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Abstract

The unified theory of concurrency control and recovery inte-
grates atomicity and isolation within a common framework,
thereby avoiding many of the shortcomings resulting from
treating them as orthogonal problems. This theory can be
applied to the traditional read/write model as well as to
semantically rich operations. In this paper, we extend the
unified theory by applying it to generalized process struc-
tures, i.e., arbitrary partially ordered sequences of trans-
action invocations. Using the extended unified theory, our
goal is to provide a more flexible handling of concurrent pro-
cesses while allowing as much parallelism as possible. Un-
like in the original unified theory, we take into account that
not all activities of a process might be compensatable and
the fact that these process structures require transactional
properties more general than in traditional ACID transac-
tions. We provide a correctness criterion for transactional
processes and identify the key points in which the more flex-
ible structure of transactional processes implies differences
from traditional transactions.

1 Introduction
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In conventional databases, concurrency control and recov-
ery are well understood problems. Unfortunately, this is
not the case when transactions are grouped into entities
with higher level semantics, such as transactional processes
[Alo97]. Some initial work has been done in this direction:
studying atomicity (spheres of joint compensation [Ley95],
or flexible transactions [ELLR90, ZNBB94]) in a single pro-
cess and analyzing concurrency control without considering
recovery [AAHD97]. Practical experience, however, shows
that concurrency control and recovery are related problems
and they both need to be solved in order to produce com-
plete, feasible solutions.

In this paper, we present a first attempt to develop a
theoretical framework in which to reason about concurrency

∗Part of this work has been funded by the Swiss National Science Foun-
dation under the project Wise (Workflow based Internet Services) of the
Swiss Priority Programme “Information and Communication Systems”.

control and recovery in transactional processes. The chal-
lenge we face is to design a single correctness criterion ac-
counting for both concurrency control and recovery which,
at the same time, copes with the added structure found in
processes. In particular, and unlike in traditional transac-
tions, processes introduce flow of control as one of the ba-
sic semantic elements. Thus, the correctness criteria must
take into consideration that processes already impose order-
ing constraints among their different operations and among
their alternative executions, constraints that will play a sig-
nificant role in determining how process execution can be
interleaved. Similarly, processes integrate invocations to
applications with different atomicity properties. Therefore,
we cannot impose the strong requirements used in other
models (like ConTracts [WR92, RSS97], or CREW [KR98]
where the inverses of all process steps have to exist).

The contribution of the paper is threefold. First, it
clarifies the problem of concurrency control and recovery
in transactional processes without making unreasonable as-
sumptions about their environment. Second, starting with
the correctness of a single process based on flexible transac-
tions [ELLR90, ZNBB94] it provides a correctness criterion
for concurrent execution of several processes generalizing
and adapting the unified unified theory of concurrency con-
trol and recovery [SWY93, AVA+94, VHYBS98] to transac-
tional processes thereby extending the applicability of these
models. In contrast to other approaches proposing a vari-
ety of transaction models (like TSME [GHS95, GHKM94]),
this paper provides a single model covering all requirements
that arise in the application areas of transactional process
management. Third, it discusses several realistic environ-
ments where these ideas are being implemented. We believe
that transactional processes are becoming more and more
important in applications such as, for instance, electronic
commerce or virtual enterprises, workflow management sys-
tems, process support systems, or specialized coordination
tools. Therefore, we expect the results of this paper to be
of practical relevance in a variety of applications.

The paper is organized as follows: In section 2, we
present a sample application scenario for transactional pro-
cesses. In section 3, we develop a correctness criterion for
transactional processes and discuss its impact on concur-
rency control and recovery. Section 4 concludes the paper.

2 Motivation

Computer Integrated Manufacturing (CIM) environments
are a good example of the use of transactional processes to
coordinate different subsystems [NSSW94]. In the example
shown in figure 1, two processes are used to control the de-
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Figure 1: Concurrent execution of a construction process and a production process in the CIM scenario

velopment and production of new products1. In this case,
production does not follow mass-production techniques but
aims to customize each one of the products to deliver. Thus,
the development of the product and its manufacture are
strongly tied. The construction process contains all devel-
oping steps from the design of a new part to the final test
and the subsequent technical documentation. It encom-
passes a CAD system, a product data management sys-
tem (PDM), a test database as well as a technical docu-
mentation repository. The production process includes all
manufacturing steps from the ordering of materials to the
production floor including the necessary scheduling. Thus,
the production process encompasses the PDM system, a
business application, a program repository and a product
DBMS. Activities of transactional processes are service in-
vocations in these underlying subsystems. As the bill of
materials (BOM) of a new product generated within the
construction process provides the necessary input required
by the production process, dependencies between both pro-
cesses exist.

2.1 Extending the Notion of Atomicity

The example above clearly shows why transactional pro-
cesses must provide a more general notion of atomicity than
traditional transactions. Consider the construction process
in figure 1. If a failure is detected during the test activity of
this process, it is certainly not desirable to undo all previous
work including the long running design activity. It is more
appropriate to undo only the PDM entry and document the
CAD drawing so as to facilitate later reuse. This documen-
tation can be alternatively executed instead of the technical
documentation of the whole part which would have been
done if the test activity would have succeeded. The possi-
bility of executing alternatives in case of failures therefore
generalizes the all-or-nothing semantics of atomicity and
leads to a more flexible notion of atomicity used for trans-
actional processes.

1This example reflects the practice followed by one of our industrial
partners in a recently concluded research project [SST98].

2.2 Concurrency and Interference

An additional prerequisite is to guarantee consistent inter-
action between processes. Consider a construction process
and a production process being executed in parallel as de-
picted in figure 1. This parallelization is important in prac-
tice as it dramatically reduces the time to market of new
products. As depicted in figure 1, only the two activities
within the PDM system do conflict. For concurrency con-
trol purposes, the ordering of these two activities would be
sufficient. However, when recovery has to be considered,
further dependencies exist. As no inverse for the produc-
tion activity exists, it must not be executed before the test
terminated successfully. If the test fails, the PDM entry is
compensated within the construction process and the BOM
read by the production process is invalidated. Therefore, all
activities of the production process would have to be com-
pensated, too. However, if production of parts is already
performed, this would lead to severe inconsistencies as no
valid construction and BOM of these parts exists.

2.3 Transactional Subsystems

A transactional process scheduler coordinates transactional
processes on top of transactional subsystems and ensures
correctness even in case of failures. We assume these sub-
systems to have functionality such as the atomicity of ser-
vice invocations, and either the ability to compensate al-
ready committed services or to support a two phase com-
mit protocol. When the application does not provide such
functionality, it will be provided by wrapping this appli-
cation system with a transactional coordination agent. In
this paper we concentrate on transactional process manage-
ment on top of such transactional, possibly agent-wrapped
subsystems. The problem of wrapping these systems by
transactional coordination agents is important but beyond
the scope of this paper. Some aspects of this problem are
discussed in [NSSW94, SST98].
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3 Concurrency Control and Recovery in Transactional

Processes

In the following, we will consider transactional processes ex-
ecuted by a transactional process scheduler on top of sub-
systems supporting the execution of local transactions as
shown in figure 1. In this section, we derive a correctness
criterion to reason about correct concurrency control and
recovery of these transactional processes in a single frame-
work.

3.1 Process Model

Each subsystem provides a limited set of transactional ser-
vices that can be invoked by processes. Let Â be the set
of services (activities) provided by all subsystems. For each
invocation of an activity of Â, return values are provided.
As activities are itself transactions in the underlying subsys-
tems, they are by definition atomic and therefore terminate
either committing or aborting. Activities differ in terms
of their termination guarantees: they are either compensa-
table, retriable, or pivot (as in the flex transaction model
[MRSK92, ZNBB94]). In the case of compensatable activ-
ities, a compensation service is provided by the underlying
subsystem, retriable activities are guaranteed to success-
fully terminate after a finite number of invocations, and
pivot activities are those which are neither compensatable
nor retriable. These different termination guarantees of ac-
tivities will be defined more formally as follows using the
notion of activity sequence to denote the sequential execu-
tion of activities.

Definition 1 (Effect-free Activities)
Let σ =< ai aj . . . an > be a sequence of activities from
Â. The sequence σ is effect-free if, for all possible activity
sequences α and ω from Â, the return values of α and ω in
the concatenated activity sequence < α σ ω > are the same
as in the activity sequence < α ω >. 2

A special case of effect-free activities is the sequence
σ =< ai a−1

i > consisting of a compensatable activity ai

and its compensating activity a−1
i . More formally,

Definition 2 (Compensatability and Compensation)
An activity ai ∈ Â is compensatable if an activity a−1

i ∈ Â
exists where the activity sequence σ =< ai a−1

i > is effect-
free. The activity a−1

i is then called the compensating
activity of ai. 2

In order to formally define retriable activities, the in-
vocation of activities has to be labeled. Let ai(n) the nth

invocation of activity ai.

Definition 3 (Retriable Activity)
An activity ai is retriable if some m ∈ N exists with ai(j)
terminating with abort for 1 ≤ j < m while ai(m) is guar-
anteed to terminate with commit. 2

The guarantee that there is always one invocation which
will commit ensures that retriable activities will not fail.
More formally,

Definition 4 (Failure of an Activity)
An activity ai has failed if invocation ai(1) has terminated
with abort and no m ∈ N exists where ai(m) is guaranteed
to commit. 2

To guarantee the property of compensatability, a com-
pensating activity a−1

ik
is (i) itself not compensatable, how-

ever, it is (ii) retriable and therefore guaranteed to commit.
Note further that according to the flex transaction model
both pivot activities and retriable2 activities do not have a
compensating activity.

Intuitively, a process is an arbitrary collection of ac-
tivities in arbitrary subsystems. For the process model,
we adopt and refine ideas of the flex transaction model
[ELLR90, ZNBB94]. More formally,

Definition 5 (Process)
A process, P , is a triple (A,�,�), where A ⊆ Â is a set of
activities, � is a partial order over A with �⊆ (A×A),
and � is a partial order defined over � with � ⊆ (� ×�)
establishing alternative execution paths by specifying for
each activity a ∈ A an ordering on the activities a′ ∈ A
directly following it. 2

For notational purposes, a process is assumed to have a
unique identifier, for instance, Pi. Activities within Pi are
denoted as ac

i1
, ap

i2
, ... , ar

in
. The superscript index denotes

the property of an activity, the subscript indices denote the
process id and a unique id of the activity within the process
(activity ar

in
, for instance, is an activity of process Pi with

id n and it is retriable). The commitment of process Pi

is denoted by Ci, its abort by Ai. If the property of an
activity is not relevant, we will omit this specification.

The semantics of the precedence order � within pro-
cesses is a temporal one. This means that for any two
activities, aik

and ail
, if aik

� ail
, then ail

can only be
executed after aik

committed. The preference order � de-
fined over pairs of connectors starting both from the same
activity establishes the order in which the connectors will
be evaluated. If there are two order constraints in � with
(aih

�ij
aij

) � (aih
�ik

aik
) then, if aik

is executed, either
aij

must have failed or both ac
ij

and (ac
ij

)−1 must have been
executed. Also, all activities succeeding ac

ij
must have been

compensated before aik
is able to be executed. Thus, as an

extension of the flex transaction model, these further order
constraints derived from � have to be respected when ex-
ecuting alternatives. However, these alternative execution
paths have the same semantics as the preference order of
the flex transaction model. Note that both orders, � and
�, are irreflexive, transitive, and acyclic. To avoid indeter-
minism in the execution, when, by transitivity, � associates
several connectors, it can only define a total order.

ac
11

ap
12

ac
13

ap
14

ar
15

ar
16

Figure 2: Process P1 with precedence and preference order

2In the context of transactional process management, we could also
consider retriable activities to be as well compensatable in order to give a
scheduler more options for executing alternatives in case of failures. For
the sake of simplicity, we however follow the less general flex transaction
model here.
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Example 1 Consider process P1 depicted in figure 2. The
precedence order of P1 is depicted with solid lines, the pref-
erence order of P1 with dotted lines. Given these orders,
ar
15

and therefore also ar
16

can only be executed after ac
13

has
failed or after ap

14
has failed and ac

13
has been compensated

by a−1
13

. Therefore, as depicted in figure 3, four possible
valid executions of P1 exist. 2
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Figure 3: Possible executions of process P1

We consider a single transactional process to be well de-
fined if it has well-formed flex structure [ZNBB94]. The
basic well-formed flex structure consists of a set of com-
pensatable activities followed by one pivot activity which is
again followed by a set of retriable activities. Additionally,
the pivot activity can recursively be succeeded by a com-
plete well-formed flex structure given that an alternative
consisting only of retriable activities exists for it.

In [ZNBB94] it has been shown that well-formed flex
structures always guarantee the existence of one execution
path that can be executed correctly while all other paths
will leave no effects. In the following, processes having well-
formed flex structures are called processes with guaranteed
termination (this is equivalent to the “semi atomicity” in
the flex transaction model). The guaranteed termination
property of transactional processes is a generalization of
the “all-or-nothing” semantics of traditional ACID trans-
actions as it ensures that at least one of eventually many
valid executions (specified by the alternatives) is effected.
In what follows, we will only consider processes with guar-
anteed termination.

For notational purposes, the first non-compensatable ac-
tivity of a process with guaranteed termination Pi will be
called state-determining activity si0 of Pi. All activities of
Pi preceding si0 are compensatable. Therefore, backward
recovery can be performed by successively applying com-
pensation if si0 fails or if an abort Ai of Pi is performed
before si0 committed. Similarly, once si0 has terminated
successfully, forward recovery is guaranteed. From here,
a process with guaranteed termination can be in any of
two states. A process, Pi, is said to be forward-recoverable,
F −REC, after si0 has been committed, otherwise Pi is
backward-recoverable, B −REC. The sequence of compen-
sating activities to be executed for recovery purposes of a
process in state B −REC is its backward recovery path. The
sequence of activities leading from any activity succeeding
si0 to the well-defined termination of a process is the for-
ward recovery path. The set of activities of a process Pi to
be executed for recovery purposes (either forward or back-
ward) will be called the completion of Pi denoted by C(Pi).
Note that in the case of Pi being in state B −REC, C(Pi)
consists only of compensating activities, while, if Pi is in
state F −REC, C(Pi) consists of both compensating activ-
ities (local backward recovery to a state-determining ele-
ment sik

)3, and retriable activities. While the failure of
3As we consider basic well-formed flex structures recursively, multiple

local state-determining activities sik
of Pi may exist.

one activity leads to the execution of the next alternative
given by the preference order �, the abort Ai of a process in
F −REC considers only the alternative with lowest priority
which consists only of retriable activities and thus guaran-
tees safe termination. Similarly, the abort Ai of a process
Pi in B −REC considers only compensation in backward
order and no further alternative execution paths. The com-
pletion C(Pi) of a process Pi will be an important notion
when we define complete process schedules below.

Example 2 Consider again process P1 depicted in figure 2.
Obviously, P1 is a process with guaranteed termination as
it has well-formed flex structure. The pivot activity ap

12
is

the state-determining activity s10 of P1. Before the suc-
cessful termination of ap

12
, P1 is in B −REC and in this

state, the completion C(P1) consists of {a−1
11
} if ac

11
has

been executed correctly. After successful termination of ap
12

,
P1 is in F −REC. After activity ac

13
, for instance, has

terminated successfully, the completion of P1 evaluates to
C(P1) = {a−1

13
� ar

15
� ar

16
}. 2

3.2 Process Schedules and Correctness

Following [VHYBS98], the notion of conflicting activities is
defined using the return values of activities.

Definition 6 (Commutativity)
Two activities aik

, ajl
∈ Â commute if for all activity

sequences α and ω from Â, the return values in the con-
catenated activity sequence < α aik

ajl
ω > are identical to

the return values of the activity sequence < α ajl
aik

ω >.
2

Two activities are in conflict if they do not commute.
Furthermore, we consider commutativity between all activ-
ities of Â to be perfect [VHYBS98]. This means that if two
activities ac

ik
and ajl

conflict, then we will also consider a
conflict between aα

ik
and aβ

jl
for all possible combinations of

α, β ∈ {−1, 1}. Otherwise, if ac
ik

and ajl
commute, we will

assume aα
ik

and aβ
jl

to commute for all possible combinations
of α, β ∈ {−1, 1}.

Given the structure of processes with guaranteed termi-
nation and the information about conflicting activities, a
process schedule can be defined as follows.

Definition 7 (Process Schedule)
A process schedule S is a triple (PS ,AS ,�S) where PS is
a set of processes, AS ⊆ Â is a subset of all activities of
all processes of PS with AS ⊆ {aij

| aij
∈ Ai ∧ Pi ∈ PS},

�S is a partial order between activities of AS with �S ⊆
(AS ×AS). For the order �s the following has to hold:

1. ∀ Pi : �i ⊆ �S

2. ∀ (aik
, ajl

), i 6= j, such that aik
and ajl

do not com-
mute: aik

�S ajl
or ajl

�S aik
2

Note that by 7.1, a process schedule guarantees only
legal executions of each process Pi ∈ PS thus respecting
both Pi’s precedence and preference order.

Formally, the above definition of a process schedule looks
like the classical definition of a schedule. However, it implic-
itly includes information about the properties of all activi-
ties (compensatable, pivot or retriable) and thus, also about
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Figure 4: Serializable (a) and non-serializable (b) concurrent execution of processes P1 and P2

the different states of processes (B −REC or F −REC) and
it includes the alternative execution of a process Pi as even
in a complete process schedule where all processes termi-
nate committing [BHG87], not necessarily all of Pi’s ac-
tivities are considered. This does however not influence
the notion of serializability. A process schedule is serializ-
able if it is conflict equivalent to a serial execution of all
processes. Hence, a serializable process schedule does not
contain cyclic dependencies [BHG87].

Example 3 Consider the two processes, P1 and P2, de-
picted in figure 4(b) being executed in parallel. As the pairs
of activities (ac

11
, ac

21
), (ap

12
, ar

24
), and (ar

15
, ar

25
) do not com-

mute (denoted by dashed arcs), they have to be ordered in
the process schedule S′. Also, the intra-process orders of P1

and P2 must be respected in S′. Therefore, process sched-
ule S′ at time t2 evaluates to: S′

t2 = (PS′
t2

,AS′
t2

,�S′
t2

)
with the set of processes PS′

t2
= {P1, P2}, the set of activi-

ties A S′
t2

= {ac
11

, ap
12

, ac
13

, ac
21

, ac
22

, ap
23

, ar
24
}, and the order

�S′
t2

= {(ac
11

�S′
t2

ap
12

�S′
t2

ac
13

), (ac
21

�S′
t2

ac
22

�S′
t2

ap
23
�S′

t2
ar
24

), (ac
11
�S′

t2
ac
21

), (ar
24
�S′

t2
ap
12

)}. Obviously,
process schedule S′

t2 is not serializable because of cyclic de-
pendencies between P1 and P2. 2

Example 4 Consider again processes P1 and P2, now ex-
ecuted as depicted in figure 4(a). At time t2, the process
schedule St2 is serializable. Here, no cyclic dependencies
between P1 and P2 do exist as the order �St2

evaluates
to �St2

= {(ac
11
�St2

ap
12
�St2

ac
13

), (ac
21
�St2

ac
22
�St2

ap
23
�St2

ar
24

), (ac
11
�St2

ac
21

), (ap
12
�St2

ar
24

)}. 2

3.3 Completed Process Schedules

The serializability of transactional processes allows to rea-
son about correct concurrency control. In order to addition-
ally reason about correct recovery when, for instance, a fail-
ure of the process scheduler occurs, we now make recovery-
related activities explicit by applying the unified theory
of concurrency control and recovery [SWY93, AVA+94,
VHYBS98] to transactional processes. Therefore, we re-
place each abort activity Ai of a process Pi by the activities
of its completion C(Pi). This replacement of abort activi-
ties leads to the notion of the completed process schedule S̃.
In order to guarantee correct recovery, all active processes
Pi1 , . . . , Pin

are assumed to abort, which must be treated

jointly by using a group abort operation A(Pi1 , . . . , Pin).
Note that aborted processes may be in F −REC. There-
fore, not only compensation of previously executed activi-
ties but all activities of the forward-recovery path of aborted
processes have to be considered, thus leading to crucial dif-
ferences compared with the standard undo procedure for
recovery. This is also reflected in the notion of completed
process schedule in contrast to the expanded schedule of
the traditional unified theory which contains only additional
compensation compared with the initial schedule. The way
a process schedule is completed is depicted in figure 5. Af-
ter Ai has been replaced by all activities of C(Pi), a process
Pi can be considered as committed.

������������������������������������������������������������

regular activities

��

~
Completed Process Schedule S

Process Schedule S

recovery path

recovery path
activities of backward

Crash

activities of forward

Figure 5: Completion of a process schedule by activities
of the backward recovery path and of the forward recovery
path of all active processes

More formally, the completed process schedule S̃ of a
process schedule S is defined as follows:

Definition 8 (Completed Process Schedule S̃)
Let S = (PS ,AS ,�S) be a process schedule. The completed
process schedule S̃ of S, is a triple (P̃S , ÃS , �̃S) where

1. For the set of processes P̃S holds: P̃S = PS.

2. ÃS is a set of activities derived from AS in the follow-
ing way:

(a) For each process Pi ∈ PS, if aik
∈ Ai and aik

is
not the abort activity Ai, then aik

∈ ÃS.

(b) All active processes are treated as aborted pro-
cesses, by adding A(Pn1 , . . . , Pns

), a set-oriented
abort, at the end of S, where (Pn1 , . . . , Pns

) are
all active processes in S.

(c) For each aborted process Pj in PS, all activities
ajs ∈ C(Pj) of the completion C(Pj) of Pj are in
S̃ (ajs

∈ ÃS). An abort activity Aj is changed to
Cj ∈ ÃS.

320



t

t
St2

�St2
�St2

Completion

S̃t2

ac
11

�̃St2

ar
24

�̃St2

ac
13

�̃St2

ac
11

ac
13

ar
24

ap
12

ap
23

ac
22

ac
21

ac
21

ap
12

ap
23

ac
22

ar
16

ar
25

ar
15

a−1
13

(a)

S̃t2

�̃St2

ar
24

ac
13

�̃St2

ac
11

ap
12

ap
23

ac
22

ar
16

ar
25

a−1
13

�̃St2
�̃St2

�̃St2

�̃St2

ac
21

t

t
ar
15

Reduction

S̃t2

ac
11

ar
24

ac
21

ap
12

ap
23

ac
22

ar
16

ar
25

ar
15

(b)
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3. The partial order, �̃S, is determined as follows:

(a) For every two activities, aik
and ajl

, if aik
�S ajl

in S, then aik
�̃S ajl

in S̃.
(b) For every two activities, aik

and ail
, of the com-

pletion C(Pi) of every process Pi that does not
commit in S, if aik

�i ail
∈ C(Pi), then aik

�̃S

ail
in S̃.

(c) All activities of the completion C(Pi) of every pro-
cess Pi that does not commit in S follow the Pi

original activities and must precede Ci in S̃.
(d) If a group abort A(Pn1 , . . . , Pns

) ∈ S, then ev-
ery pair of conflicting activities of the completions
of these processes, aik

∈ C(Pi), ajl
∈ C(Pj) with

i, j ∈ {n1, . . . , ns}, i 6= j, has to be ordered in S̃
(either aik

�̃S ajl
or ajl

�̃S aik
).

(e) Whenever aik
�S A(Pn1 , . . . , Pns

) �S ajl
and

some activity aqt of the completion C(Pq) of pro-
cess Pq ∈ {Pn1 , . . . , Pns} ⊆ PS conflicts with
ajl

(aik
), then it must be true that aqt

�̃S ajl

(aik
�̃S aqt

).
(f) Whenever A(. . . , Pi, . . .) �S A(. . . , Pj , . . .) for

some i 6= j, then for all conflicting activities aik

of the completion of Pi and ajl
of the completion

of Pj, aik
∈ C(Pi) and ajl

∈ C(Pj), it must be true
that aik

�̃S ajl
. 2

The following example presents how a given process
schedule is completed.

Example 5 Consider again process schedule St2 of exam-
ple 4 with PSt2

= {P1, P2} as depicted in figure 4(a). When
the completed process schedule S̃ is determinded at time t2
where both processes are active, a group abort A(P1, P2) has
to be added to St2 . The set of activities ÃSt2

of S̃t2 consists
of all activities of ASt2

plus the activities {a−1
13

, ar
15

, ar
16
}

of the completion C(P1) and {ar
25
} of the completion C(P2).

The order �̃St2
of S̃t2 is the union of �St2

and {(ac
13
�̃St2

a−1
13

�̃St2
ar
15
�̃St2

ar
16

), (ar
24
�̃St2

ar
25

), (ar
15
�̃St2

ar
25

)}.
The completed process schedule S̃t2 is depicted in fig-
ure 6(a). As no cyclic dependencies exist, the completed
process schedule S̃t2 is serializable. 2

3.4 Unified Theory for Processes

Like in the traditional unified theory, reducibility provides a
criterion for correct concurrency control and recovery once
we have completed a process schedule by making recovery-
related activities explicit. The idea of the reduction of a
completed process schedule is to eliminate both an activity
and its compensating activity if they form an effect-free
activity sequence as well as to eliminate activities of aborted
processes that are themselves effect-free. Also, consecutive
activities may be commuted if they do not conflict. More
formally,

Definition 9 (Reducibility (RED))
A process schedule S = (PS ,AS ,�S) is reducible (RED)
if its completed process schedule S̃ = (P̃S , ÃS , �̃S)
can be transformed into a serial process schedule S̃ =
(P̃S , ÃS , �̃S) by applying the following three transforma-
tion rules finitely many times:

1. Commutativity Rule: If two activities aik
, ajl

∈ ÃS

such that aik
�̃S ajl

and (aik
, ajl

) commute and there
is no other activity aqt

∈ ÃS with aik
�̃S aqt

�̃S ajl
,

then the ordering aik
�̃S ajl

can be replaced by the
ordering ajl

�̃S aik
.

2. Compensation Rule: If two activities aik
, a−1

ik
∈ ÃS

such that aik
�̃S a−1

ik
and there is no other activity

ajl
∈ ÃS with aik

�̃S ajl
�̃S a−1

ik
, then aik

, a−1
ik

can
be removed from S̃.

3. Effect-free Activity Rule: If Pi does not commit
in S, then all activities aik

that are effect-free can be
removed from S̃. 2

Example 6 Considering again process schedule St2 of ex-
ample 4 and its completed process schedule S̃t2 of exam-
ple 5. When applying the reduction rules, only the two con-
secutive activities ac

13
and a−1

13
can be removed from S̃t2 in

accordance to the compensation rule. The reduced process
schedule S̃t2 shown in figure 6(b) is serializable as �̃St2

of

S̃t2 contains aside of the inter-process orders of P1 and P2

only dependencies from process P1 to process P2. Therefore,
process schedule St2 is RED. 2
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Example 7 Consider now process schedule S′′
t1 at time t1

depicted in figure 7. When completing S′′
t1 , all pairs of con-

flicting activities will be in the same order and the applica-
tion of the reduction rules leads to a serial process schedule
S̃′′

t1 . Therefore, process schedule S′′
t1 is RED. 2

ap
23

ac
13

t1

ar
24

ap
12

ap
14

ar
16

ac
13

ar
15

ap
12

P2

ac
21

ac
11

ac
21

ac
22

ac
22

P1

ac
11

t

ar
25

Conflict
Conflict

S′′

Figure 7: Prefix-reducible execution of processes P1 and P2

RED is not prefix closed, which means, it cannot be used
for dynamic scheduling. In accordance to the traditional
unified theory, the criterion can be further restricted for
this purpose leading to prefix-reducibility where each prefix
of a process schedule has to be considered. More formally,

Definition 10 (Prefix-Reducibility (PRED))
A process schedule S = (PS ,AS ,�S) is prefix-reducible
(PRED) if every prefix of S is reducible. 2

Example 8 Consider again process schedule St2 of exam-
ple 4 depicted in figure 4(a) and its prefix St1 at time t1.
In St1 , process P2 is in F −REC while process P1 is in
B −REC. When completing St1 , the previously executed
activity ac

11
of P1 has to be compensated by a−1

11
while for

P2, the activities of the forward recovery path have to be
executed. By scheduling a−1

11
, a conflict cycle appears in

S̃t1 (ac
11

�S̃t1
ac
21

�S̃t1
a−1
11

) that cannot be eliminated
by the reduction rules as compensation of ac

21
is not avail-

able. Therefore, St1 is not reducible and thus, St2 is not
prefix-reducible. The completed process schedule S̃t1 of St1

is depicted in figure 8. 2

St1

S̃t1 t

t

Completion

ac
11

ap
23

ar
25

ar
24

ac
11

ap
23

ac
22

ac
22

a−1
11

ac
21

ac
21

�̃St1

�St1

�̃St1

Figure 8: Completed process schedule S̃t1 of St1

Note that the above example is strongly influenced by
the fact that activities without inverse do exist. Therefore,
we have to consider not only compensation for recovery pur-
poses. If all inverses were available and the classical undo
procedure of recovery could be applied, the prefix St1 of St2
would be reducible. The completion of St1 would consider
the compensation of a23 , a22 , a21 , and a11 . Then, with re-
spect to the compensation rule, all four activities and their
compensation activity could be removed from S̃t1 leading
to a reduced schedule S̃t1 consisting only of C1 and C2. As
reduction would be possible for all prefixes of St2 in this
classical sense, St2 would be in PRED. Therefore, when
considering transactional processes with guaranteed termi-
nation property, the order in which non-compensatable ac-
tivities are executed is crucial as we will see in section 3.5.

Example 9 Taking again a look at process schedule S′′
t1 de-

picted in figure 7. It can be shown that each prefix S′′
t′ of S′′

t1
with t′ < t1 is reducible. Therefore, process schedule S′′

t1 is
PRED. 2

However, scheduling can also benefit from non-compen-
satable activities. They have the semantics of a “quasi com-
mit” of a process, as for all activities ac

ik
of a process Pi pre-

ceding such a non-compensatable activity si, compensation
can no longer be considered. Therefore, after the commit-
ment of si, no cyclic conflicts can arise in the completed
process schedule by the compensation activities a−1

ik
. This

is shown in the following example.

Example 10 Consider process schedule S∗ with processes
P1 and P3 depicted in figure 9. Although activities ac

11
and

ac
31

do conflict, no conflict cycle can appear by the com-
pensating activity a−1

11
at time t1. As process process P1 is

already in F −REC, compensation of ac
11

is not available.
Therefore, given that no further conflicts exist between ac-
tivities of P3 and the activities of the forward recovery path
of P1, the execution depicted in figure 9 is correct with re-
spect to both concurrency control and recovery. 2

ac
13

t1

ar
16

ar
15

ap
14

ap
12

ap
12

P3

ac
31

ac
11

ac
31

ac
32

ac
32

ac
33

ac
33

P1

ac
11

t

Conflict

ac
34

ac
34

S∗

Figure 9: Correct interleaving of processes exploiting the
“quasi-commit” of non-compensatable activities

3.5 Discussion of PRED of Completed Process Schedules

In the previous sections, we introduced the formalism
needed to define prefix-reducibility with respect to trans-
actional processes having guaranteed termination property.
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As our goal is to reason about correct concurrency control
and recovery, we have to prove that each process schedule
in PRED is in fact both serializable and recoverable. As
we have to deal with two different states of processes de-
termining the way recovery has to be performed, we have
to adopt the notion of recoverability to the structure of
transactional processes leading to the notion of process-
recoverability. More formally,

Definition 11 (Process-Recoverability (Proc-REC))
A process schedule S is process-recoverable (Proc-REC),
if for each pair of conflicting activities, aik

and ajl
with

aik
�S ajl

∈ S the following holds:

1. Ci precedes Cj in S (Ci �S Cj)

2. the next non-compensatable activity ajm
of Pj follow-

ing ajl
succeeds in S the next next non-compensatable

activity ain
of Pi following aik

(ain
�S ajm

). 2

Note that in the above definition, the traditional case
where no non-compensatable activities exist is contained as
then, by definition 11.1, only an order between Ci and Cj

with Ci �S Cj has to be imposed.

Theorem 1 If a process schedule S is PRED, then S is
both serializable and process-recoverable. 2

The proof of theorem 1 is given in appendix A.
In example 8, we have seen that the order in which the

state-determining elements of conflicting processes are exe-
cuted is crucial as it determines what is to be done in case
of recovery (either forward or backward). We now formalize
and generalize this dependency.

Lemma 1 For each process schedule S in PRED with two
conflicting activities aik

�S ajl
in S where process Pi is

active, the following has to hold:

1. Each non-compensatable activity ajm
of Pj with

ajl
�j ajm

has to succeed the commit Ci of Pi (Ci �S

ajm).

2. Activity ajl
has to be compensatable (ac

jl
). 2

The proof of lemma 1 is given in appendix B.
In schedule St1 of example 8 with the pair of conflicting

activities (ac
11

�St1
ac
21

), ap
22

is executed before ap
12

and
thus, P2 is in F −REC while process P1 is still in B −REC
leading to a contradiction of lemma 1.1 and a violation of
the PRED criterion.

According to lemma 1, the commits of all non-compen-
satable activities of Pj have to be deferred by the respective
subsystem until process Pi has committed (Ci) if a conflict
between some activity aik

and ajl
with aik

�S ajl
exists in

S. After Pi has committed, all non-compensatable activi-
ties of Pj are also allowed to commit as cyclic dependencies
between Pi and Pj can no longer appear. Thus, the com-
mitment of all non-compensatable activities of Pj has to
be performed atomically by exploiting a two phase commit
protocol in order to ensure that either all activities commit
or none of them.

In the following, we analyze the implications, PRED has
on the execution of activities within the completed process
schedule. The following two lemmas specify the restrictions
on the execution of compensating activities.

Intuitively, all compensating activities have to be in re-
verse order of the original activities. More formally:

Lemma 2 For each process schedule S in PRED with two
conflicting activities ac

ik
and ac

jl
, if both compensating ac-

tivities a−1
ik

and a−1
jl

are in the completed process schedule
S̃, then they have to be in reverse order of the two corre-
sponding activities in S. 2

The proof of lemma 2 is given in appendix C.
As we have to consider not only compensating activities

for recovery purposes, additional restrictions between com-
pensating activities of C(Pi) for some Pi in state B −REC
and non-compensatable activities (ar

jl
) of C(Pj) for some Pj

in state F −REC have to be considered.

Lemma 3 For each process schedule S in PRED, if two
conflicting activities a−1

ik
∈ C(Pi) and a non-compensatable

activity ar
jl
∈ C(Pj) have to be executed when completing S,

then a−1
ik

has to precede ar
jl

in S̃ (a−1
ik

�S̃ ar
jl
). 2

The proof of lemma 3 is given in appendix D.
Coming back to the initial CIM example presented in

section 2, we now have a formal criterion to classify the ex-
ecution depicted in figure 1 as incorrect because the PRED
criterion does not hold. In order to guarantee correctness,
the production activity would have to be deferred until the
commitment of the construction process.

Unlike the traditional unified theory where only com-
pensation had to be considered for aborted transactions in
the expanded schedule, here also new activities have to be
scheduled when the completed process schedule has to be
built. Thus, aside from already existing pairs of conflict-
ing processes (if some undo operation is in conflict with an
activity of another transaction in the traditional model, a
conflict between both transactions must have been existed
before compensation has been performed), new conflicts be-
tween processes may be introduced. Therefore, unlike in the
traditional unified theory, the completed process schedule
S̃ has always to be considered when reasoning about cor-
rectness of a process schedule for transactional processes.

In [AVA+94], the criterion SOT (serializable with or-
dered termination) has been introduced in order to reason
about correct concurrency control and recovery of a sched-
ule S without considering its expanded schedule S̃. How-
ever, as the activities of the completion of a process are not
known in advance, a SOT-like criterion (that relies only on
information of a given schedule S) does not exist for trans-
actional processes. Arbitrary conflicts can be introduced to
S̃ when non-compensatable activities of C(Pi) of aborted
processes Pi have to be considered. Therefore, when rea-
soning about correct concurrency control and recovery of
transactional processes, the completed process schedule S̃
has always to be considered to evaluate the PRED criterion.

3.6 Increasing Parallelism of Conflicting Activities

In the process model (definition 5), we only allowed either
sequential execution (�) of activities or unrestricted par-
allelism. Also, in definition 7 of a process schedule, we
only considered a (strong) temporal order (�S) between
two conflicting activities. In order to increase parallelism,
the weak order taken from the composite systems theory
[ABFS97] could be applied with respect to the hierarchical
schedulers of the type encountered when executing trans-
actional processes on top of transactional subsystems. In
this configuration, the output of the process scheduler is
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used as input to several lower schedulers, the schedulers of
the transactional subsystems. Thus, this reflects the case
of fork schedules described in [AFPS99]. While the strong
order enforces sequential execution, i.e., an activity is in-
voked only after the previous one has terminated, the weak
order between two activities is more permissive, meaning
that both activities can be executed in parallel as long as
the overall effect is the same as if they would have been ex-
ecuted as specified by the strong order. The differentiation
between strong and weak order can be made both within
processes (intra-process order) and within conflicting activ-
ities of different processes (inter-process order). Then, all
pairs of conflicting activities have to be weakly ordered as
indicated by the composite transaction model. The subsys-
tem is then responsible for keeping this weak order when
executing both conflicting activities in parallel. In order to
ensure this weak order, a subsystem has, for instance, to
provide a protocol supporting commit order serializability
[BBG89]. Then, the commit order can be derived from the
weak order between conflicting activities. Otherwise (if the
weak order is not supported by the subsystem), as the weak
order always contains the strong one, conflicting activities
have to be executed with respect to a strong order.

The re-invocation of retriable activities now may lead to
a special treatment of other activities executed in parallel.
Suppose two activities ar

ik
and ajl

, with ar
ik

<S ajl
, have to

be executed within the same subsystem. If the local trans-
action Tik

corresponding to ar
ik

terminates aborting after
some operations of Tik

have already been executed, then,
in general, the local transaction Tjl

(which corresponds to
activity ajl

) running in parallel to Tik
(with respect to the

given weak order) has to be aborted, too. However, as this
is not due to a failure of Tjl

, it must not lead to an exception
of Pj leading to an other alternative. Moreover, after Tik

is
restarted, Tjl

has to be restarted within the subsystem, too,
hence guaranteeing compliance to the weak order between
both transactions.

The integration of the composite systems ideas into the
process model and the process schedule are described in
detail in [SAS99].

4 Conclusion

This paper provides a framework to jointly reason about
correct concurrency control and recovery for transactional
processes in order to ensure both a more general notion
of atomicity (guaranteed termination) by the flexible han-
dling of failures with appropriate alternative executions and
correct interleavings of parallel processes. Unlike other ap-
proaches addressing only parts of this problem, we cover
both atomicity and isolation simultaneously and do con-
currency control and recovery at the appropriate level, the
scheduling of processes. Furthermore, with the theory of
composite systems, we can take into account the interac-
tion between hierarchical schedulers when executing trans-
actional processes and increase parallelism by treating them
according to the weak conflict order.

With PRED, we have provided a correctness criterion
for transactional processes based on the notion of completed
process schedules. We have additionally shown that, due to
the structure of transactional processes, the SOT correct-
ness criterion cannot be applied. Because of the execution
of non-compensatable activities during the completion of
a process, reasoning about process recovery becomes more
complex than in the traditional case where only compen-
sation has to be applied. Therefore, the completed process
schedule has to be considered. Furthermore, we have iden-

tified important prerequisites of PRED schedules that have
to be respected due to the fact that some activities might
be non-compensatable. Therefore, aside of the atomicity
of single activities and the compliance of orderings, the de-
ferred commit of all non-compensatable activities and their
atomic commit by exploiting a two phase commit protocol
has to be provided by the subsystems.

The framework established in this paper not only covers
various applications such as workflow management, process
support systems, and the provision of appropriate infras-
tructures for electronic commerce, virtual enterprises, and
the CIM scenario presented in section 2, it is also completely
transparent to the user. Within the Wise project of ETH
Zürich [AFH+99], we have implemented a process sched-
uler for transactional process management using a proto-
col which is based on the correctness criterion presented in
this paper. This complements the correctness checking of
single processes with respect to their guaranteed termina-
tion property which is also available within the Wise sys-
tem. The two ideas complete the effort to provide execution
guarantees for transactional processes. Based on them, we
will in our future work expand the framework established
in this paper to identify transactional execution guarantees
of subprocesses and to reason about decoupled execution
guarantees of subprocesses.
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Appendix

A Proof of Theorem 1

Serializability: Assume that process schedule S is not
serializable. Then, a conflict cycle has to exist of the
form Pi �S Pj �S . . . �S Pi in the committed pro-
jection of S. Therefore, this cycle also exists in the
completed process schedule S̃. Thus, it follows that S
cannot be reducible and therefore also not PRED.

Process-Recoverability: Assume that process schedule
S is not process-recoverable. This can occur because
one of the following four cases. In all these cases,
the next non-compensatable activity of Pi succeed-
ing aik

is denoted by ain
and ajm

is the next non-
compensatable activity of Pj succeeding ajl

:

Case 1: aik
�S ajl

�S ain �S ajm �S Cj �S

Ci. Consider the prefix S′ of S that excludes Ci.
The completion C(Pi) of Pi may contain an activ-
ity of the forward recovery path conflicting with
any activity of process Pj . As these activities of
C(Pi) are not known in advance, new conflicts are
possible leading to S not being in PRED.

Case 2: aik
�S ajl

�S ain
�S ajm

�S Cj �S

Ai. Consider the prefix S′ of S that excludes Ai.
This prefix is exactly the same as we considered
in case 1. Thus, for the same reasons, a contradic-
tion to the assumption of S being PRED arises.

Case 3: aik
�S ajl

�S ain �S ajm �S Ai �S Cj .
Consider the completed process schedule S̃ of S.
The completion C(Pi) of Pi may contain an activ-
ity of the forward recovery path conflicting with
any activity of process Pj . As these activities
of C(Pi) are not known in advance, new conflicts
with non-compensatable activities of Pj are pos-
sible leading to S not being in PRED.
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Case 4: aik
�S ajl

�S ajm �S ain . Consider the
prefix S′ of S that excludes ain

. Then, if aik
is

compensatable, the compensation a−1
ik

of aik
has

to be executed in the completed process schedule
S̃′ of S′. This leads to a conflict cycle in S̃′ which
cannot be eliminated as compensation of ajl

is no
longer available and contradicts with the initial
assumption of S being PRED. If aik

is not com-
pensatable, then activities of the completion C(Pi)
of Pi may exist that introduce cyclic conflicts that
cannot be eliminated. This also contradicts with
the initial assumption. 2

B Proof of Lemma 1

Assume that process schedule S is in PRED and that in
S, a pair of conflicting activities aik

and ajl
exists with

aik
�S ajl

and that process Pi is active.

1. Assume that a non-compensatable activity ajm
is exe-

cuted before Pi has terminated. Then, if some activity
ain

of Pi has to be executed which is in conflict with
ajm

, they would have to be ordered in S as follows:
ajm �S ain leading to a conflict cycle in S. This cycle
cannot be eliminated as:

(i) ajm
is a non-compensatable activity

(ii) aik
cannot be compensated as this would, in turn,

introduce another conflict cycle in the completed
process schedule S̃ (ac

ik
�S̃ ajl

�S̃ ajm
�S̃ a−1

ik
)

(iii) ajl
cannot be compensated as it is followed by the

non-compensating activity ajm
.

Therefore, process schedule S is not in RED and thus
not in PRED leading to a contradiction with the initial
assumption.

2. In this case, we have to differentiate whether aik
is

compensatable or non-compensatable.

(i) Assume that activity aik
is compensatable (ac

ik
)

while activity ajl
is not compensatable (ap

jl
or

ar
jl

). Then, if the compensation of ac
ik

has to be
considered in the completed process schedule S̃
(when process Pi is in B −REC), a conflict cycle
by ac

ik
�S̃ ajl

�S̃ a−1
ik

appears. In this case, S
is not in RED and also not in PRED leading to a
contradiction with the initial assumption.

(ii) Assume that both activity aik
and activity ajl

are not compensatable (thus, both processes are
in F −REC). As process Pi is active in S, fur-
ther non-compensatable activities ain

may exist in
the completion C(Pi) of Pi. Assume further that
ain

is in conflict with ajl
. Therefore, the order

ajl
�S̃ ain has to be imposed in the completed

process schedule S̃ of S. This leads to cyclic con-
flicts in S̃ (aik

�S̃ ajl
�S̃ ain

) that cannot
be eliminated as all involved activities are non-
compensatable. In this case, S is not in RED and
also not in PRED which contradicts with the ini-
tial assumption. 2

C Proof of Lemma 2

Assume that process schedule S is in PRED. Assume fur-
ther that in the completed process schedule S̃ the compen-
sating activities a−1

ik
and a−1

jl
are executed in the same order

as the two conflicting activities ac
ik

and ac
jl

. Then, in S̃, the
following holds: ac

ik
�S̃ ac

jl
�S̃ a−1

ik
�S̃ a−1

jl
leading

to a conflict cycle that cannot be eliminated by one of the
reduction rules. Therefore, S is not RED and thus also not
PRED leading to a contradiction with the initial assump-
tion. 2

D Proof of Lemma 3

Suppose that process schedule S is in PRED with ac
ik
∈

S. Assume further that the two conflicting activities a−1
ik

and the non-compensatable activity ar
jl

are ordered in the
completed process schedule S̃ as follows: ar

jl
�S̃ a−1

ik
. As

commutativity is assumed to be perfect, a compensating
activity has the same conflicts as its corresponding activity.
Therefore, the conflict cycle ac

ik
�S̃ ar

jl
�S̃ a−1

ik
in S̃ exists

and cannot be eliminated by the reduction rules and leads
to the conclusion that S is not in RED and thus also not in
PRED. This contradicts with the initial assumption. 2
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