
Transactional Coordination Agents for Composite Systems∗

Heiko Schuldt Hans-J̈org Schek Gustavo Alonso

Institute of Information Systems

Swiss Federal Institute of Technology (ETH)

ETH Zentrum, CH–8092 Z̈urich, Switzerland

{schuldt,schek,alonso}@inf.ethz.ch

In: Proceedings of the International Database Engineering and Applications
Symposium (IDEAS’99), pages 321-331, Montr éal, Canada, August 1999.

Abstract

Composite systems are collections of autonomous, hetero-
geneous, and distributed software applications. In these
systems, data dependencies are continuously violated by
local operations and therefore, coordination processes are
necessary to guarantee overall correctness and consistency.
Such coordination processes must be endowed with some
form of execution guarantees, which require the participat-
ing subsystems to have certain database functionality (such
as atomicity of local operations, order-preservation and ei-
ther compensation of operations or the deferment of their
commit). However, this functionality is not present in many
applications and must be implemented by a transactional
coordination agent coupled with the application.

In this paper, we discuss the requirements to be met by
the applications and their associated transactional coordi-
nation agents. We identify a minimal set of functionality the
applications must provide in order to participate in trans-
actional coordination processes and we also discuss how
the missing database functionality can be added to arbi-
trary applications using transactional coordination agents.
Then, we identify the structure of a generic transactional
coordination agent and provide an implementation example
of a transactional coordination agent tailored to SAP R/3.

1. Introduction

0-7695-0265-2/99 $10.00c©1999 IEEE

Coordination is necessary to keep track of dependencies
between subsystems in environments involving distributed,
heterogeneous, and autonomous subsystems. Local opera-
tions performed by users are not necessarily aware of side-
effects and may violate consistency by introducing new

∗Part of this work has been funded by the Swiss National Science
Foundation under the project WISE (Workflow based Internet Services,
http://www.inf.ethz.ch/department/IS/iks/research/wise.html) of the Swiss
Priority Programme “Information and Communication Systems”.

data dependencies or making old ones disappear. A fun-
damental aspect of interoperability is, thus, to keep track
of such dependencies and reestablish overall consistency
whenever necessary. As different subsystems are involved
and dependencies may be arbitrarily complex, we suggest
to do this using coordination processes [29]. We also be-
lieve that transactional execution guarantees for coordina-
tion processes are crucial for this purpose. These transac-
tional execution guarantees include correctness in case of
failures (by partial compensation and appropriate alterna-
tive executions) and concurrency (when, for instance, dif-
ferent processes try to access shared resources simultane-
ously). In previous work, we have elaborated on correct-
ness criteria for transactional coordination processes and
identified the prerequisites to be met by the underlying sub-
systems in order to support transactional coordination [28].
There, coordination processes rely on the underlying sub-
systems to provide key transactional functionality, function-
ality which is not always present since we deal not only with
database management systems (DBMSs) but with arbitrary
applications. This functionality will be provided on top of
the subsystems bytransactional coordination agents (TCA).
The main contribution of this paper is the detailed discus-
sion of the architecture and the principles of a generic TCA,
the functionality TCAs have to provide as well as the basic
prerequisites necessary to support this endeavor. Further-
more, we also present implementation issues of agent-based
transactional coordination for a selected application system.

The paper is structured as follows: In section 2, we sum-
marize transactional process management and motivate the
process based coordination approach by a real-world sce-
nario. Then, in section 3, we present the functionality
needed for transactional coordination processes and discuss
in detail how this can be provided by TCAs. In section 4,
the implementation of a TCA for SAP R/3, an application
system widely used for business management purposes, is
presented. In section 5, related work is discussed; section 6
finally concludes the paper.

321

Document
AgentAgent

Business App

Business
DBMS

Product
RepositoryPDM System Document

Application
Program

AgentAgent

Test and
Norm Data

Test & Norm
Agent

CAD
Construction

Coordination

Processes

Transactional

Prog Rep
Agents

Transactional
Product

Repository

PDM Agent Coordination
Agent
CAD

System
CAD

CNC Programs

Test Technical Documentation

CAD Documentation

Human Resources

Write BOM Write BOM

Get Parts

Construction
Process

Process
Production

Underlying

Subsystems

Coordinator

Produce

Shipment
performed
activity

locally

process
coordination
initiate

Figure 1. Transactional coordination processes in CIM environments

2. Transactional Coordination

In this section, we present a sample application for co-
ordination in composite systems by transactional processes
and motivate the necessity of transactional coordination
agents to support this endeavor. In order to ensure read-
ability independent of previous work, we will summarize
the main ideas and aspects of transactional process man-
agement.

2.1. Motivation

Computer Integrated Manufacturing (CIM) environ-
ments often comprise a variety of different specialized ap-
plication systems, such as computer aided design (CAD),
product data management (PDM), or business application
systems (as, e.g., SAP R/3) [22, 29]. In such environments,
executions like the one shown in figure 1 are very com-
mon1. In this example, two processes are defined. A con-
struction process is triggered by a local CAD construction
operation; when the bill of materials (BOM) has been cre-
ated, a second process, the production process, is started.
In this case, production does not follow mass-production
techniques but aims to customize each one of the products
to deliver. Thus, the development of the product and its
manufacture are strongly tied. Both processes run on a va-
riety of subsystems, as shown in figure 1. The construc-
tion process contains all developing steps from the design
of a new part to the final test and the subsequent technical
documentation. It encompasses a CAD system, a product
data management system (PDM), a test database as well as

1This example reflects the practice followed by one of our industrial
partners in a recently concluded research project [29].

a technical documentation repository. The production pro-
cess includes all manufacturing steps from the ordering of
the necessary materials to the production floor including the
necessary scheduling and the creation of computerized nu-
merical control (CNC) programs.

These processes act both as the core business logic and
as the basis for coordination of all the subsystems involved.
Due to the complexity of the dependencies between all sub-
systems and because of the inherent heterogeneity of the
composite systems, in general coordination cannot be real-
ized by distributed transactions on top of all applications.
Processes, in contrast, executed by a process support sys-
tem [4] acting as coordinator provide the flexibility required
for coordination. For instance, failures of single activities
should not necessarily lead to a failure of the coordination
effort. The possibility of executing alternatives in case of
failures is an important characteristics of processes which
is exploited by our coordination approach. In the following
examples, we will show the benefits of transactional coor-
dination processes and the requirements they impose on the
subsystems to be coordinated.

Interaction In general, to support the execution of co-
ordination processes, it has to be possible to interact with
the underlying applications. For instance, local subsystems
must be monitored to identify activities which violate de-
pendencies. In our example, local activities executed within
the CAD system have to be monitored in order to trigger
the corresponding construction process. Similarly, the en-
actment of the coordination processes requires to be able to
trigger activities at the underlying subsystems, for instance
to compensate a given step, although concurrent local activ-
ities within the subsystem may exist.

322

Correctness of Coordination Processes From a correct-
ness point of view, although failures may occur and concur-
rency has to be considered, coordination processes must al-
ways terminate in a system-wide consistent state. Assume
a failure during the construction process such that both a
CAD construction and the associated BOM in the PDM
system are created but, however, not the BOM in the busi-
ness application system. This inconsistent state has to be
avoided, as, due to the missing BOM in the business appli-
cation, the respective part could never be produced.

Atomicity of Activities All activities executed by the co-
ordinator have to beatomicin the sense that they are either
executed completely or not at all in order to avoid situa-
tions where a coordination process ends up in an inconsis-
tent state due to the undefined outcome of a non-atomic ac-
tivity within a subsystem.

Compensation of Activities Correctness may be rela-
tively easy to enforce if the underlying systems would offer
the necessary functionality. For instance, some activities
may be semantically compensatable after they have been
successfully executed. If the respective subsystem provides
acompensationactivity, it can be exploited by the coordina-
tor to deal with failures occurred during process enactment.
Assume, for example, the “Test” activity of the construc-
tion process fails. In order to avoid inconsistencies, both
“Write BOM” activities in the business application system
and the PDM system have to be compensated. If compen-
sation mechanisms exist, this is relatively easy to do. In this
case, the complex objects representing the BOM have to be
deleted in both systems. In some cases, restoring consis-
tency is even easier, for instance, the “Get Parts” activity of
the production process does not cause changes in the busi-
ness application system and does not have to be compen-
sated. However, unlike in database systems where all ac-
tions are undone as part of the rollback of a transaction, co-
ordination processes should go beyond the “all-or-nothing”
semantics.

Guaranteed Termination Compensation may not be
provided by all subsystems or we may not want to compen-
sate all activities of a process after a failure occurred. Sup-
pose the test of a newly designed product fails. Although
the BOMs have to be deleted (thus, the corresponding ac-
tivities are compensated), it is wise to keep all work done
within the CAD construction. Therefore, the construction
step is not removed as it would occur if compensation were
to be used but it is documented (as depicted in figure 1).
Such behavior can be captured by replacing atomicity of
coordination processes by the notion ofguaranteed termi-
nation [28], i.e., the guarantee that the process will always
reach a consistent state when it terminates.

Order Preservation Also, only consistent interaction be-
tween coordination processes can be allowed. In the ex-
ample, the production process runs in parallel to the con-
struction process in order to minimize delays. But since the
two activities “Write BOM” and “Get Parts” conflict, ar-
bitrary interleavings of both processes need to be avoided.
The coordinator can easily establish these interleavings by
ordering operations accordingly but this order needs to be
respected by the underlying systems. One way to do so is
to enforceorder preservationso that the execution at the
subsystems can be parallelized while matching the one in-
dicated by the coordinator.

Commit Deferment Furthermore, interaction between
the processes need to be closely watched. For instance, the
“Produce” activity cannot be undone. As a result, it may
not be executed before the construction process succeeds.
Otherwise, a failure within the “Test” activity, for example,
would lead to the compensation of the “Write BOM” activ-
ities and thus to the invalidation of the data the product has
been built from. This would cause severe inconsistencies in
the system as no valid construction and BOM for the part
exists. The commit of the “Produce” activity therefore has
to bedeferredto avoid these incorrect interleavings of con-
current processes that cannot be resolved by compensation.

Retriability All activities that cannot be compensated ef-
fect the subsequent activities of the same process. Suppose
the correct execution of the “Produce” activity of the pro-
duction process. Suppose further the failure of the next ac-
tivity, the shipment of products, for instance due to a tempo-
rary broken network connection to the business application
managing the relevant customer addresses. Then, as not
all previous activities can be undone, the production pro-
cess would end up in an inconsistent state. Therefore, it has
to be guaranteed that all activities of a process following a
non-compensatable activity can be invoked repeatedly and
succeed exactly once. In the example, after the recovery
of the network connection, the customer address must be
available.

2.2. Transactional Process Management

The notion of transactional process managementhas
been suggested as a means to coordinate different subsys-
tems [9, 3, 28]. The main components of transactional pro-
cess management consist of a coordinator acting as top level
scheduler and several transactional coordination agents
(TCAs) —one for each participating subsystem— acting as
lower level schedulers (as depicted in figure 1). Coordina-
tion processes encompassactivitieswhich are invocations in
subsystems scheduled by the coordinator. These activities

323

differ in terms of their termination guarantees: they are ei-
thercompensatable, retriable, or pivot (as in the flex trans-
action model [21, 35]). In contrast, local activities are the
ones directly executed by local users within the subsystem
and are in general not known to the coordinator2. The coor-
dinators’ task is to execute transactional processes in order
to reestablish system-wide consistency when it has been vi-
olated by local activities. Even in case of failures and of
concurrent access to shared resources, the coordinator must
provide certain execution guarantees for these processes.
Firstly, these execution guarantees include guaranteed ter-
mination, a more general notion of atomicity than the stan-
dard all or nothing semantics which is realized by partial
compensation and alternative executions. Secondly, the cor-
rect parallelization of concurrent processes is required.

This paper continues the work presented in [3] with re-
spect to process-based coordination. Starting with this idea,
we focused in our previous work on the provision of execu-
tion guarantees for transactional processes and elaborated a
correctness criterion, prefix-reducibility (PRED; details can
be found in [28]). This correctness criterion addresses con-
currency control and recovery simultaneously while con-
sidering the special structure that can be found in transac-
tional processes. Furthermore, it also allows a high degree
of parallelism by applying the ideas of the composite sys-
tems theory [1]. For the following discussion, it is however
only important to understand the key aspects of transac-
tional process management: The coordinator acts as a kind
of transaction scheduler that is more general than a tradi-
tional database scheduler in that it i.) knows about seman-
tic commutativity of activities, ii.) knows about properties
of activities (compensatable, retriable, or pivot), and iii.)
knows about alternative executions paths in case of failures.
Based on this information, the coordinator ensures global
correctness but only under the assumption that the activi-
ties within the coordination themselves provide the required
functionality as discussed above in section 2.1. Therefore,
certain database functionality is required at the underly-
ing subsystems. Since we do not expect all subsystems to
be databases, in order to deploy coordination processes, a
transactional coordination agentis placed on top of each
subsystem [29] as depicted in figure 1 so that the subsystem
together with its TCA can be seen as a database and treated
accordingly.

3. Transactional Coordination Agents

In what follows, we identify the functionality required
to apply correct transactional process management with re-
spect to the PRED criterion and discuss how it can be pro-

2Aside of (global) and local activities, we also use the notion of opera-
tion. Operations are executed on the underlying data source of a subsystem
as part of an activity.

vided by a TCA. Furthermore, we identify which requisites
the applications must meet in order to allow TCAs to imple-
ment the missing functionality. While the atomicity of ac-
tivities as well as compensation and retriability are required
for the provision of guaranteed termination of single trans-
actional coordination processes, a generalized notion of the
“all-or-nothing” semantics of atomicity, the deferment of
commits and the order preservation are required in order to
support correct concurrency control of transactional coor-
dination processes. Although all approaches to support the
different required properties are discussed independently, it
has to be noted that some of them are closely related. A sin-
gle feature of the underlying system sometimes allows the
TCA to implement and to enforce more than one property.

3.1. Atomicity of Activities

Motivation: During local execution of activities, failures
may occur. Both site and application failures may lead to
undefined states where only some parts of an activity may
have been executed. In order to avoid these undefined states,
it has to be guaranteed that all activities are executed atom-
ically in the sense that they are either executed completely
or not at all (thus, failed activities must not leave any side-
effects).

Approaches: Although atomicity can be ensured by cer-
tain subsystems, there also exists the possibility for TCAs
to take over this task.

Subsystem solution:Ideally, atomicity is directly provided
by the respective subsystem. This is the case for
DBMSs but also for applications supporting the notion
of transactions (e.g., SAP R/3 [25]) or providing only
atomic service invocations. For these applications, no
further work needs to be done by the TCA.

TCA solution:When a subsystem supports non-atomic ac-
tivities, two prerequisites have to be met in order to
allow its TCA to provide atomicity for activities exe-
cuted by the coordinator: The subsystem first has to
provide the necessary information about what has al-
ready been executed by a failed activity until the failure
occurred, and second, the required interfaces to allow
the coordination agent to undo all effects of the failed
activity have to be available.

For the first requirement, log or trace files of the appli-
cation are used. There, not only the single operations
executed on data elements within an activity must be
recorded but also the operations making these changes
persistent. The PDM application WorkManager [10],
for instance, which is based on a relational DBMS, per-
sistently logs all SQL statements performed during an

324

activity in a specific trace file. When a failure occurs,
the undo operations have to be executed only when a
commit operation has been logged. The file based en-
gineering application Pro/ENGINEER [23] provides a
similar trace recording all executed file operations.

The second requirement is based on the observation
that interaction with applications must always take
place via their API. In general, the business logic of an
application is not mapped to the underlying data source
but is performed together with integrity checks at the
application level. As operations executed directly at
the DBMS level or at the data level are not aware of
such constraints, they may have unknown side-effects
leading to a violation of these application-specific con-
straints. Also, due to the inherent complexity of the
applications to be considered, it is in most cases not
possible to determine the appropriate operations at the
data source level (e.g., since the schema of the under-
lying DBMS is totally unknown3) corresponding to an
activity.

A special TCA solution to provide atomicity can be
implemented when the underlying application system
performs some kind of version management. In this
case, the TCA does not have to know each local op-
eration of a failed activity (requirement 1) but rather
which previous version has to be recovered (req. 2).

3.2. Compensation

Motivation: Certain activities may be compensatable,
i.e., can be semantically undone after they have been ex-
ecuted correctly4. When a failure occurs during the en-
actment of a coordination process, if backward recovery is
possible (no non-compensatable activity has already been
executed), compensation of all previous activities in reverse
order is performed for recovery purposes.

Approaches: In general, two different approaches for the
determination of compensating activities exist. In the regis-
tration approach, after appropriate configuration, activities
for semantically compensating a given activity can be de-
fined. The undo approach is, in contrast, more limited as
it only allows compensation by step-wise executing undo
operations.

3The underlying relational DBMS of SAP R/3 contains more than 8600
tables and thus, reasoning about the application semantics of operations
monitored at DBMS level is not at all possible. Also, as business logic is
not mapped to the DBMS, direct access to SAP R/3’s DBMS may have
dramatic consequences for the systems’ consistency.

4This is similar to the semantical undo operations exploited within the
saga model [13]. However, in the saga model, a compensation has to be
available for each subtransaction whereas in the more general transactional
process management, following the flex transaction model [21, 35], activ-
ities may exist that cannot be compensated.

Registration: When a subsystem is integrated into trans-
actional coordination process management, a compen-
sating activity has to be registered for each available
compensatable activity and to be stored persistently
together with the initial activity. Thus, for the man-
agement of metadata and also for logging purposes,
each TCA requires a DBMS. When an activity has to
be executed, the TCA has to perform logging in or-
der to provide the necessary information for a subse-
quent invocation of its compensating activity. Consid-
ering the CIM example described in section 2.1, when
the “Write BOM” activity is executed, the TCA of the
PDM system has to log persistently which objects have
been created in order to determine –together with the
previously registered information about how to delete
BOM entries– the correct compensation. This regis-
tration approach is exploited, for example, by the TCA
implemented for SAP R/3 (see section 4).

Undo approach: Alternatively, when an application pro-
vides a log file or a trace file, resp., where all opera-
tions executed within an activity are logged, this infor-
mation can be exploited for successively compensating
the single operations performed within this activity by
means of undo operations. Again, these undo opera-
tions must be available via the subsystem’s API. Com-
pensation by re-installation of previous versions also
falls in this category.

3.3. Retriability

Motivation: When a non-compensatable activity of a co-
ordination process has terminated successfully, backward
recovery by successively compensating all previously ex-
ecuted activities is no longer possible. Therefore, to sup-
port the guaranteed termination property of coordination
processes, it has to be ensured that all activities following
a non-compensatable activity terminate successfully. How-
ever, since temporary failures have to be considered (e.g.,
due to network problems or the non-availability of a sub-
system), these activities may have to be executed repeat-
edly until they finally succeed. The property of an activity
to succeed exactly once after an arbitrary number of invo-
cations is subsumed under the notion of retriability which is
borrowed from the flex transaction model [21, 35].

Approaches: In general, the requirements to support the
retriability of activities are not directly met by applications.
However, it has to be guaranteed by the subsystem that such
an activity terminates successfully. In contrast, certain fail-
ures occurring on invocation can be intercepted by the TCA.

Persistent Queues:When subsystems support persistent
queuing mechanisms, it can be guaranteed that activi-

325

ties do not get lost. When network failures have to be
considered, activities must be repeatedly invoked until
they are put in the application’s persistent queue.

Exactly once guarantee:Some subsystems guarantee that
activities invoked repeatedly with the same identifier
are executed exactly once which can then be exploited
by the associated TCA. This property is, for example,
available with SAP R/3’s transactional remote function
call (tRFC).

Repeated execution:When neither persistent queuing
mechanisms nor exactly once guarantees are provided
by the subsystem, the TCA has to execute an activity
repeatedly until it succeeds. It must guarantee however
that the effects of a failed activity are always undone
before it is scheduled for the next time.

3.4. Commit Deferment

Motivation: When executing transactional coordination
processes in parallel, consistent interaction between these
processes has to be guaranteed. In the case of failures,
non-compensatable activities are a problem. Consider,
for instance, the CIM example presented in section 2.1.
As dependencies between the construction and the pro-
duction process being executed in parallel exist, the non-
compensatable activity “Produce” can not be committed
before the termination of the construction process. Other-
wise, inconsistencies may arise as, for recovery purposes,
the compensation of the construction process would also re-
quire the compensation of “Produce” which, however, can-
not be performed.

Approaches: To be able to defer the commit of a local
operation, the associated subsystem either has to support the
two phase commit protocol [6] or it has at least to provide
the functionality to emulate it. Otherwise, only the blocking
of processes is possible.

Subsystem solution: The commitment of each non-
compensatable activity has to be be deferred until it
is safe to proceed. This imposes the strongest require-
ments on subsystems: they have to support the XA in-
terface of the X/Open distributed transaction process-
ing standard [15]. When this functionality exists, a two
phase commit (2PC) protocol can be used to commit
all non-compensatable activities of a process. When
all subsystems agreed to commit successfully after the
prepare-to-commit message, the global commit deter-
mined by the coordinator can be deferred according to
the restrictions of the correctness criterion of transac-
tional coordination [28].

2PC agent method:If subsystems do not directly support
the XA interface but provide strict schedules5 [6], 2PC
functionality can be added to them by their TCA fol-
lowing the 2PC agent method [33].

Blocking solution:The restrictions on the execution of non-
compensatable activities can be trivially achieved by
blocking a process whenever a non-compensatable ac-
tivity has to be scheduled. However, although this can
be achieved for any subsystem, it leads in the worst
case to a serialization of the coordination processes
which is not a feasible solution.

Although the deferment of commits imposes the strongest
prerequisites of subsystems, it has to be noted that they have
only to be met when compensation of activities is not pos-
sible.

3.5. Order Preservation

Motivation: When concurrent processes access shared
resources, conflicts between activities of different processes
may occur. Two activities of different processes conflict if
the order of their execution matters, i.e., when their return
values are different for different orders of execution [27]. At
the coordinator level, conflicting activities therefore have to
be ordered. The coordinator imposes the so-called “weak”
order borrowed from the composite systems theory [1]. It
simply requires that the serialization order of two paral-
lel activities does not contradict the imposed weak order.
Thus, the weak order between two conflicting activities al-
lows parallel execution as long as the result is the same as
if both activities would have been executed sequentially.

Approaches: In the two possible approaches, this weak
conflict order is either applied directly or it is transformed
into a sequential order.

Weakly ordered execution:An ideal subsystem directly sup-
ports the weakly ordered execution of conflicting ac-
tivities. A DBMS implementing, e.g., commit-order-
serializability protocols [5] is such an ideal subsystem.
In this case, the TCA can directly pass the conflicting
activities to the subsystem with the commit order de-
rived from the weak conflict order.

Sequential execution:If commit-order-serializability is not
supported, the sequential execution of weakly ordered
activities must be enforced. For all such systems, the
associated TCA acts as a rather primitive scheduler
which invokes conflicting activities sequentially.

5Strict schedules are provided, for example, by systems implementing
a strict two phase locking (S2PL) protocol [6]. This is not only possible for
DBMSs but also for application systems supporting locking functionality
(e.g., SAP R/3 where the request and release of locks can be defined by
application programmers, or check-in/check-out based CAD systems).

326

Although the transformation of the weak order in a sequen-
tial one decreases the degree of parallelism achieved, it can
be done with any application. While order preservation is
the least restrictive property to be provided by the subsys-
tems and their TCAs, sequential execution suffices to guar-
antee correctness with any underlying application.

3.6. Local Concurrency

Motivation: Autonomy of the subsystems to be coordi-
nated is an important issue as local users are normally not
aware of dependencies that exist and thus of coordination
that has to be performed. Therefore, two kinds of activities
do exist within subsystems but must not lead to inconsis-
tencies: Local activities executed by local users via the sub-
systems’ GUI or API (these activities are not known to the
coordinator) and global activities scheduled by the coordi-
nator and executed by the TCA via the API of the subsys-
tem. Thus, aside of concurrency control at the coordinator
level, local concurrency within each subsystem has also to
be considered.

Requirements: To support both global and local activi-
ties, all subsystems have to provide multi-user functional-
ity. Ideally, a subsystem supports multiple parallel connec-
tions to its associated TCA (this is especially required when
the weak conflict order is exploited) while allowing addi-
tional local users to work concurrently. In general, how-
ever, when activities are executed sequentially by the TCA,
one connection via the subsystem’s API is sufficient. Fur-
thermore, each subsystem has to provide a limited form of
concurrency control in order to avoid that local and global
activities are executed on the same object simultaneously
(e.g., check-in/check-out mechanisms ore more sophisti-
cated locking protocols).

Approaches: Correctness in the presence of both local
and global activities can be guaranteed either by the coordi-
nator or by each TCA locally.

Coordinator approach:When the coordinator is notified by
the TCA about local activities, correctness can be guar-
anteed by establishing a weak order between all global
activities and the local activities within the same sub-
system. The TCA then has to enforce this weak order.

TCA approach:When the coordinator is not aware of local
activities, correctness has to be enforced by the TCAs.
Each TCA then has to serialize global and local activi-
ties whereas the commit of global activities is deferred
against all local activities while isolation is given up
against all other global activities [26].

Blocking approach:Correctness of local and global activi-
ties can also be guaranteed when the local commit of
each global activity is deferred until the commit of its
associated transactional coordination process. This is
the most restrictive solution but imposes only the ele-
mentary prerequisites to a subsystem and its TCA.

3.7. Interaction with Subsystems

Motivation: Aside of the database functionality to be pro-
vided on top of the subsystems, TCAs also have to provide
the basic functionality to interact with the underlying appli-
cations. Since coordination processes have to be initiated
after local activities violate global constraints or introduce
new dependencies, TCAs have to perform monitoring to de-
tect these local activities. In order to participate in transac-
tional process management, all subsystems have to support
the monitoring task and thus to provide the necessary infor-
mation that can be exploited by the associated TCAs. Also,
as already discussed in section 3.1, all subsystems have to
provide an API offering all activities specified within the
coordination processes.

Approaches: Monitoring can be supported by the subsys-
tem either actively or passively [29]. The first approach, the
active monitoring, is the most appropriate one. Since the
passive approaches are very limited, they should only be
considered when no active support is provided.

Active Monitoring:To support active monitoring at applica-
tion level, a subsystem has to provide the possibility to
pass control to its TCA by an appropriate call interface.
Additionally, for these purposes, either trigger mecha-
nisms (e.g., Pro/ENGINEER) have to be available or
the customization of application logic (e.g., SAP R/3)
has to be possible. In general, these mechanisms can
be applied for all local activities; the TCA has then to
filter the ones affecting global consistency. When a lo-
cal operation is committed, these mechanisms enable
notify the associated TCA which, in turn, forwards
this notification to the coordinator. Ideally, control is
passed to the TCA before a local activity terminates.
These mechanisms then also allow to defer the com-
mitment of local activities until it is safe to terminate
them. Although it is based on the strongest prerequi-
sites, the active monitoring approach is best suited for
coordination purposes as it provides the full semantics
of the activities to be observed.

Passive Monitoring:Passive monitoring does not impose
any prerequisites to the application system as it is
performed on the underlying data sources. Changes
are detected by comparing a current snapshot of the
data sources with a previous version or, alternatively,

327

Scheduling

Communication

Coordinator

ExecutionMonitoring

Subsystem

Coordination
Agent

Transactional

Figure 2. Structure of a generic TCA

by exploiting information from log files or trace files
when available. However, aside of the asynchronic-
ity of the passive monitoring approach, the semantics
of an activity causing changes within the underlying
data sources may not be captured. Thus, this approach
is only suited for applications with rather simple and
known schemata.

3.8. Structure of Generic TCA

With respect to the functionality that has to be provided
by TCAs, four different modules of a generic TCA can
be identified [34]: communication, scheduling, monitoring
and execution (figure 2).

Monitoring The monitoring module covers the extraction
of local operations out of the underlying application. As for
this, existing interfaces or trigger mechanisms of the sub-
system have to be exploited, the monitoring module has to
be tailored to this subsystem.

Execution Activities specified by the coordinator have to
be mapped to local operations. Again, subsystem-specific
interfaces have to be exploited and thus, the execution mod-
ule has to be tailored as well to the underlying subsystem.
This is also true for all invocations of subsystem operations
both for compensation purposes and for the provision of
atomicity by step-wise undoing the effects of failed activ-
ities.

Scheduling Furthermore, scheduling of local operations
with respect to the activities specified by the coordinator
has to be performed by the scheduling module. This in-
cludes the preservation of the given orders as well as the
provision of local atomicity, the guaranteed availability of
compensating activities, and eventually the deferment of lo-
cal commits. For these purposes, the TCA uses a DBMS

for persistent logging of the activities executed within the
subsystem together with the associated parameters for com-
pensation purposes and the storage of necessary metadata.
This includes, for example, the compensating activities reg-
istered during configuration. If the underlying subsystem
is based on a database and if the TCA has access to this
DBMS, it can be exploited; otherwise, a separate DBMS
has to be made available for the TCA.

Communication Finally, a common communication pro-
tocol has to be supported for the interaction between the
coordinator and the TCAs.

3.9. Analysis of Subsystem Properties

The discussion of the previous sections is summarized
in table 1 where both the properties of an ideal subsystem
from the point of view of the requirements of transactional
process management and the minimal set of properties to be
met by subsystems are listed. These basic properties are re-
quired to allow TCAs to enhance subsystems with the func-
tionality necessary for participating in transactional coordi-
nation processes.

4. Transactional Coordination Agents in
Practice: TCA for SAP R/3

SAP R/3 is one of the most commonly used applica-
tion systems for business management purposes. It consists
of specialized modules for certain application areas (e.g.,
production planning, logistics, or human resource manage-
ment) and thus plays an important role in CIM areas as pre-
sented in section 2.1. The system is built in a client/server
architecture and is based on a relational DBMS [7].

As a proof of concept of the ideas presented in this paper,
a transactional coordination agent for SAP R/3 has been im-
plemented [30]. The architecture of this TCA is depicted in
figure 3. The agent specific parts are colored in light gray
whereas the standard SAP R/3 system is depicted in white
color. It is tightly integrated into the core system as, for
instance, R/3’s underlying database is used for the manage-
ment of the TCAs’ metadata and is accessed for this purpose
by the standard DBMS interface of SAP R/3. This SAP R/3
TCA is very general in nature as it not only supports the
execution of arbitrary functions within SAP R/3 but also
complete workflow processes within the system. The ker-
nel of the TCA is itself a SAP workflow process (meta pro-
cess) in which the function or the workflow to be executed
is embedded in a generic way by simply passing its name as
parameter to the meta process. In what follows, we describe
how the required TCA functionality identified in section 3
is implemented for this SAP R/3 agent.

328

Ideal subsystem Basic requirements

Atomicity Atomicity is provided for all activities
Subsystem provides log files; appropriate
operations available via API

Compensation
Compensation activities are provided via API; Subsystem provides log files; operations for
registration during configuration step-wise undo available via API

Retriability
Provides persistent queues or exactly once Activities must lead to success; atomicity to be
guarantee; activities must lead to success provided by TCA (repeated invocation)

Commit
Support of 2PC protocol (XA interface)

None, if all activities are compensatable,
Deferment otherwise strict schedules
Order

Support of commit-order-serializability
None (sequential execution of coordination

Preservation activities)

Concurrency
Multiple connections via API; guarantee of One TCA connection via API; guarantee of cor-
correct concurrency of local and global activitiesrect concurrency of local and global activities

Execution
All activities are available via the All coordination activities are available via
subsystem’s API the subsystem’s API

Monitoring
Pass control to TCA; filtering performed Pass control to TCA for all activities (only in
within subsystem special cases: passive monitoring approach)

Table 1. Summary of subsystem properties to be met for transactional coordination processes

Interaction Communication with the coordinator takes
place by exploiting the remote function call6 (RFC) of SAP
R/3 which is available via a set of C library functions. It
supports both multiple parallel calls of R/3 functions from
external applications as well as calls of external applica-
tions from within the R/3 system via the SAP gateway. The
communication module (RFC library adapter) is thus a thin
software layer transforming requests from the coordinator
into RFC calls and vice versa. For execution purposes, the
meta workflow of the TCA is called with a specification of
the name of the function or process to be executed. In order
to support the monitoring task, the R/3 transactions relevant
for coordination purposes that are invoked by a local user
have been slightly modified by adding a RFC call to the co-
ordinator which can either be performed synchronously or
asynchronously. This customization is possible because the
ABAP/4 sources7 of all R/3 transactions are available.

Atomicity SAP R/3 supports the notion of transactions
and guarantees ACID properties for them. When a single
function has to be executed as activity given by the coor-
dinator, atomicity is guaranteed. When a complete work-
flow process has to be executed, however, appropriate fail-
ure handling mechanisms have to be implemented within
this process to do rollback in the case of failures in order to
provide the required all-or-nothing semantics of activities.

6 SAP’s implementation of the remote procedure call (RPC).
7ABAP/4 (Advanced Business Application Programming Language) is

the 4th generation programming language the greatest part of the R/3 sys-
tem — aside of a small C kernel — is implemented in.

Compensation In general, the meta workflow encom-
passes only two activities: the function or process to be ex-
ecuted and its associated compensation. It thus follows the
idea of an explicit registration of the compensation but has
an essential advantage. In SAP R/3, the instances of work-
flow processes together with the associated parameters are
stored persistently in the underlying DBMS. Thus, no addi-
tional effort has to be taken to log the parameters of an activ-
ity executed by the coordinator. After an activity (a function
or a workflow process) of the meta workflow has been exe-
cuted successfully, the meta process performs an idle wait,
thus does not consume any resources. In the case the coordi-
nator determines the necessity of compensation, an internal
event in SAP R/3 is generated via a RFC library call and
the next activity of the meta workflow, the compensation,
can be executed without explicitly specifying the required
parameters. Otherwise, when compensation no longer has
to be considered, the meta process is terminated.

Order Preservation The requirement of order preserva-
tion is also met by the R/3 system although execution of
transactions with respect to the weak conflict order is not
supported. Each application object to be updated is in gen-
eral exclusively locked during a R/3 transaction and thus,
conflicting transactions are serialized in commit order.

Retriability The requirement of retriability of activities
is achieved by exploiting SAP R/3’s transactional remote
function call (tRFC) mechanisms. After the RFC library

329

SAP R/3

SAP Gateway

Meta

Trans-
actions

ok comp.

Workflow

Agent
Metadata

Coordinator Local User

SAP GUI

RFC

(Communication)
RFC Library Adapter

...
(Moni-
toring)

(S
ch

ed
ul

in
g)

(Execution)

SAP R/3

Figure 3. TCA for SAP R/3

adapter of the TCA has requested a tRFC identifier from
the R/3 system, all invocations of a retriable activity are per-
formed with this ID and the R/3 system guarantees that is is
executed only once although multiply invoked.

Commit Deferment The deferment of commits with re-
spect to the 2PC protocol is not available for external RFC
calls (but only for RFC calls within the same R/3 system).
However, this imposes no restrictions as compensation can
be provided for all R/3 activities.

5. Related Work

The termagentis frequently used in a variety of contexts.
Although there is no formal definition, we rely on a defini-
tion synthesized from several others [17]:Agents are active,
persistent (software) components that perceive, reason, act,
and communicate.

This definition is very general and subsumes the various
directions and specializations of agent technology. Agents
may be adaptive, mobile (itinerant), autonomous, or even
intelligent, all comprised within the reasoning component
of the agent. The ability to both act and perceive allows an
agent to interact with its environment. For communication,
various protocols such as, for instance, KQML [11], have
been developed.

A very strong research direction in agent technology is
the use of agents to facilitate interoperability in complex
systems [14], however with the focus on query processing
and without considering execution guarantees for this en-

deavor. In these approaches, agents model the resources
they are associated with and use a common ontology for
semantic integration [19]. Local models made known to
other agents form the basis for negotiation among different
agents and for the integration of models at a semantically
higher level of abstraction. However, as in schema integra-
tion for federated database management systems [31], indi-
vidual models have to be related to each other and incom-
patibilities resolved. Once this is done, interoperability can
be achieved based on the ability of the agents to communi-
cate with each other. This kind of agent technology exploits
concepts also used for, e.g., mediators [32], and wrappers
[12, 8]. Application agents as defined within the workflow
reference model of the workflow management coalition [16]
are used in a very similar way.

The provision of a common interface on top of het-
erogeneous subsystems is a fundamental task of coordina-
tion agents. Although our TCAs provide this functionality,
schema integration is beyond the scope of this paper. We
concentrate on the provision of database functionality even
if this is not directly supported by the underlying applica-
tions. Thus, our TCAs are similar to two phase commit
(2PC) agents proposed for federated database management
systems [33] but provide considerably more database func-
tionality than just atomic commitment.

6. Conclusion

In this paper, we have discussed the necessity of trans-
actional coordination agents in order to enforce consistency
in composite systems consisting of different heterogeneous,
autonomous, and distributed applications. Coordination is
performed based on processes defined on top of all appli-
cation systems. To support execution guarantees of coor-
dination processes, the underlying applications are required
to provide transactional functionality. However, many sys-
tems do not meet these requirements. Thus, they must be
enhanced by TCAs which, in turn, have to provide the miss-
ing functionality.

Based on a correctness criterion for transactional pro-
cesses we have elaborated as part of previous work, we have
identified both the properties that have to be provided by
applications or their TCAs from the point of view of the
coordinator as well as the minimal set of properties of ap-
plications in order to allow TCAs to implement the miss-
ing functionality. Then, we have discussed how subsystems
with given properties can be enhanced by TCAs. This de-
tailed classification provides the necessary information in
order to first determine whether transactional coordination
processes in composite systems with given applications can
be applied and second, which functionality is necessary and
how the required TCAs can be built. Finally, with the SAP
R/3 TCA we have presented one out of several TCAs that

330

have been implemented for applications in the area of com-
puter integrated manufacturing.

Our transactional coordination approach has, in addi-
tion to the CIM scenario discussed throughout this paper,
also been applied to geographical information systems [24].
In future work, we will apply this coordination approach
within the WISE project of ETH Z̈urich [2] to applications
in the area of electronic commerce.

References

[1] G. Alonso, S. Blott, A. Feßler, and H.-J. Schek. Correct-
ness and Parallelism in Composite Systems. InProceedings
of the ACM Symposium on Principles of Database Systems
(PODS’97), Tucson, Arizona, May 12-15 1997.

[2] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt,
and N. Weiler. WISE: Business to Business E-Commerce.
In Proc. of the 9th Int. Workshop on Research Issues in Data
Engineering (RIDE-VE’99), Sydney, Australia, Mar. 1999.

[3] G. Alonso, C. Hagen, H.-J. Schek, and M. Tresch. Dis-
tributed Processing over Stand-alone Systems and Applica-
tions. InProc. of the 23rd VLDB conference, Aug. 1997.

[4] G. Alonso and C. Mohan.Workflow Management: The Next
Generation of Distributed Processing Tools, chapter 1. In:
[20]. Kluwer Academic Publishers, 1997.

[5] C. Beeri, P. Bernstein, and N. Goodman. A model for con-
currency in nested transaction systems.Journal of the ACM,
36(2):230–269, Apr. 1989.

[6] P. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[7] R. Buck-Emden and J. Galimow.SAP R/3 System: A
Client/Server Technology. Addison-Wesley, 1996.

[8] M. Carey, L. Haas, P. Schwarz, et al. Towards Hetero-
geneous Multimedia Information Systems: The Garlic Ap-
proach. InProceedings of the 5th Int. Workshop on Research
Issues in Data Engineering (RIDE-DOM’95), Mar. 1995.

[9] Q. Chen and U. Dayal. A Transactional Nested Process
Management System. InProc. of the 12th Int. Conference
on Data Engineering (ICDE’96), pages 566–573, 1996.

[10] CoCreate Software GmbH.WorkManager, Rel. 3.5, 1996.
[11] T. Finin, R. Fritzson, and D. McKay. KQML as an Agent

Communication Language. InProceedings of the 3rd Inter-
national Conference on Information and Knowledge Man-
agement (CIKM’94), pages 456–463, Nov. 1994.

[12] H. Garcia-Molina et al. The TSIMMIS Approach to Medi-
ation: Data Models and Languages. InProceedings of the
2nd International Workshop on Next Generation Informa-
tion Technology Systems (NGITS’95), 1995.

[13] H. Garcia-Molina and K. Salem. Sagas.ACM SIGMOD
Record, 16(3), 1987.

[14] M. Genesereth and S. Ketchpel. Software Agents.Commu-
nications of the ACM, 37(7):48–53, July 1994.

[15] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[16] D. Hollingsworth. Workflow Management Coalition: The
Workflow Reference Model. Workflow Management Coali-
tion, Dec. 1993. Document TC00-1003.

[17] M. Huhns and M. Singh.Agents and Multiagent Systems:
Themes, Approaches and Challenges, chapter 1, pages 1–
27. In: [18]. Morgan Kaufmann, 1998.

[18] M. Huhns and M. Singh, editors.Readings in Agents. Mor-
gan Kaufman Publishers, 1998.

[19] M. Huhns, M. Singh, and T. Ksiezyk. Global Information
Management via Local Autonomous Agents. In[18] , pages
36–45. Morgan Kaufmann, 1998.

[20] S. Jajodia and L. Kerschberg, editors.Advanced Transaction
Models and Architectures. Kluwer, 1997.

[21] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A
Transaction Model for Multidatabase Systems. InProceed-
ings of the 12th Int. Conference on Distributed Computing
Systems (ICDCS’92), pages 56–63, June 1992.

[22] M. Norrie, W. Schaad, H.-J. Schek, and M. Wunderli. CIM
Through Database Coordination. InProceedings of the Int.
Conference on Data and Knowledge Systems, May 1994.

[23] Parametric Technology Corporation, Waltham, MA, USA.
Pro/ENGINEER User Manual, 1993.

[24] L. Relly, H. Schuldt, and H.-J. Schek. Exporting Database
Functionality – TheCONCERTWay. IEEE Data Engineer-
ing Bulletin, 21(3), 1998. Special Issue on Interoperability.

[25] SAP AG. SAP R/3 Online Documentation, 1996.
[26] W. Schaad. Transactions in Heterogeneous Federated

Database Systems. PhD thesis, Swiss Federal Institute of
Technology (ETH) Z̈urich, 1996. In German.

[27] H.-J. Schek, G. Weikum, and H. Ye. Towards a Unifying
Theory of Concurrency Control and Recovery. InProceed-
ings of the ACM Symposium on Principles of Database Sys-
tems (PODS’93), pages 300–311, June 1993.

[28] H. Schuldt, G. Alonso, and H.-J. Schek. Concurrency Con-
trol and Recovery in Transactional Process Management.
In Proceedings of the ACM Symposium on Principles of
Database Systems (PODS’99), Philadelphia, Pennsylvania,
USA, May 31-June 2 1999.

[29] H. Schuldt, H.-J. Schek, and M. Tresch. Coordination in
CIM: Bringing Database Functionality to Application Sys-
tems. InProc. of the 5th European Concurrent Engineering
Conference (ECEC’98), Erlangen, Germany, Apr. 1998.

[30] C. Schuler. Design and Development of a Coordination
Agent for the Integration of SAP R/3 in Workflow Processes.
Diploma thesis, Database Research Group, Institute of In-
formation Systems, ETH Z̈urich, July 1998. In German.

[31] A. Sheth and J. Larson. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases.ACM Comp. Surveys, 22(3):183 – 236, 1990.

[32] G. Wiederhold. Mediators in the Architecture of Future In-
formation Systems.IEEE Computer, 25(3):38–49, 1992.

[33] A. Wolski and J. Veijalainen. 2PC Agent Method: Achiev-
ing Serializability in Presence of Failures in a Heteroge-
neous Multidatabase. InProc. of the IEEE PARBASE’90
Conference, pages 321–330, Mar. 1990.

[34] M. Wunderli. Database Technology for the Coordination
of CIM Subsystems. PhD thesis, Swiss Federal Institute of
Technology (ETH) Z̈urich, 1996.

[35] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. En-
suring Relaxed Atomicity for Flexible Transactions in Mul-
tidatabase Systems. InProceedings of the ACM SIGMOD
Conference, pages 67–78, 1994.

331

	. Introduction
	. Transactional Coordination
	. Motivation
	. Transactional Process Management

	. Transactional Coordination Agents
	. Atomicity of Activities
	. Compensation
	. Retriability
	. Commit Deferment
	. Order Preservation
	. Local Concurrency
	. Interaction with Subsystems
	. Structure of Generic TCA
	. Analysis of Subsystem Properties

	. Transactional Coordination Agents in Practice: TCA for SAP R/3
	. Related Work
	. Conclusion

