
COORDINATION IN CIM: BRINGING DATABASE FUNCTIONALITY
TO APPLICATION SYSTEMS∗

Heiko Schuldt Hans-Jörg Schek Markus Tresch†

Database Research Group
Institute of Information Systems

ETH Zentrum
CH-8092 Zürich, Switzerland

Email: {schuldt,schek,tresch@inf.ethz.ch}

In: Proceedings of the 5th European Concurrent Engineering Conference

(ECEC’98), pages 223-230, Erlangen, Germany, April 1998.

KEYWORDS

Engineering process management, Workflow–
management in CE, Change–notification; Col-
laborative CE environments, Information and
application sharing; Networking and Distribution
in CE, Architecture for building CE systems,
Distributed computing environments.

ABSTRACT

1-56555-147-8 c© 1998 Simulation Councils, Inc.

Coordination in CIM means enforcing dependen-
cies between autonomous application subsystems.
We propose an architecture that generalizes multi-
database technology and consists of a global coor-
dinator and local specialized agents, one for each
subsystem to be coordinated. The agent associated
to a subsystem not only monitors relevant subsys-
tem activity but also guarantees certain properties
of operations executed in a subsystem. Therefore, it
has to provide database functionality for subsystems
even in cases they do not rest upon databases.

The coordination itself is a synthesis of (ad-
vanced) transaction models and workflows. Aside
from an introduction to the transactional coordina-
tion model, we concentrate in this paper on the anal-
ysis of different classes of subsystems and elaborate
on properties required from the subsystem and its
agent to ensure execution guarantees. Furthermore,
we examine to which degree database functionality
can be provided for application systems with a given
set of properties.

Our examples are taken from an industrial project
in the area of computer integrated manufacturing.

∗This work has been partially supported by the Swiss
Commission of Technology and Innovation (KTI) under con-
tract number 3008.2

†Present address: Credit Suisse, Advanced Technologies,
Postfach 100, CH–8070 Zürich

1 INTRODUCTION

The IT infrastructure of large companies is char-
acterized by successively grown composite sys-
tems, consisting of different heterogeneous and au-
tonomous application subsystems, each of them be-
ing specialized for certain application domains. The
co-existence of these specialized applications can
hardly be avoided, because they are an important
factor for the processing of daily work. For histor-
ical as well as for organizational reasons, applica-
tions, located at physically distributed sites, are not
made to cooperate with each other. A result of this
inherent heterogeneity of applications of composite
systems is both the distribution of application logic
to several application systems and the distribution
of data to several resource managers that are po-
tentially running on distributed and heterogeneous
hardware platforms.

Dependencies between subsystems in composite
systems exist (e.g. dependencies due to replicated
data at different resource managers or more complex
dependencies in form of business processes). The
goal of the coordination approach we will present
in this paper is to enforce these dependencies even
in case of failures or concurrency and to provide
execution guarantees. In classical database sys-
tems, these properties are well-known and guaran-
tees are provided by the ACID‡ properties of trans-
actions [9]. However, we have to face two prob-
lems when coordinating subsystems in composite
systems: (i) We cannot assume that subsystems are
databases. In general, subsystems are arbitrary ap-
plication systems and we cannot even assume that
they are built on top of a database system. (ii) Con-
sidering the processes needed to enforce dependen-
cies within composite systems, classical transaction
models are too restrictive. We therefore have to pro-
vide more general and flexible means to ensure ex-
ecution guarantees in composite systems. Further-

‡Atomicity, Consistency, Isolation, and Durability.

223

more, we have to export database functionality even
for non-database applications in order to integrate
arbitrary subsystems within a composite system in
the transactional coordination approach.

1.1 Coordination in CIM

A typical example of composite systems can be
found in CIM (Computer Integrated Manufactur-
ing) where different engineering tasks have to be co-
ordinated and data has to be exchanged between
various specialized tools.

The information flow of an enterprise can be clas-
sified in two parts: technical data and managerial
data [19]. Systems of the managerial part include
mainly applications for business engineering, stock
management, but also production planning and con-
trol (PPC). The technical track consists for exam-
ple of applications for supporting product design
(CAD), the programming of numerically controlled
machines (CAM), or quality control (CAQ).

CAD & PDM

BOMs

Change of
Design of Part X

Research & Development Production

Production of
Part X

 No automated transfer
of data

(leading to
inconsistent BOMs)

Change / Adaptation
of Part X

BOMs

SAP R3

Figure 1: Coordination of subsystems in CIM is cru-
cial to ensure consistent product data (e.g. BOMs)
in CAD, PDM and PPC applications

Information about products is crucial in both
parts. Therefore, product data is used both in sub-
systems of the technical track and of the manage-
rial track. As each subsystem stores data in a sepa-
rate, private repository and uses its own data model
tailored to the specialties of the respective applica-
tions, many dependencies between subsystems exist.
An example is depicted in Figure 1. An employee
of the R&D department of an engineering company
changes the design of product X (e.g. due to some
fatal failures) in a CAD system leading to an up-
date of the BOM (bill of materials) in the underly-
ing database system. Then, a coordination process
should be started to track this change for example
to a PPC and to a business engineering system to
update production plans and to apply changes to
the purchase process of parts. Even if the R&D em-

ployee executes his operations locally and is unaware
of operations that have to follow, all subsequent op-
erations have to lead to a well-defined state. This is
even more crucial if changes are executed not only at
the R&D department but also at the production de-
partment (e.g. to adapt certain properties of a prod-
uct) leading to concurrent coordination processes.

The coordination process itself therefore has to
enforce dependencies within composite systems (e.g.
system-wide consistency of product data) by guar-
anteeing that operations in related subsystems are
executed with certain execution guarantees.

1.2 Related Work

In CIM, various different efforts have been taken to
overcome the problem of the enforcement of (rather
basic) dependencies: the avoidance of inconsisten-
cies resulting in replicated product data that is
stored under the control of heterogeneous and au-
tonomous application systems.

A first approach is to skip the goal of keeping local
autonomy of the participating application systems
and to integrate local applications into global ones.
Then, access to global data is only possible via the
integrated applications where global integrity is en-
sured in the traditional way [2].

A further approach is to introduce an additional
database outside the existing application systems to
additionally replicate global data [3]. Global in-
tegrity constraints can then be defined on global
data of the integration database. However, addi-
tional overhead has to be dealt with as replication
leads to additional costs.

Synchronous communication mechanisms can also
be exploited for keeping data consistent after local
operations and for enforcing global integrity [10, 17].
Instead of the overhead of a centralized database,
additional effort by defining inter-application com-
munication has to be taken on. This leads, however,
to a rather loose interconnection of application sys-
tems and does not allow to support complex coor-
dination processes within composite systems.

In our own previous work, we introduced the
agent/coordinator idea [15, 22] and concentrated
first on the coordinator data model. As the provi-
sion of execution guarantees for more sophisticated
coordination processes is crucial for various real–
world application scenarios, we expanded this coor-
dination approach by the introduction of a transac-
tional coordination model [21] which is based on pre-
vious work of the database research group of ETH
on composite transactions [1] and on the unifying
theory of concurrency control and recovery [20].

A major contribution of the work presented in this
paper is to show how agents can provide database

224

functionality for CIM subsystems in order to realize
transactional coordination [21, 12, 18] as a synthesis
of advanced transaction models and workflow man-
agement for solving the inherent problems of com-
posite systems.

Structure of the Paper. The remainder of the
paper is organized as follows: In Section 2, we briefly
introduce the coordination model on which transac-
tional coordination is based. The architecture of
our coordination approach is presented in section 3.
We both analyze all components involved in this ar-
chitecture and figure out the properties subsystems
are supposed to have and the database functional-
ity agents can add to them. The prototype system
presented in Section 4 then describes how database
functionality can be brought to two selected applica-
tion systems in CIM by specialized agents. Section
5 finally concludes the paper.

2 TRANSACTIONAL COORDI-
NATION MODEL

In this section, we introduce the model of our co-
ordination approach called transactional coordina-
tion [21], which is based on both advanced transac-
tion models [1, 20, 7, 23] and workflow management
[18, 8].

The model is based on processes defined over
distributed, heterogeneous and autonomous stand-
alone applications within a composite systems. For-
mally, processes are directed acyclic graphs consist-
ing of activities, an order between these activities
(control flow) and an additional oder specifying al-
ternative orders in case of failures. With this notion
of processes we extend classical transaction models
by providing a more general concept of both atom-
icity and isolation based on the notion of spheres
[6] and by allowing a greater degree of flexibility by
partial compensation and alternatives [11, 8].

Local operation:
Change design

of part X
(at R&D Dept.)

a.)

Research &
Development

Production &
Business Engineering

PDM-
Operation 1:

Change BOM
of X in PDM

PPC-
Operation 1:

Change BOM
of X in PPC

✔

✔

Local operation:
Change design

of part X
(at R&D Dept.)

b.)

Research &
Development

Production &
Business Engineering

PDM-
Operation 1:

Change BOM
of X in PDM

PPC-
Operation 1:

Change BOM
of X in PPC

✔

Figure 2: a.) Successful ACID coordination; b.)
failed ACID coordination

In the classical sense, database transactions have
ACID properties. This means, for instance, that
all operations are executed successfully or none of
them in order to avoid inconsistent states. How-
ever, it is not always reasonable to have this “all–
or–nothing” semantics of atomicity. Consider a long
running construction activity within a CAD system
starting a subsequent coordination process to track
changes to BOMs. Suppose further that, because
of some subsystems’ constraints, a BOM cannot be
changed and the coordination process has to abort
and to undo also the construction activity as no in-
consistent states are allowed. This, of course, can-
not be tolerated. Figure 2 a.) depicts a successful
coordination process with ACID semantics. After a
local change of a design, both associated BOMs in
the PDM system and the PPC system have to be
changed, too. If one of the coordination operations
fails (Figure 2 b.) the “all-or-nothing” semantics
of atomicity implies that no operation is visible at
all. This means, that all operations including the
initial (eventually long-running) design transaction
have to be rolled back.

With partial compensation and alternative activi-
ties, we can now avoid to completely abort a process
and to undo all activities even if they have already
been committed by compensating only single activ-
ities until a point is reached from where another
alternative can be executed. This leads to a more
general notion of atomicity as only one of several
possibilities has to be executed in order to terminate
a coordination process successfully. This property
is denominated by the notion of sphere of atomicity
denoting a (sub)process where the successful execu-
tion of at least one alternative can be ensured (this
guarantee can be derived from the properties of sin-
gle activities).

Change BOM
of X in PPC

PDM

PPC

Change design
of part X

Product Data
Management

System

Change BOM
of X in PDM

Crete new
version of X

Production Planning
and Control

System

Create pro-
duction plan of X

Change pro-
duction plan of X

Create change
record

Research & Development

Production & Business Engineering

Crete new
version of X

alternative
operation

Apply changes to
 purchase process

Figure 3: Flexibility of the transactional coordina-
tion model by allowing alternative activities

In Figure 3, a coordination process is depicted
allowing alternative activities in each subsystem. In
case one activity fails (e.g. the change of BOM X in

225

the PPC system), another alternative (the creation
of a new version) can be executed and the whole
process may still terminate successfully. In this case,
the rollback of the initial design activity is avoided.
Given that each time at least one of the alternatives
can be executed successfully, this process is a sphere
of atomicity.

The notion of spheres not only allows a more flex-
ible definition of transactional properties but also
their decoupling. This means, that spheres of iso-
lation and spheres of atomicity can be defined in-
dependently (although they have to meet some re-
strictions in order to ensure correctness).

A sphere of isolation is a means to shield con-
current coordination processes in order to avoid in-
correct interleavings. This is crucial when for exam-
ple two different users simultaneously change related
data elements (e.g. two replicas) at different appli-
cation systems causing two parallel instances of the
same coordination process. Then, the parallel ex-
ecution of this processes has to be restricted and
incorrect interleavings have to be avoided.

3 COORDINATION ARCHITEC-
TURE

Autonomy of application subsystems leads to cases
where local operations within one subsystem violate
global consistency necessitating coordination pro-
cesses within composite systems. In this section,
we present the architecture of our coordination ap-
proach. In short, the approach is based on agents,
sitting atop of subsystems and sending notices on
local subsystem activities to a coordinator, which
invokes global coordination processes.

In practice, the most common approach to guar-
anteeing system-wide consistency across application
subsystems is to delegate responsibility to the user.
He or she has to ensure that appropriate actions are
taken within all affected subsystems. Configurable
or even custom developed “information pump” soft-
ware tools exist, that assist the user in pushing and
translating data and operations between application
subsystems. However, most of these tools are made
to link only two distinct systems but are neither
considered to automatically detect operations vio-
lating global consistency nor to automatically exe-
cute operations required to reestablish system-wide
consistency.

Our approach goes far beyond. We do not only
propose a general coordination architecture used
as a basis to automatically reestablish system-wide
consistency but we further elaborate on the exten-
sion to flexible failure handling and the realization
of global execution guarantees on top of this archi-
tecture. The prerequisite to this is –as we will see

in the following sections– to extend existing subsys-
tems to be coordinated by special agents providing
them with database functionality. The general coor-
dination architecture used as the basis for the later
realization of global execution guarantees is depicted
in Figure 4.

Agent A

Client A

Agent B

Application A

Subsystem A

Client B

Application B

Subsystem B

Process Specification & Monitoring
Coordinator

Process Engine

Figure 4: General architecture for coordinating au-
tonomous subsystems

The goal of coordination is to enforce dependen-
cies between application systems though data is ma-
nipulated locally via the respective applications. As
the desired autonomy of applications allows such
local operations eventually violating global consis-
tency, we have to provide a special agent for each
subsystem to detect local operations. Monitoring
local operations violating global consistency is the
prerequisite for the subsequent coordination pro-
cesses, initiated by a global coordinator. Within this
coordination processes, operations at the concerned
subsystems (which are mediated by the respective
agents) are executed for reestablishing consistency
[15, 22].

The guarantees realized by a coordination pro-
cess strongly depend on the services of the under-
lying agents, and they likewise depend on the will-
ingness of the subsystems to cooperate. Different
subsystems/agents may have different properties.
In the following sections, we analyze the different
properties of subsystems, the database functional-
ity agents can add to them, and the services subsys-
tems/agents can guarantee.

3.1 Coordinator

The task of the global coordinator is to enforce de-
pendencies after they have been violated by a local
operation by initiating and controlling the execution
of a coordination process and invoking the neces-
sary sequence of activities in the application sub-

226

systems. These operations in related subsystems
have to reestablish a system-wide consistent state
by means of the transactional coordination model
described above.

The process specifications are stored in the repos-
itory of the coordinator. The specification and even-
tually also the simulation of coordination processes
is realized by a special user interface. This model-
ing tool also provides means to check whether the
definition of spheres is correct (whether the spec-
ified properties can be ensured by the coordina-
tor). The execution of coordination processes is
controlled by the process engine. Here, local oper-
ations are scheduled according to the transactional
coordination model. Ordered invocations of subsys-
tem operations are then delegated to the agents that
have to keep orders determined by the coordinator.
The coordinator itself has to control the correct ex-
ecution of coordination processes and to react in
cases where failures occur. Therefore, it needs a
repository for persistent bookkeeping (e.g. logging)
of executed activities of a coordination process. This
bookkeeping together with the ability to maintain a
dependency graph for conflicting activities is nec-
essary to realize correctness and synchronization of
concurrent global coordination processes.

However, the execution guarantees that can be
provided by the coordinator strongly depend on the
properties subsystems have and the services agents
can provide on top of them.

3.2 Subsystems

Different subsystems together form the basis of the
coordination architecture as shown in Figure 4.
Each of these application subsystems manages its
data separately and provides a specific data model
(objects and operations). Parts of this data model
specify activities that are exported to a coordination
process. Moreover, different application subsystems
may be based on different data sources (e.g. rela-
tional DBMS, object-oriented DBMS, file systems,
etc.). As the underlying data sources differ, the sup-
port of application subsystems for the two coordi-
nation tasks monitoring of local operations and local
execution of operations initiated by the coordinator
differs, too.

To support the first coordination task, the local
execution of operations initiated by the coordinator,
an ideal subsystem has to provide by an API exactly
the same set of operations that can be accessed via
the subsystems’ GUI. In order to enable the moni-
toring of local operations, an ideal subsystem should
support trigger-like mechanisms at application level.
Before a local operation is committed, these mecha-
nisms take over the control enabling the notification

of the coordinator, the transfer of data, and even-
tually the deferment of operations until the end of
the coordination process.

In real-world scenarios, we will hardly find subsys-
tems with these ideal properties. Therefore, special
agents (see section 3.3) for each subsystem have to
be provided exploiting the properties of the respec-
tive subsystem and extending it by adding database
functionality. However, in order to enable the co-
ordination of subsystems, certain basic characteris-
tics have imperatively to be provided. A subsys-
tem should both provide mechanisms for bringing
in data from outside and for supporting the moni-
toring of local operations in some way. We assume
both properties for given, thus imposing some min-
imal form of willingness of the subsystem to coop-
erate. Without this capability, there is no way of
incorporating a subsystem into the coordination ar-
chitecture.

The extraction of data can in general be realized
at three different levels: application level, DBMS
level (if a database management system is used by
the respective subsystem) and data level.

Monitoring at data level requires very few prereq-
uisites of the subsystem. It can be done for exam-
ple by dumping the contents of the underlying data
source in special files and to compare this dump
with earlier versions (snapshot differential problem).
However, this is very inefficient especially when huge
amounts of data have to be inspected. Besides, in-
formation about data that has been changed does
not necessarily enable the deduction of the initial
operation as the schema of the dumped data may
be unknown. Some application systems provide log
files where all operations that have been executed
are recorded (e.g. the PDM system WorkManager
[5]). Such mechanisms rather support coordina-
tion as the semantics of that operations is available.
Both monitoring approaches at data level described
here have however the disadvantage that operations
can be observed only after they have been commit-
ted.

If an application system is based on RDBMS,
then triggers can be applied to notify about op-
erations and eventually to defer a local operation.
In this case, a mapping of database operations to
operations at application level has to be available
(this is the case if, for example, “pure” database
systems are used for the management of product
data). However, this task is in general very com-
plicated and again does not necessarily provide in-
formation about the operation at application level
being responsible for the monitored database oper-
ations. The reason is that application objects may
be spread over several database relations whereas
the schema of the database is unknown and meta

227

information necessary for capturing the semantics
of data is not directly available (as it is for example
with SAP R/3 [4]).

The creation of a log file by database triggers and
the examination of that log by the agent can be
considered as hybrid approach as monitoring both
at database and at data level is performed. This
strategy is needed for systems like the PDM appli-
cation WorkManager when triggers indicate that an
operation has taken place and the log file provides
the necessary information about this operation.

The third possibility, the monitoring at applica-
tion level, is based on the largest set of prerequi-
sites. In this case, either trigger mechanisms at
application level have to be provided or the cus-
tomization of application logic is required. The ad-
vantage of trigger mechanisms at application level
(e.g. Pro/Engineer [16]) is that it enables the defer-
ment of the execution of a local operation until the
end of a coordination process. The customization of
application logic may only enable the deferment of
operations in some cases (depending on the degree
of allowed customization), however the notification
about local operations without their deferment is al-
ways possible with this approach (e.g. in SAP R/3).

We mentioned earlier that normally the schema
of the database of a subsystem is unknown. There-
fore, the agent may not be able to execute opera-
tions directly at the database level. If no API sup-
porting the execution of local operations is avail-
able, only the information of a user who then has
to execute operations manually can help in these
cases. Though this seems to be a contradiction to
the goal of automatically coordinating subsystems
it is in some cases nevertheless the only possibility
to support system-wide consistency.

3.3 Agents

The task of an agent is to detect local operations
of a subsystem, to select those operations possibly
affecting global consistency, and to overcome the in-
herent heterogeneity of composite systems by trans-
forming objects of the data model of the subsystem
to a global data model. Finally, the most impor-
tant task of an agent is to execute operations of
a coordination process initiated by the coordinator
on its subsystem with certain execution guarantees.
These guarantees have to be provided either by the
subsystem itself or the agent in cases where the sub-
system is not capable to do so. Agents can there-
fore be considered as database systems providing
execution guarantees to the coordinator in a similar
way component database management systems do
for distributed transactions.

To overcome the inherent heterogeneity of com-

posite systems, all agents must provide the same
interface to the coordinator. The communication
between agent and coordinator has to consist of no-
tifications of local operations violating global con-
sistency. Furthermore, the agent has to acknowl-
edge (or nacknowledge) the success of local opera-
tions initiated by the coordinator. The coordinator
itself must be given the possibility to invoke the lo-
cal execution of operations within a subsystem and
to compensate operations that have already been
committed. At the end of a coordination process
the coordinator has to notify all agents. They can
then discard all information (e.g. log information or
compensating operations) they had to keep in their
repository.

The crucial question for agents now is: What
properties can an agent guarantee for local oper-
ations executed in its subsystem. As already men-
tioned, these properties depend on the underlying
subsystem’s willingness to cooperate, e.g., the repos-
itories and the APIs (see Section 3.2).

The main property agents have to provide is the
atomic execution of local operations as atomicity at
coordination level is desired. The easiest way to re-
alize this is to defer local operations until the end
of the coordination process and to include them in
global coordination transactions. But as we have
seen in the previous section, this deferment may not
always be possible. The agent therefore has to pro-
vide additional functionality on top of a subsystem.

To ensure local atomicity even in cases the sub-
system does not support the atomic execution of
operations, different possibilities exist. If the sub-
system is a database management system, the agent
may rely in the database’s transaction mechanism,
if not, it may guarantee local atomicity and correct-
ness by realizing by itself a limited form of transac-
tion management. Depending both on the activity
and the subsystem, the agent can either guarantee
that an operation is retriable or compensatable in or-
der to ensure the atomic execution of this operation
(this terminology is taken from the flexible transac-
tion model [14]).

An operation is retriable if it can be invoked mul-
tiple times until its execution has finished success-
fully exactly once (this is for example crucial when
we have to cope with network failures or failures
of the subsystem itself). If an agent provides retri-
able local operations, the coordinator has to execute
these operations exactly once; the agent is then re-
sponsible to repeat local invocations until they fi-
nally succeed.

A further way to ensure atomicity of coordination
processes is to provide local operations that can be
compensated even after they have successively been
committed. If for a particular operation, the under-

228

lying subsystem realizes correct compensation (and
if this compensation can be called via the API of the
subsystem), the agent will just have to execute this
compensation activity. If such a compensation does
not exist, the agent again has to implement it by
itself, for example by providing information about
the semantically correct compensation activity of al-
ready committed local operations. This can be real-
ized by persistently storing information about both
initial operation and corresponding compensation
operation(s) in the repository of the agent at least
until the end of a coordination process. The prop-
erty of compensating local operations after commit-
ment is crucial in cases where operations can only
be monitored after they are executed. In case of
failures of subsequent coordination activities, this
compensation is the basic mechanism to provide ex-
ecution guarantees at coordination level anyhow.

When local operations have been observed (either
before or after they have been committed), the agent
has to decide whether they are of global relevance
or not. An agent has a repository with informa-
tion about the configuration of the whole system or
at least with information whether an object of his
subsystem has related objects elsewhere or not. Fur-
thermore, information about the transformation of
local data to the global data model (and vice versa
to execute coordinator initiated operations) has to
be available in the private database of the agent.

In some cases where the underlying subsystem is
not able to store data persistently at a certain point
of time, this can be done temporarily by the reposi-
tory of the agent in order to ensure certain execution
guarantees.

4 PROTOTYPE SYSTEM

Based upon the architecture described in the pre-
vious section, a prototype system has been devel-
oped. Therefore, two application systems have been
chosen to be integrated into the coordination archi-
tecture: WorkManager [5], a PDM system (product
data management), and SAP R/3 [4], a PPC system
(production planning and control) that additionally
covers various tasks of business engineering.

Both systems have in common that they are built
on top of a relational database management system.
However, as in both cases the database schema is
unknown and no meta data is available, the respec-
tive agents cannot rely directly on the underlying
databases as they do not get the semantics of user
operations.

WorkManager provides a log file, where all oper-
ations are recorded. This information can be ex-
ploited by the WorkManager agent. But as oper-
ations can only be monitored after their successful

completion, the agent has to provide additional in-
formation about the compensation of those oper-
ations within its repository. The execution of lo-
cal operations initiated by the coordinator can be
achieved by using the APIs provided by WorkMan-
ager.

The execution of operations of SAP R/3 by the
agent is also possible via the API the subsystem
provides. Predefined programs written in the in-
tegrated 4GL programming language ABAP/4 can
therefore be called. Monitoring of operations can
be achieved by extending internal applications (also
ABAP/4 programs) to a call to the agent providing
it with data necessary for a subsequent coordina-
tion process. This extension has the advantage that
both synchronous coordination (to monitor an op-
eration before it is committed and to defer it) and
asynchronous coordination (an operation will not be
deferred) can be achieved.

WorkManager
Client

WorkManager

Oracle 7.3.2

WM API

LogFile
/tmp/usr.log

SAP R/3
Client

Oracle 7.3

SAP R/3

SAP API

SAP R/3
Agent

WorkManager
 Agent

Customized
ABAP-Prog.

Process Specification & MonitoringCoordinator

Process Engine

Figure 5: Prototype system incorporating SAP R/3
and WorkManager into the coordination architec-
ture

These subsystems are connected via their agent
to a global coordinator where inter-system depen-
dencies and the reaction mechanisms to violations
of overall consistency are managed and where coor-
dination processes are controlled. The structure of
the application systems and the way they are incor-
porated in the coordination architecture is depicted
in Figure 5.

5 CONCLUSION

The contribution of this paper is twofold: We an-
alyzed the properties of subsystems to figure out
which database functionality can be added by spe-
cial coordination agents in order to realize trans-
actional execution guarantees of coordination pro-
cesses and we elaborated on certain properties sub-

229

systems necessarily have to provide in order to in-
tegrate them into the coordination architecture we
proposed.

Another emphasis of our work has been laid on
the extension of transaction models to support co-
ordination by decoupling transactional properties
(spheres of atomicity and spheres of isolation) of co-
ordination processes allowing to flexibly specify and
enforce dependencies in composite systems.

A prototype system has been implemented that
validates these concepts in the scenario of our in-
dustrial project partner. This prototype system in-
cludes the development of coordination agents of
two subsystems in CIM: a product data manage-
ment system and a production planning and control
system. The agents prove the analysis of the pre-
requisites we presented for bringing database func-
tionality to application systems.

In a related project, we investigate transactional
workflows in a highly unstable and unpredictable
distribution environment, like for example the Inter-
net, to provide a framework for supporting virtual
enterprises.

REFERENCES

[1] G. Alonso, S. Blott, A. Fessler, and H.-J. Schek.
Correctness and Parallelism in Composite Systems.
In Proceedings of the ACM SIGMOD/PODS Con-
ference on Management of Data, Tucson, Arizona,
May 12-15 1997.

[2] E. Bertino, M. Negri, G. Pelagatti, and L. Sbat-
tella. Intergation of Heterogeneous Database Ap-
plications Through an Object-Oriented Interface.
Information Systems, 14(5):407–420, 1989.

[3] V. Brosda. Data Integration of Heterogeneous
Applications – a Technique for CIM-System Im-
plementation. Technical Report TR 75.92.06,
IBM Germany, Heidelberg Scientific Center, March
1992.

[4] R. Buck-Emden and J. Galimow. Die
Client/Server-Technologie des SAP-Systems
R/3. Addison-Wesley, 1996.

[5] CoCreate Software GmbH. WorkManager, Release
3.5, 1996.

[6] C. T. Davies. Data Processing Spheres of Control.
IBM Systems Journal, 17(2):179–198, 1978.

[7] A. Elmagarmid, Y. Leu, W. Litwin, and
M. Rusinkiewicz. A Multidatabse Transaction
Model for InterBase. In Proceedings of the 16th
VLDB Conference, pages 507–518, Brisbane, Aus-
tralia, 1990.

[8] D. Georgakopoulos, M. Hornick, and A. Sheth. An
Overview of Workflow Management: From Pro-
cess Modeling to Workflow Automation Infrastruc-
ture. Distributed and Parallel Databases, 3:119–
153, 1995.

[9] J. Gray and A. Reuter. Transaction Process-
ing: Concepts and Techniques. Morgan Kaufmann,
1993.

[10] S. Jablonski. Data Flow Management in Dis-
tributed CIM Systems. In Proceedings of the 3rd
International Conference on Data and Knowledge
Systems for Manufacturing and Engineering, pages
65–78, March 1992.

[11] S. Jablonski. Workflow-Management-Systeme: Mo-
tivation, Modellierung, Architektur. Informatik
Spektrum, 18(1):13–24, 1995.

[12] S. Jajodia and L. Kerschberg, editors. Advanced
Transaction Models and Architectures. Kluver Aca-
demic Publishers, 1997.

[13] W. Kim, editor. Modern Database Systems:
The Object Model, Interoperability and Beyond.
Addison-Wesley, 1995.

[14] S. Mehrotra, R. Rastogi, A. Silberschatz, and
H. Korth. A Transaction Model for Multidatabase
Systems. Bulletin of the Technical Committee on
Data Engineering, 16(2), June 1993.

[15] M. Norrie, W. Schaad, H.-J. Schek, and M. Wun-
derli. CIM Through Database Coordination. In
Proceedings of the International Conference on
Data and Knowledge Systems, May 1994.

[16] Parametric Technology Corporation, Waltham,
MA. Pro/Engineer User Manual, 1993.

[17] B. Reinwald. Workflow-Management in verteil-
ten Systemen: Entwurf und Betrieb geregelter ar-
beitsteiliger Anwendungssysteme. Number 7 in
Teubner-Texte zur Informatik. B. G. Teubner Ver-
lagsgesellschaft, 1993.

[18] M. Rusinkiewicz and A. Sheth. Specification and
Execution of Transactional Workflows, chapter 29.
In: [13]. Addison-Wesley, 1995.

[19] A.-W. Scheer. CIM – Towards the Factory of the
Future. Springer-Verlag, 3rd edition, 1994.

[20] H.-J. Schek, G. Weikum, and H. Ye. Towards a Uni-
fying Theory of Concurrency Control and Recovery.
In Proceedings of the ACM Symposium on Prin-
ciples of Database Systems, pages 300–311, June
1993.

[21] H. Schuldt, H.-J. Schek, and M. Tresch. Transac-
tional Execution Guarantees for the Coordination
of Subsystems. Technical report, Institute of Infor-
mation Systems, ETH Zürich, 1998. In preparation.

[22] M. Wunderli. Database Technology for the Coordi-
nation of CIM Subsystems. PhD thesis, Swiss Fed-
eral Institute of Technology Zürich, 1996.

[23] A. Zhang, M. Nodine, B. Bhargava, and
O. Bukhres. Ensuring Relaxed Atomicity for Flexi-
ble Transactions in Multidatabase Systems. In Pro-
ceedings of the ACM SIGMOD Conference, pages
67–78, 1994.

230

	INTRODUCTION
	Coordination in CIM
	Related Work

	TRANSACTIONAL COORDINATION MODEL
	COORDINATION ARCHITECTURE
	Coordinator
	Subsystems
	Agents

	PROTOTYPE SYSTEM
	CONCLUSION

