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Abstract

In order to extend database technology beyond traditional applications a new paradigm called “ex-
porting database functionality” as a radical departure from traditional thinking has been proposed in
research and development. Traditionally, all data is loaded into and owned by the database, whereas
according to the new paradigm data may reside outside the database in external repositories or archives.
Nevertheless, database functionality, such as query processing, indexing, and transaction management,
is provided. In this paper we report on theCONCERTproject that exports physical database design for
advanced applications, and we discuss the consequences for transaction management, that becomes an
important coordination task inCONCERT.

1 Introduction

Todays Database Management Systems (DBMS) make the implicit assumption that their services are provided
only to data stored inside the database. All data has to be imported into and being “owned” by the DBMS in
a format determined by the DBMS.Traditional database applicationssuch as banking usually meet this as-
sumption. These applications are well supported by the DBMS data model, its query and data manipulation
language and its transaction management.Advanced applicationssuch as GIS, CAD, PPC, or document man-
agement systems however differ in many respects from traditional database applications. Individual operations
in these applications are much more complex and not easily expressible in existing query languages. Powerful
specialized systems, tools and algorithms exist for a large variety of tasks in every field of advanced applications
requiring data to be available in proprietary or data exchange formats.

Because of the increasing importance of advanced applications, DBMS developers have implemented better
support in their systems for a broader range of applications. Binary Large Objects provide a kind of low-level
access to data and allow individual data objects to become almost unlimited in size. Instead of storing large
data objects in BLOB’s, some newer systems such as ORACLE (Version 8) and Informix (Dynamic Server with
Universal Data Option) provide the BLOB interface also to regular operating system files. Because the large
objects in any of these two options are uninterpreted, database functionality for this kind of data is only very
limited. In order to better support advanced applications, the standardization effort of SQL3 specifies, among
others, new data types and new type constructors. Most recently, SQL3 and object-orientation have fostered the
development of generic extensions called datablades [10], cartridges [14], and extenders [9]. They are based on
the concept of abstract data types and often come with specialized indexing.
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Although they provide better support for advanced applications, however, except for the file system case,
they all have the same fundamental deficiencies: Firstly, it is the DBMS together with its added extensions that
prescribes the data structure and data format of the data to be managed. The consequence is that all complex
specialized application systems and tools must be rewritten using the data structures enforced by the DBMS, or
at least complex transformations must take place to map the DBMS representation into the application represen-
tation. Secondly, the DBMS owns the data. All data has to be physically stored inside the DBMS requiring to
possibly load gigabytes of data into the database store.

These observations led to a radical departure from traditional thinking as it is expressed in [24]. In the
COSMOS project at ETH [19, 20, 21, 13, 23], we focus onexporting database functionalityby making it
available to advanced applications instead of requiring the applications to be brought to the DBMS. Figure 1(a)
shows the traditional DBMS that offers its functionality to clients whose data are under complete control of the
DBMS. As opposed to this, figure 1(b) shows the new paradigm we have followed: The DBMS changes its
role and becomes a coordinator (DBCoord) of many local specialized component systems. DBCoord provides
database access to external data sources stored in the component systems. It provides tools for creating indexes
over external data as well as for replications of external data. Exporting database access to external data sources
does not exclude clients from accessing this data directly. In contrary, we explicitly want to deal with given
specialized application systems and we do not require existing applications to be rewritten. We additionally
want to provide DB functionality for (new) applications that need it. DBCoord ensures that changes of external
data are properly reflected in related derived indexes and replications, more generally, that dependencies between
component systems are transactionally maintained. The DBCoord’s task is to coordinate possibly heterogeneous,
possibly distributed, possibly autonomous subsystems rather than to store and to own data.

DBMS

(a)

DBCoord

(b)

Figure 1: DBMS owning the data vs. DBMS providing database functionality

In this paper, we report on our research project COSMOS in general and the prototype DBMS CONCERT in
particular [4, 16]. CONCERT provides implementations as “proof of concept”. Here we discuss in more detail
the aspect of physical database design and its consequences to transaction management. The paper is organized
as follows: Section 2 introduces a sample application and focuses on the key concepts required for physical
database design to efficiently provide access to external data. Then, in section 3, we discuss the implications to
transaction management.

2 Exporting Physical Design: TheCONCERTApproach

Throughout the paper, we will use a sample application — the management of geospatial images provided by
a satellite — on which we show, how the concepts of providing database functionality for external data can be
applied. A satellite is supposed to periodically generate geospatial images together with descriptive information
(as, for instance, date and time the image has been made, the position of the satellite, etc). This information
is stored in huge tape archives. Additionally, after an image has been taken, meta data describing this image
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is stored in a proprietary file format [7]. This meta data contains the descriptive information provided by the
satellite and additional descriptions provided by a user. Furthermore, a preview of the geospatial image is
materialized. The data objects to be managed therefore consist of the images in the tape archive and the meta
data files (figure 2).

Satellite Image Archive

Agent

Client

CONCERT
Storage Management

Transactional Coordination

Preview

Agent
Insert new

images

Meta data repository

Figure 2: Management of satellite images and meta data stored at two different external repositories

In order to provide efficient access to the satellite image database, among others, the following physical
design decisions can be considered.

• The relationship between the meta data and the image data has to be maintained. They should be viewed
as the two sides of the same coin, although they are stored in independent systems.

• Index support for meta data attributes such as date and time of data capture should be available.
• Information retrieval techniques might be required to efficiently find images based on their description.
• Spatial indexing is required to access image data for certain regions.
• Sophisticated caching strategies for satellite images loaded off the tape archive have to be used.

Blades, cartridges, or alike allow the DBMS to be extended byapplication specific typesandaccess methods.
While implementing new types is relatively easy, new access methods is not. The new access method has
to cooperate with the various components of the DBMS, such as concurrency control, data allocation, query
evaluation, and optimization. This requires substantial knowledge of the DBMS internals. In contrast, CONCERT

offers a limited, built-in set of physical design mechanisms in form of generic, trusted DBMS code provided by
the DBMS implementor. Physical design is performed through relating new types to the fundamental concepts
of the built-in physical design mechanisms.

In [25], Stonebraker introduced the idea of a generic B-Tree that depends only on the existence of an order-
ing operation to index arbitrary data objects. Our CONCERT approach generalizes this idea by identifyingall
relevant concepts of physical database designand expressing them by the so calledconcept typicaloperations
required to implement them over external data. The data objects are treated as abstract data types (ADT) in
CONCERT, and physical database design is performed based on the operations of the ADT only. In order to
implement search tree access methods, a generic search tree approach (similar to GiST [8]) can be used as it
integrates nicely into the CONCERT framework.

CONCERTprovides the DBMS kernel functionality such as storage management, low level transaction man-
agement, and basic query processing. It’s role is comparable to the one of RSS in System R. In order to enable
good concurrency, CONCERTinternally uses a multilevel transaction management scheme that is combined with
ideas from [11, 6]. It uses a memory-mapped buffer on a multi-block page management [3] for efficient data
access. It is beyond the scope of this paper to give full detail of the CONCERT approach. The following is a
simplified sketch to give an idea. More detailed information can be found in [3, 4, 16].
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Fundamental generic operations: the GENERIC concept In order to handle abstract data objects, to move
them around in the DBMS and between remote repositories and to pass them between function invocations, the
following three fundamental generic operations are required. In order to allocate space, the object’s linearized
sizeis required. Thecopy operation actually moves the object from one place to the other possibly performing
necessary format transformations. During the copy operation, auxiliary resources (memory, file handles, network
connections) might be required that are freed using thefree aux operation. These three operations are required
for all CONCERTobjects in addition to the concept typical operations that are discussed below.

The SCALAR concept The first specific concept is the concept of ordering, grouping, and clustering. It
contains the generic B-Tree as a special case and is based on a comparison operation. The COMPARE operation
of the SCALAR ADT has the following signature. It returns0 in case of equality, otherwise−1 or 1 depending
on the resulting order.

COMPARE(SCALAR object, SCALARobject)→ {−1, 0, 1}

This operation is sufficient to build a generic B-Tree (using techniques as in [25]) or any other access structure
relying on an ordering or comparison such as a partition index, one of the new methods of physical design in
the ORACLE8 DBMS tailored for advanced applications. In addition, the SCALAR ADT provides an optional
HASH operation that allows certain data object to be used in the context of hash indexes.

Because arbitrary functions are allowed to implement the compare operation, for example remote proce-
dure calls (RPC) can be used to compare external data objects residing on different machines or repositories.
Obviously, for efficiency reasons, RPC might not be the appropriate method for external data and the compare
operation can decide to create local copies. Also note that CONCERTconcepts do not make assumptions about
type information. For a single user object of a given type, several different concepts can be declared in order to
instantiate, for example, more than one B-Tree on different user attributes.

The RECORD concept A second concept of physical database design is the one concerned with components
or parts of objects. It is used implicitly in ordinary indexes that usually are built over an attribute (i.e., a
component) of a data object. More important, the RECORD concept is used explicitly in vertical partitions. The
relevant concept typical operation of the RECORD concept is the one identifying components of objects. It has
the following signature:

SUBOBJECT(RECORDobject, component)→ objectpart

extracting the object part identified by the parameter “component”. The resulting objectpart is a generic CON-
CERT object, that might be specified further by other concepts. The RECORD concept is especially important
for objects with large, but infrequently used parts when vertical partitioning is used. Examples are objects that
contain multimedia data such as images, audio, or video data. Often, only the descriptive attributes of such data
objects are accessed. Therefore they are stored separately from the large multimedia components.

The LIST concept Information retrieval and its physical design techniques such as inverted file indexes and
signature methods is a good example of the third concept. It represents a characterization of objects in order to
efficiently answer queries looking for objects containing certain features. The relevant operations are the ones
providing access to individual features of an object as follows:

OPEN(LIST object)→ cursor
FETCH(cursor)→ feature
CLOSE(cursor)
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In the simplest case, the resulting feature will be further specified using the SCALAR concept in order to use a
B-Tree or alike for the inverted file index. The LIST concept is not limited to traditional information retrieval.
It can support any kind of query asking for objects containing certain features such as, for instance, frequency
spectra in audio signals or features in digital images. In these cases, the corresponding concept typical operations
are the feature extraction or frequency analyzing operations.

The SPATIAL concept The last concept is the one concerned with spatially extended objects. They appear
in many different contexts. Time intervals are spatially extended objects in a single dimension, spatial objects
such as line segments and polygons in the context of GIS systems usually appear in a 2D space, CAD objects are
similar, but in 3D space, and some applications are concerned with multidimensional data objects. The concept
typical operations of the SPATIAL concept are:

OVERLAPS(SPATIAL object, SPATIALobject)→ boolean
SPLIT (SPATIAL object)→ { SPATIAL object}
COMPOSE( { SPATIAL object} ) → SPATIAL object
APPROX( { SPATIAL object} ) → SPATIAL object

The predicate OVERLAPS checks for a nonempty intersection of two spatially extended objects, SPLIT parti-
tions an object into a set of partial objects, COMPOSE recombines objects that have been split and APPROX
implements an approximation such as a minimal bounding box over a set of objects. It is up to the developer of
the SPATIAL concept to make these concept typical operations meaningful to the application and its types. This
means that the n-dimensional range query2(q, object) appears equivalent to the same query over the composi-
tion of the overlapping parts,

2(q, object) ≡ 2(q, COMPOSE({o|o ∈ SPLIT(object) ∧OVERLAPS(o, q)}))

and for arbitrary query objectsq, if they overlap any objecto ∈ obj, they also overlap the corresponding
approximation

∀q(∃o ∈ obj(OVERLAPS(o, q)) ⇒ OVERLAPS(APPROX(obj), q))

While the first three concepts are only used for data objects, the SPATIAL concept is used also for objects
representing the data space in index nodes of a spatial index such as the space covered by an R-Tree node. An
index node is split, for example, performing a SPLIT operation on the spatial object associated with the index
node. The resulting objects define the data space of the new index nodes. The data objects are then distributed
according to the OVERLAPS operation. Depending on the index strategy, the data object might be split into a set
of smaller objects first. If data objects are inserted into a node, the corresponding data space can be calculated
using the APPROX operation on the objects in the node. On retrieval, data objects that have been split need to
be recombined using the COMPOSE operation.

Physical Design usingCONCERTConcepts Using the CONCERTconcepts, it is possible to get an integrated
view of the satellite image database. Each image together with its meta data is associated with the RECORD
concept containing components such asimagedata, preview, anddescription. Access to the different compo-
nents is performed through the concept typical operation SUBOBJECT. For example, in order to compute the
preview image for a satellite image, the operation

imagesubobject ( image, preview )→ preview image

runs the corresponding program accessing the tape archive, reading the satellite image and feeding it through a
preview computation process. The required index support for meta data can be achieved by implementing the
concept typical operation COMPARE for each attribute that an index is to be built over, such as
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imagedatecompare ( image1, image2 )→ {−1, 0, 1}
imagetitle compare ( image1, image2 )→ {−1, 0, 1}

In order to apply information retrieval techniques on the descriptive information, the LIST concept is used.
Its concept typical operation FETCH extracts the index terms from the description accessing the meta data
repository in the following way

imagedescopen ( image )→ imagedesccursor
imagedescfetch ( imagedesccursor )→ imageindex term

These index terms can then be stored in an inverted file. The SPATIAL concept allows CONCERT to build a
spatial index over the images in the database. Accessing the image data requires loading it from the tape archive
to secondary storage. Using the SUBOBJECT operation,

imagesubobject ( image, imagedata )→ rasterimage

the loader program can be made known to the database enabling it to view the load operation as a materialization
of a computed attribute. Therefore, standard database design decisions for materialized views can be used for
the caching of the loaded image.

It is important to notice that only those concept typical operations required for the actual physical design
have to be implemented. Whenever a new physical design method is to be used, the corresponding operations
are implemented and registered in CONCERT. This allows for incremental improvement of the physical design
as required by the applications.

3 Exporting Transaction Management

In our sample scenario, dependencies between external meta data files and index structures managed within the
CONCERTDBMS exist as well as dependencies between the single parts of data objects stored in the tape archive
and in the meta data files. Although data is manipulated by applications not being aware of these dependencies,
coordinationmust reestablish overall consistency when it has been violated by local operations on external
repositories. As data is no longer completely under the responsibility of the DBMS, this coordination can
no longer be achieved by the local DBMSs transaction management. We therefore additionally have to export
transaction management to keep track of dependencies. In what follows, we will concentrate on the coordination
architecture, the processes that have to be executed by the CONCERTcoordinator, and the transactional execution
guarantees that have to be provided for these processes.

Coordination Architecture To enforce dependencies between subsystems, the CONCERT system has to act
as global coordinator. The subsystems to be coordinated may be different heterogeneous and distributed resource
managers or, in the case data is only accessible and interpretable via specialized services or applications, the ap-
plication systems itself [13, 23]. Although, for coordination purposes, transactional properties of subsystems are
required, we do not expect all subsystems to be DBMSs. However, in order to provide database functionality, a
database coordination agentis placed on top of each subsystem [23]. Thus, from the point of view of the CON-
CERT coordinator, the subsystem together with its agent can be considered as DBMS. The functionality to be
provided by the subsystems and their agents includes the atomicity of service invocations, the compliance with
orderings of service invocations and either the compensation of already committed services or their deferment
by a two phase commit protocol. When a subsystem is not able to directly provide this functionality, its agent
has to implement it. Coordination agents are similar to 2PC agents proposed for federated database management
systems [26] but provide considerably more functions in cases where the subsystem does not provide DBMS
functionality.
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Figure 3: Subsystem specific part of generic coordination agent

Although certain parts of a coordination agent are tailored to the subsystem it belongs to, a generic struc-
ture of a coordination agent can be identified. Figure 3 shows the subsystem specific parts of such a generic
coordination agent. When operations on external applications or repositories have to be invoked by the CON-
CERT coordinator, agents have to rely on existing services. Hence, theexecution moduleof a coordination
agent exploits, for instance, the API provided by a subsystem or performs a RPC call to a resource manager to
be coordinated. All coordination agents together therefore overcome the inherent heterogeneity of the subsys-
tems to be coordinated. As data within subsystems may be manipulated locally by local service invocations,
information about these local operations has to be made available by themonitoring moduleof the respective
coordination agent. Therefore, aside of heterogeneity and distribution, also autonomy of the systems to be
coordinated is an important issue as both local transactions and global (coordination) transactions have to be
considered [2, 12, 18]. Monitoring can, for instance, be performed on data level given the agent to be a DBMS
itself by defining a database link and exploiting trigger mechanisms at the subsystem DBMS. However, in cases
the subsystem is not based on a DBMS or if its data model is unknown, then monitoring has to be performed at
application level, e.g., by plugging in trigger mechanisms at the application level. Often, systems like SAP R/3
[17] or Pro/Engineer [15] allow to pass control to the agent before some application function is executed.

Figure 2 shows the subsystems of our sample scenario, how they are provided with coordination agents and
how the CONCERTcoordinator communicates with external repositories and applications via these agents.

In addition to local transaction management in the subsystems and within CONCERT, we must add an ad-
ditional transaction layer — the transactional CONCERTcoordinator — keeping track of dependencies between
external data. It should have become clear by now that the CONCERT coordinator provides functionality of an
upper layer transaction manager coordinating subsystems while the agents and the CONCERT system provide
local transaction management. Local transactions are intensively used for single operations. The agents, in turn,
enrich a subsystem by a transaction manager at the application level enabling deferring or compensating single
operations.

Coordination Processes inCONCERT A coordination process is a sequence of operations to be executed on
subsystems [22]. For each coordination process, an execution guarantee is provided in the sense that at least
one of several execution alternatives terminates successfully (generalized atomicity). The usual abort is treated
as a special alternative. More generally, undoing everything is often not desired or even not supported by the
subsystem and its agent. We will not present formal details (see [22]) but explain it using our example.

Considering our GIS application, coordination relies on appropriate coordination agents for both subsys-
tems, the tape management and the meta data management. Each time a new satellite image is inserted into the
tape archive locally, its agent notifies the CONCERT coordinator. In CONCERT, a record is then created repre-
senting the new image consisting in this state only of theimagedata component (a reference to the image in
the tape archive). Additionally, an index can be built over the date, the image has been taken by exploiting the
concept typical operationimagedatecompare(image1, image2). Furthermore, a preview image is computed
by imagesubobject(image, preview), materialized in the CONCERT DBMS, and the image record is updated.
The CONCERT coordinator then invokes the serviceprovidemetadata on the agent of the meta data reposi-
tory. This agent requests a user for descriptive information of the new satellite image. After this information
has been inserted in the meta data repository, the CONCERT coordinator is notified by the agent and the image
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record is updated (reference to the associated meta data description). Exploiting the concept typical operation
imagetitle compare(image1, image2), an index is built over the title of the image provided by the user. Then,
the index terms are extracted by the concept typical operationimagedescfetch(imagedesccursor) in order to
store them in an inverted file. This coordination process is depicted in figure 4.

image_object
Create

date index
Update

preview image
Materialize 

image_object
Update

description
Provide

index terms
Extract

Insert new image

Tape archive CONCERT

Update title index

Meta data files CONCERT Meta data files CONCERT

Write inverted file

Figure 4: Coordination process to be executed when a new image is inserted into the tape archive

The CONCERTcoordinator has to ensure that the execution of each coordination process leads to a system-
wide consistent state even in case of failures and concurrency. With the generalized notion of atomicity for
processes, at least one of the alternative executions (not depicted in figure 4) of our sample process has to
terminate successfully. When, for instance, the date, the satellite image has been taken cannot be determined
automatically, it is not desirable to undo all previous operations, e.g., delete the satellite image. It is more
appropriate to alternatively ask a user for this information and continue executing the coordination process
in order to ensure correct and guaranteed termination without undoing previous work. To enforce execution
guarantees for processes, the global transaction management of the CONCERT coordinator relies on the local
transaction management provided by the coordination agents. They have, for instance, to guarantee atomicity
and isolation of local operations. Considering the local transaction within the meta data repository extracting
index terms, the agent has to ensure that the sequence ofimagedescfetch(imagedesccursor) operations is
either executed successfully (thus returns all index terms) or fails and it has further to ensure that no changes of
the meta data description are performed as long as theimagedesccursor is open.

4 Conclusions

Exporting database functionality relaxes the assumption of traditional DBMSs to own all data to be managed
and allows to offer this functionality to data that resides outside the DBMS. In the CONCERT project, we have
identified four fundamental concepts of physical database design (SCALAR, LIST, RECORD, and SPATIAL)
together with their concept typical operations. Physical design can be performed in an elegant way, based only
on these concepts, for arbitrary data. By providing physical database design for external data, dependencies arise
between data inside and data outside the CONCERTDBMS. We have shown, how the necessary coordination can
take place in order to synchronize different data repositories with the help of subsystem-specific coordination
agents. We showed, using a sample application, how both database services, physical design and transaction
management, are provided by the CONCERTprototype system and how these services cooperate in order to con-
tribute to a coherent whole. The aspects of physical database design and its consequences arising for transaction
management, as we have discussed them, prove the feasibility of our approach.

In our current and future work, we generalize the ideas of transaction management to be exported in order
to support coordination in two directions: Firstly, in the composite systems theory, we investigate arbitrary
composite systems where — although scheduling takes place at different levels and schedulers can be connected
in arbitrary ways — correctness of the whole system has to be provided [1]. Secondly, we decouple transactional
properties in order to assign execution guarantees more flexibly to (sub)processes by exploiting the notion of
spheres [5].
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