenges in Data Stream Management

The main challenges in data stream management (DSM) are imposed by the large
number of sensors, components, devices, information systems and platforms con-
nected by different network technologies, and by the vast amount of continuously
generated data. For processing this data, existing systems and components are
well in place and need to be incorporated into digital libraries. Reliability and
provable correctness are new challenges that are of utmost importance particu-
larly in healthcare applications, where failures may have perilous consequences.
As described in Section 2, DSM has to interact with traditional process man-
agement in order to react to certain results (e.g., calling the ambulance) or to
offer the user appropriate processes for the evaluation of DSM results. These
challenges necessitate an infrastructure that combines the processing of data
streams and process management, i.e., the possibility to combine services (con-
ventional services as offered by digital libraries and services operating on data
streams produced by sensors) and to execute composite services in a reliable
way. Therefore, we propose an integrated information management infrastruc-
ture supporting user-defined processes, both conventional and processes perform-
ing DSM. Hyperdatabase (HDB) systems already provide an infrastructure for
reliable process execution, which we will extend to enable DSM processes.

3.2 Peer-to-Peer Process Execution in the Hyperdatabase OSIRIS

A hyperdatabase (HDB) [6] is an infrastructure that supports the definition and
reliable execution of user-defined processes on top of distributed components
using existing services. Characteristic features of HDB’s are the possibility to i.)
add transactional guarantees to the execution of processes [7], ii.) support reliable
peer-to-peer execution of processes without global control, thereby supporting a
high degree of availability and scalability, and iii.) apply decentralized process
execution in areas of intermitted connectivity.

OSIRIS (Open Service Infrastructure for Reliable and Integrated process
Support) [4] is a prototype of a hyperdatabase, that has been developed at ETH
Zurich and is used as a starting point of our joint HDB and Grid infrastructure.
OSIRIS follows a novel architecture for distributed and decentralized process
management. OSIRIS supports process execution in a peer-to-peer style based
on locally replicated metadata, without contacting any central instance (Peer-to-
Peer Execution of Processes, P2PEP). With P2PEP, a component works off its
part of a process and then directly migrates the instance data to nodes offering
a suitable service for the next step(s) of the process according to its control
flow specification. This is achieved by implementing two layers: the HDB-layer,
a small software layer that is installed on each component providing a service

Analysis

ECG
Aquisition

ECG
Variability

Critical
Detection

Invocation of
Alarm Processes

Blood Pressure
Aquisition

Blood Pressure
Variability

Patient‘s PDA Patient‘s PC Caregiver‘s PC

Fig. 2. Stream Process Processing ECG and Blood Pressure

and a set of global HDB repositories. These HDB repositories collect metadata
on the processes to be executed, on the available components, and on their load.
This meta information is smoothly distributed to the individual HDB layers –
only metadata needed locally is actually replicated (e.g., only information on
services and providers which might be invoked in some process are required at
the local HDB layer of a component). More information on hyperdatabases and
OSIRIS can be found in [6, 8, 4].

3.3 DSM enabled Extended Hyperdatabases Infrastructure

HDB’s have to be extended in order to enrich their benefits with the capabilities
for DSM [9]. We consider stream-processes, which perform continuous processing
of data streams. The requirements for the execution of these stream processes are
similar to those of conventional processes with respect to important aspects like
distributed execution, load balancing, meta information distribution, or fault
tolerance. Figure 2 illustrates a stream-process, which continuously processes
patient’s ECG and blood pressure. Sensor signals are recorded and preprocessed
by patient’s PDA, which is wirelessly connected to patient’s PC. The PC does
further processing and detects critical health conditions. Processed sensor infor-
mation is continuously forwarded to the caregiver for further analysis.

Operators are the processing units of DSM. Operators perform stream opera-
tions on incoming data streams and produce outgoing data streams. Sensors are
the primary sources of data streams. Sensors can be considered as operators with-
out incoming data streams. DSM is done by combining operators, similar to the
combination of activities in traditional process management. A stream-process is
such a well defined set of logically linked operators continuously processing the
selected input data streams, thereby producing results and having side effects.
Side effects are effects on external systems imposed by processing results (e.g.,
feeding a digital library with medical relevant information gained by the stream
process).

Based on the OSIRIS approach to fault-tolerant distributed peer-to-peer pro-
cess execution, we need to distribute necessary meta information on stream pro-
cesses for DSM in the same way this is done also for process management. This
metadata contains the pieces of the global stream-process definition and a list of

offered stream operators of components, which are subject for smooth distribu-
tion among the suitable components offering the corresponding stream operators.
A stream-process is set up by sending an activation message to the HDB-layer of
the component hosting a source operator (e.g., the component is attached to a
sensor or has a data stream input). Due to locally available metadata, the local
HDB-Layer knows the subsequent stream operator and components, which offer
these operators and is able to make the routing decision. Then the component
sends an activation message to the selected subsequent components and provides
them with needed data streams.

Our extended infrastructure also allows for load balancing during the execu-
tion of stream processes. Therefore, the distribution of metadata on the load of
components that are able to host stream operators needs to be published. This
load information is used to choose the best component during the stream-process
activation. In case of high load, the overloaded component is able to transfer a
running stream operator to a component with less load. When stream operations
are affected that accumulate an internal state during their execution, this state
has to be managed and transferred to the new host. Due to this fact, compo-
nents make a backup of internal state of running stream-operators at a regular
basis. Information about the backup location address is metadata, which is also
smoothly distributed.

The previous techniques are also responsible to allow for sophisticated fail-
ure handling. In case a component hosting a stream operator fails, components
hosting preceding parts of the same stream-process will recognize the failure be-
cause the transmission of their outgoing streams is no longer acknowledged. The
infrastructure distinguishes between four failure cases. First, the failed compo-
nent recovers within a certain timeout, then processing is continued in the state
before the failure. This is possible since output queues of preceding components
are used to buffer the data streams until they are acknowledged. Second, the
failed component does not recover within the timeout period. In this case, the
preceding component is in a similar situation as during the setup phase of the
process. The component has to find suitable components that are able to per-
form subsequent stream operators. Due to local metadata, the new component
is able to find the backup location and to load the old internal state for the
continuation of stream processing. If the failed component recovers after the
timeout, it has to be informed that its workload moved and that it is no longer
in charge. Third, the failed component does not recover and there is no other
suitable component. In this case, the stream-process may have an alternative
processing branch (defined in the streaming process), which is now activated by
the preceding component. Fourth, there is no recovery and no possibility to con-
tinue stream processing. If so, a conventional process can be invoked to handle
the failure situation (e.g., calling an administrator to fix the problem).

This extended HDB system is capable of supporting telemonitoring applica-
tions by providing integrated process and data stream management in peer-to-
peer style. Furthermore, it allows to seamlessly cooperate with digital libraries,
e.g., by making use of the services that are provided to access information.

4 Digital Libraries on the Grid

An important challenge when dealing with service composition, especially with
computationally complex services, is the efficient routing of service requests
among a set of providers. OGSA (Open Grid Services Architecture) [10] com-
pliant Grid systems are rapidly emerging and are widely accepted. These Grid
systems provide support to efficiently invoke and use individual services in the
Grid in a request/reply style. However, they do not support service composition
and process execution. In contrast, the focus of state-of-the-art process support
systems is not at all or only marginally oriented towards a tight integration into
a Grid Environment.

4.1 Bringing Service Composition to the Grid

Although OSIRIS, the starting point of our integrated DSM and Grid Infra-
structure, is quite powerful in doing distributed process management, it does not
yet follow OGSA or WS-RF [11], the de facto standard for Grid Environments. It
does also not make use of the enhanced features offered in the globus toolkit [5]
(the reference implementation of OGSA) like, for example, resource management
and security. In our current work, we aim to bring support for service composition
to the Grid, which is done by extracting some of the ideas that can be found
in OSIRIS, and integrate those with current standards and services which have
recently emerged in the Grid Community. This will result in a set of new OGSA
compliant services enhancing current Grid Infrastructures with the ability of
recursive process composition.

There are several possibilities to decompose an application into smaller parts
that can then be executed in parallel. The most important ones are master/slave
type of applications, as well as the divide and conquer or branch and bound
paradigms. The applicability of these paradigm of course strongly depends on
the semantics of the application to be parallelized. Especially the master/slave
paradigm is very suitable to Grid-enable applications [12], and is therefore widely
used. In case of master/slave parallelization, the main prerequisites are: i) few
or no communication among the sub parts ii) work is dividable among identical
sub parts iii) work can be dis- and reassembled in a central point iv) work can
be parameterized and parallelized and does not need serial iterative processing.

Since the potential for master/slave parallelization can be found in several
applications, we have started to apply this paradigm to enhance the efficiency,
the creation, and the ease-of-use of services in the Grid. Using the master/slave
paradigm, applications developers can focus on the implementation of the prob-
lem specific subparts of the service as well as on the split into and merge of par-
allel subparts, but they do not need to care about the distribuiton of subparts.
This is particularly important since the latter requires dynamic information on
the currently available resources which is not available at build-time, when the
services, their split and merge are defined.

4.2 The Frameworks Architecture and Use

To ease the creation of services for tomorrow’s Grid Infrastructures, we are cur-
rently developing a generic framework to handle master/slave applications where
a single master process controls the distribution of work to a set of identically op-
erating slave processes. This framework is designed to accept ordinary Web/Grid
Services as destinations for calls, as well as composite services. The framework
enables application developers to port new master/slave type of applications to
the Grid by just implementing a very limited set of application focused methods,
and declare the so implemented classes as available to the framework in a de-
ployment descriptor file. The framework takes care about all the infrastructure
related functionality like marshaling and unmarshaling, communications, failure
handling and distributed invocation of services depending on availability and
performance considerations. Among this functionality, the framework dynami-
cally takes care about the level of parallelization based on the current status of
the Grid, availability of nodes, and QoS restrictions.

The framework developed is based on GT3 [5]. The core part consists of a
set of classes building the central master and slave services. These are OGSA-
compliant Grid Services [10] bundled with corresponding stubs and some sup-
porting classes for specialized exceptions and encapsulating the input and output
parameters passed around. The work left to the application programmer is to
implement abstract methods which are responsible for the application specific
part, in particular methods for splitting, merging, and the actual application
logic. The ones for splitting and merging used in the master service, and the
calculative method is used to concretely specify what the slave has to do. In
addition, a Web Service deployment descriptor (WSDD) has to be written, as
specified by the Axis framework [13], which GT3 is partly based on. At run-
time, the framework determines which slaves to use, out of the set of all slaves
registered to provide the appropriate service. This is done by accessing an In-
dexService available in the Grid. The request is then forwarded to all the slaves,
after being divided into subtasks. This is shown in the upper right corner of
figure 3 where the service depicted as cross is provided by a set of slave services
executing in parallel.

The current implementation can easily be adopted to more sophisticated dis-
tribution mechanisms based on the Service Data Elements (SDE’s) [5] provided
by each Grid Service. There might be more specialized implementations that dis-
tribute to slaves based on current workload, cost or other metrics available. After
having distributed he work, the MasterService registers for notifications from the
slaves and waits for results. After all slaves have returned, the Master Service
generates the final result by merging the results of the subparts and returns the
completed result to the requestor. An important aspect here is to provide sophis-
ticated failure handling that allows the Master Service to re-distribute requests
when slaves have failed during the execution of their subpart. On the slaves side,
in addition to the implementation of the actual application logic, a deployment
descriptor is needed that specifies where to register this particular slave service.

Fig. 3. Process containing a dynamically acting Grid Node

In the scenario described in section 2, there is one master Grid Service which
accepts streamed data from the patients life vest and ECG. This service acts,
from the point of the process management system, as an ordinary step in the
process chain. However, in the background it re-directs the data stream to the
slaves available in the system and checks the data against local replicas of digital
libraries holding characteristic pathologic and non pathologic data. The time
intensive comparison of the streamed data with entries in the digital library is
done in a distributed way on the Grid. The slaves report the result of their search
back to the master who is then able to store the data for further usage and to
trigger subsequent services or processes when needed (e.g., in critical situations).

4.3 From Master/Slave to Process Execution

A MasterService can generally be seen as a Grid Service that controls the exe-
cution and dataflow among a set of several services whose availability, number
and distribution is only known during runtime and subject to frequent changes.
Since from the point of view of the OSIRIS process execution engine, it acts just
as any other operator or service, the dynamics of request distribution as well
as the distribution pattern itself is transparent to the process execution engine.
Figure 3 illustrates a process schema as executed by OSIRIS including a dynami-
cally acting Grid Node. One step in this process, shown as a cross, is dispatching
the request to various nodes in the Grid and awaits their feedback. The process
execution engine is not aware of this dispatching behind the scenes. This leads to
the more general idea that the MasterService can be seen as a Process Execution
Service itself, calling arbitrary Grid Services — either in parallel, sequentially
or in any other pattern available to the system.

This Process Execution Services can be deployed to the Grid as highly dy-
namic components. The distribution pattern of an algorithm can be determined
at runtime based on some QoS information provided through the caller or can
be hard wired to a special distribution pattern.

In order to avoid a centralized Process Execution Service that could lead to
a single point of failure, we are currently integrating the distributed process exe-
cution engine described in OSIRIS. In OSIRIS, the execution plan for a process
(determined by the control flow) is, prior to its invocation, split up into several

execution steps. Each step consists of a service invocation, and information of all
successors. This allows to move the control from a centralized component to the
responsibility of each node participating in the process. Therefore, this approach
is much more robust to the failure of single nodes execution and triggering the
next step is up and running) than centralized solutions.

5 Related Work

5.1 Data Stream Management

DSM aspects are addressed by various projects like NiagaraCQ [14], STREAM
[15], and COUGAR [16]. The main focus of these projects is on query opti-
mization and approximate query results and data provided by sensor networks.
Aurora [17] allows for user defined query processing by placing and connecting
operators in a query plan. Aurora is a single node architecture, where a central-
ized scheduler determines which operator to run. Extensions like Aurora* and
Medusa [18] also address DSM in distributed environments. TelegraphCQ [19]
is a DSM project with special focus on adaptive query processing. Fjords allow
for inter-module communication between an extensible set of operators enabling
static and streaming data sources. Flux [20] provides load balancing and fault
tolerance. PeerCQ [21] is a system that offers a decentralized peer-to-peer ap-
proach supporting continual queries running in a network of peers. The DFuse
[22] framework supports distributed data fusion. Compared to other projects in
this field, our infrastructure offers two unique characteristics. Firstly, dynamic
peer-to-peer process execution where local execution is possible without cen-
tralized control. Secondly, the combination of DSM and transactional process
management enables sophisticated failure handling.

5.2 Grid Infrastructure

The master/slave paradigm is commonly agreed as valuable asset for the de-
velopment of Grid applications [12]. The master-worker tool [23] provides the
possibility to integrate applications in the Grid by implementing a small num-
ber of user-defined functions concentrating on the applications main purpose.
It is applied to complex problems from the field of numerical optimization [24].
While it is tightly integrated into a former Grid environment, the Globus Toolkit
2, our approach uses more recently emerged technologies and focuses on evolving
into a more generally useable distributed process execution engine.

A similar approach is taken in AppLeS Master-Worker Application Template
(AMWAT) [25] where the main emphasis is on scheduling issues and a workflow
model to select the best locations for the master and worker services. Other
Approaches focusing on other task-parallel models can be found in [26, 27] for
the divide-and-conquer distribution pattern, and [28] for branch-and-bound.

In [29], BPEL4WS, the Business Process Execution Language for Web Ser-
vices [30] is evaluated for the use within transactional business processes on the

Grid. The authors point out that the usage of single, non-orchestrated Web Ser-
vices is limited, and that there is a need for reliable and coordinated process
execution on the Grid.

6 Conclusion and Outlook

The proliferation of ubiquitous computing and the huge amount of existing in-
formation sources is leading towards a world where sophisticated information
management is becoming a crucial requirement. A digital library for medical
applications not only has to manage discrete data, it has also to support the ac-
quisition, processing, and storage of streaming information that is continuously
produced by sensors. Essentially, both streaming and non-streaming processes
and applications have to be supported. Moreover, due to the complex processing
operators that are used within stream processes, the distribution of work is a
major requirement to efficiently process continuous data streams. By exploiting
the features of a Grid infrastructure, subparts can be executed in parallel by
making use of the resources that are available at run-time. As a paradigm for
the distribution of work within the Grid, we have integrated a master/slave type
of interaction into a stream-enabled HDB system.

Based on this extended HDB system, we are currently building a comprehen-
sive infrastructure that jointly addresses process-based service composition and
streaming processes, and that is enriched by features from an existing Grid in-
frastructure. In terms of the distribution paradigms supported, we are currently
extending the master/slave type of distribution to allow for arbitrary execution
plans. The goal is to define a generic, distributed and OGSA compliant process
execution engine. This engine has to support different control flow specifications
for composite services that are controlled by the Grid-enabled Process Execu-
tion Services so that it can be exploited for process-based applications on top of
medical digital libraries.

References

1. Haux, R., Kulikovski, C.: Digital Libraries and Medicine. Yearbook of Medical
Informatics (2001)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

3. VivoMetrics: VivoMetrics – Continuous Ambulatory Monitoring.
http://www.vivometrics.com/site/system.html (2003)

4. Schuler, C., et al.: Peer-to-Peer Process Execution with OSIRIS. In: Proceedings
of ICSOC 2003, Trento, Italy, Springer LNCS, Vol. 2910 (2003) 483–498

5. The Globus Alliance: The Globus Toolkit Version 3. http://www-
unix.globus.org/toolkit/ (2003)

6. Schek, H.J., Böhm, K., Grabs, T., Röhm, U., Schuldt, H., Weber, R.: Hyper-
databases. In: Proc. of WISE Conf., Hong Kong, China (2000) 28–40

7. Schuldt, H., Alonso, G., Beeri, C., Schek, H.J.: Atomicity and Isolation for Trans-
actional Processes. ACM Transactions on Database Systems 27 (2002) 63–116

8. Schek, H.J., Schuldt, H., Schuler, C., Weber, R.: Infrastructure for Information
Spaces. In: Proc. of ADBIS Conf., Bratislava, Slovakia (2002) 22–36

9. Brettlecker, G., Schuldt, H., Schatz, R.: Hyperdatabases for Peer–to–Peer Data
Stream Management. In: Proc. of ICWS Conf., San Diego, USA (2004) to appear

10. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration (2002)

11. Sabbah, D.: Bringing Grid & Web Services Together. Presentation, IBM Software
Group (2004) http://www.globus.org/wsrf/sabbah wsrf.pdf.

12. Foster, I., Kesselman, C., eds.: The Grid 2, Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers (2004)

13. Apache WebServices Project: AXIS. http://ws.apache.org/axis/ (2004)
14. Chen, J., et al.: NiagaraCQ: A Scalable Continuous Query System for Internet

Databases. In: Proc. of SIGMOD Conf., Dallas, TX, USA (2000) 379–390
15. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in

Data Stream Systems. In: Proc. of PODS Conf., Madison, WI, USA (2002) 1–16
16. Yao, Y., Gehrke, J.: Query Processing for Sensor Networks. In: Proc. of CIDR

Conf., Asilomar, CA, USA (2003)
17. Carney, D., et al.: Monitoring Streams - A New Class of Data Management Ap-

plications. In: Proc. of VLDB Conf., Hong Kong, China (2002) 215–226
18. Cherniack, M., et al.: Scalable Distributed Stream Processing. In: Proc. of CIDR

Conf., Asilomar, CA, USA (2003)
19. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World. In: Proc. of CIDR Conf., Asilomar, CA, USA (2003)
20. Shah, M., et al.: Flux: An adaptive partitioning operator for continuous query

systems. In: Proc. of ICDE Conf., Bangalore, India (2003)
21. Gedik, B., et al.: PeerCQ:A Decentralized and Self-Configuring Peer-to-Peer In-

formation Monitoring System. In: Proc. of Distributed Computing Systems Conf.,
Providence, RI, USA (2003) 490–499

22. Kumar, R., et al.: DFuse: a framework for distributed data fusion. In: Proc. of
SensSys Conf., Los Angeles, CA, USA (2003) 114–125

23. Linderoth, J., et al.: An enabling framework for master-worker applications on the
computational grid. In: 9th IEEE Int. Symp. on High Performance Dist. Comp.,
Los Alamitos, CA, IEE Computer Society Press (2000) 43–50

24. Anstreicher, K., et al.: Solving large quadratic assignment problems on computa-
tional grids. In: Mathematical Programming 91(3). (2002) 563–588

25. Shao, G.: Adaptive Scheduling of Master/Worker Applications on Distributed
Computational Resources. PhD thesis, University of California - San Diego (2001)

26. Foster, I.: Automatic generation of self-scheduling programs. In: IEEE Transac-
tions on Parallel and Distributed Systems 2(1). (1991) 68–78

27. v. Nieuwpoort, R., et al.: Efficient load balancing for wide-area divide-and-conquer
applications. In: 8th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. (2001) 34–43

28. Iamnitchi, A., et al.: A Problem-specific Fault-tolerance Mechanism for Asyn-
chronous Distributed Systems. In: Int’l Conference on Parallel Processing. (2000)

29. Leymann, F., Güntzel, K.: The Business Grid: Providing Transactional Business
Processes via Grid Services. In: Proc. of ICSOC 2003, (Springer)

30. Andrews, T., et al.: Business Process Execution Language for Web Services
(BPEL4WS) 1.1. BEA, IBM, Microsoft, SP, Siebel. (2003)

