
Transactional Execution Guarantees for

Data{Intensive Processes in Medical

Information Systems �

Christoph Schuler Heiko Schuldt Hans{J�org Schek

Institute of Information Systems

Swiss Federal Institute of Technology (ETH)

ETH Zentrum, 8092 Z�urich, Switzerland

Email: fschuler,schuldt,schekg@inf.ethz.ch

In: Proc. of the EWGLP 2000 "1st European Workshop on Computer-based Support

for Clinical Guidelines and Protocols". Leipzig, Germany, November 2000.

Abstract. Medical information systems are characterized by the exis-
tence of various distributed and heterogeneous software systems, each
of them specialized for certain domains. In this environment, interop-
eration between systems is crucial since, in general, large amounts of
data such as multimedia objects have to be transferred. Mostly, this is
achieved by some communication server which supports bilateral data
transfer. However, communication servers do neither allow to have a
global view on dependencies between all systems nor do they provide for
any transactional execution guarantees such as failure handling and/or
alternative executions that include more than two systems. This, in
turn, can be solved by encompassing global dependencies into processes
and by exploiting systems that execute processes under transactional
control. But these systems are usually not made for the support of
data-intensive applications. Hence, a combination of transactional pro-
cess support and communication servers is required such that the ad-
vantages of both systems can be brought together.

In this paper, we present an approach to support data-intensive pro-
cesses for which transactional execution guarantees are provided. We
have implemented a prototype system based on the transactional pro-
cess management system Wise, developed at ETH, and the commercial
communication server Cloverleaf. By plugging Cloverleaf as a dedicated
component to the Wise system, we are able to execute transactional
processes in medical information systems while, at the same time, sup-
porting the standard communication server functionality for data trans-
fer purposes.

1 Motivation

1.1 Introduction

Medical information systems are characterized by large contents of data, stemming from

various sources, i.e., distributed, autonomous, and heterogeneous application systems.

Patient records, for instance, which have to exist for each patient who has ever been

treated in a hospital, contain all data from previous treatments and examinations. The

latter encompass, in general, large volumes of multimedia data objects like radiographs

�Part of this work has been funded by the Swiss National Science Foundation under the project a

meta model for modeling and management of large scaled information systems



2

(DOC)

Control ow Data ow

(PMS)
Recording
Patient Data

(RAD)
Radiograph
Take

(DOC)
Documentation
Additional
Save

Therapy
(HPW)

Save
Master
Record

Figure 1: Sample Process: Medical Treatment

or spoken reports. Although these records are stored in a centralized database (patient

management system), data is produced by external applications such as, for instance,

X-ray systems, and has to be transferred to the patient management system for persis-

tent storage. In general, each department in a medical domain has its own specialized

tools and programs. In order to exchange data between departments, interoperabil-

ity between these applications is required. Hence, data transfer might also require a

peer-to-peer communication between these applications rather than transferring data

only to the patient management system. In the presence of large images or multimedia

objects, this may lead to high data traÆc.

Such distributed applications spanning multiple independent tools and systems are

usually speci�ed by means of processes [16]. Processes can be divided into a set of self-

contained units, i.e., activities, which correspond to invocations of services provided by

existing tools or programs, that take place one after the other. This chain of activities

can be very complex, since there are usually several independent departments and a

number of distributed tasks involved. These processes, as they can be found in real-

world applications in medical domains, can be characterized as complex, long{running,

and labour{intensive. In particular, they require certain coordination among their

constituent steps, mainly in terms of appropriate failure handling strategies and of

strategies for synchronizing parallel processes.

In various other environments (e.g., banking business), global coordination of pro-

cesses is mostly solved by distributed transactions orchestrated by TP{monitors on top

of database systems. But these products limit the autonomy of applications and impose

very strong restrictions which are unrealistic in medical information systems. Hence,

processes in medical information systems require more exible transaction models in-

cluding sophisticated failure handling strategies while avoiding the limitations imposed

by traditional transaction models.

1.2 A Sample Process

In the following, we introduce a sample process (shown in Figure 1) to illustrate a set

of typical dependencies which exist between the diverse steps that have to be taken for

a medical treatment. In practice, this kind of process may be much more complex. In

here, we use this simpli�cation in order to focus on the features which are essential to our

approach and to motivate the major aspects described in this paper: Assume that a

patient, Bob, is taken to a hospital where �rst his name and address are recordedin

some patient management system (PMS). This data is sent to a central database,

the documentation system (DOC), where a patient record for Bob is created or, in

case this record already exists, data of previous treatments is retrieved. In the latter



3

case, eventual changes, e.g., of Bob's address, may lead to an additional update of the

patient record. After reception, Bob is sent to the radiology department where X-ray

examinations are performed and a radiograph is taken (RAD). However, Bob's patient

record has to be sent to the radiology department prior to the examination. The same

is true for the therapy room where the next step of his treatment takes place, supported

by a Health Professional Workstation (HPW); yet, the patient record is also required

there. In addition, the radiograph has to be sent to the therapy room after the X-ray

examination. Based on the information extracted from the radiograph, the responsible

physician decides that a shot is to be dispensed. At the end of the treatment, all data

that is related to the therapy is stored in the central database (DOC), as part of Bobs

patient record, including the radiograph and a protocol of the treatment written by the

responsible physicist.

2 Communication Servers for Data{Intensive Applications

Communication servers (e.g., Cloverleaf [2] or e*Gate [1]) are key components in cur-

rent medical information systems since they are tailored to the problems that frequently

occur in these environments. In short, the functionality of these systems can be charac-

terized by the following two features. First, they support the application programming

interfaces (APIs) provided by the most relevant application systems that are used in

medical domains in order to allow them to interoperate. Second, they support the

transformation of data between various standards in which applications publish their

data.

In the context of multimedia documents (such as radiographs or spoken reports of

medical treatments) which are part of patient records, large volumes of data must be

transferred between applications. Hospital application systems normally publish their

changes by message types such that the latter can be exploited by consumers which rely

on the information wrapped within the message. These messages are sent whenever an

interesting event occurs or when another system requests some information. Messages

can be of any size, leading from a short noti�cation in plain ASCII to the submission

of a radiograph.

To exchange messages between di�erent medical application systems, a set of stan-

dardized messages is used. However, since no commonly agreed standard for data

formats exists (there are actually di�erent standards but applications, in general, only

support a subset of them; even worse, certain systems only support proprietary for-

mats), a converter in between each pair of applications that aim at exchanging data

is required. To this end, the message has to be translated into the corresponding

message format of the destination system and to be forwarded to that system in the

corresponding protocol type. This task is commonly performed by a communication

server. The routing takes place on the basis of special information in the message (e.g.,

the message type) and by pre{de�ned routing tables which contain meta information

of the transfer indicating how to handle certain types of data transfers, and where to

route data. Hence, no application has to maintain a list of systems interested in this

message type (consumers); they have rather to send the noti�cations and requests to

the communication server. These kinds of interactions are also referred to as publish{

and{subscribe [18] techniques. The server redirects requests to the desired system and

returns acknowledgments. In general, each data transfer via the communication server

is encapsulated in two separate transactions: the �rst one considers the message trans-

fer from the originating application to the communication server while the second one



4

TherapyRecording
(PMS)

Take
Radiograph
(RAD)

Save
Additional
Documentation
(DOC)

Patient Data

(HPW)(DOC)
Record
Master
Save

Com

Srv

Com

Com

Srv

Srv

Com

Srv

Figure 2: A communication server (ComSrv) routes messages to the next application step

consists of the message delivery from the communication server to the consuming appli-

cation. Although message transfer is, in general, split in independent transactions, the

delivery of a message is guaranteed by the communication server (e.g., by repeatedly

contacting the consuming application if it is temporarily unavailable). However, in

case consistency is essential and synchronous messaging is required, the transfer can be

encapsulated within one single transaction such that the originating application has to

wait until an acknowledgement of successful transfer arrives from the consuming appli-

cation; this noti�cation is also transferred via the intermediary communication server.

Since input data for certain applications may stem from di�erent sources, they may

not be available at the same time in the same transaction. In this case, the destination

system has to gather all information and store them for future use (i.e., patient data

and radiograph at the 'Therapy' step in Figure 2).

Coming back to the initial example depicted in Figure 2, the application system

(DOC) on 'Save Master Record' cannot wait synchronously for the 'Save Additional

Documentation' step, because there are several other actions in between these two steps.

According to the philosophy of communication servers, the transfer of the radiograph

from the X-ray (RAD) system to the patient database is actually decomposed into

two independent transactions: (i) data transfer from the X-ray examination to the

communication server, and (ii) the subsequent transfer from the communication server

to patient database.

Since all functionality is distributed to heterogeneous applications, there is no global

view on the process. And, even worse, no global coordination is possible. Each applica-

tion publishes certain events and generates messages without being aware of the steps

that have to be taken subsequently and the applications that are involved in these steps.

Even the communication server has no global view on dependencies but manages only

the bilateral transfer of data. Hence, the problem on how independent application ser-

vices and/or transactions can be glued together while exploiting information on global

dependencies remains unsolved.

3 Providing Execution Guarantees: From TP{Monitors to Transactional

Process Management

3.1 Distributed Transactions in TP{Monitors

Transaction Processing Monitors (TP-Monitors) [12, 8] implement distributed trans-

actions on top of heterogeneous, distributed database management systems. They are

intended to bring together many di�erent database systems so as to operate as one



5

Therapy
(HPW) (DOC)

Documentation
Additional
Save

(RAD)
Radiograph
Take

(PMS)
Recording
Patient Data

(DOC)
Record
Master
Save

prepare

c
o
m
m
it

prepare

prepare

prepare

Figure 3: Distributed transactions realized by Two Phase Commit

single logical database. TP{Monitors are thus responsible to guarantee the overall

consistency of distributed systems. TP{Monitors are typically realized in a three tier

architecture. They use an intermediate layer (middleware) which not only encapsulates

the underlying systems but also transparently hides their heterogenity by exploiting

a common protocol, two phase commit (2PC) [12, 7], which has to be supported by

all component systems. One of the most important achievements of TP-Monitors is

transparent transaction control. The client starts a transaction, performs some actions

and commits the transaction as if the whole transaction would have been executed in

one single database. Our sample process can be realized as a distributed transaction

(as shown in Figure 3). The global transaction consists of �ve distributed subtransac-

tions, each of them corresponding to an activity of the process depicted in Figure 1. All

changes in the underlying applications are executed within the same scope of atomicity.

This can be realized, using a two phase commit protocol, by leaving all subtransactions

in a prepare{to{commit state until commit of the global transaction is reached. When-

ever an error occurs, the whole transaction can be rolled back at any point in time prior

the global commit. To achieve this, all resources have to be held such that attached sys-

tems are blocked until the global transaction is terminated, i.e. no component systems

is allowed to unilaterally decide to abort or commit during the prepared phase.

According to the distributed transaction model, all subtransactions belong to the

same logical global transaction. If one system rolls back, all other system have to roll

back as well. Autonomy of the component systems is no longer provided. It is not

possible for a single system to react in a di�erent way | after having responded pos-

itively to the commit vote request | other than imposed by a global coordinator. If

a global transaction is not committed and when the local subtransactions are in the

prepared state (i.e., they have been executed completely and wait for a global commit

decision), yet local access to the same data is blocked. This e�ect is essentially undesir-

able because autonomy is an important issue in environments like medical information

systems. For this reason, the strong requirements imposed by coordination based on

distributed transactions should be relaxed.

3.2 Non{Blocking distributed transactions

An option to prevent the drawback that application systems be blocked is to allow each

local subtransaction to commit right after their execution as de�ned by the notion of

open nested transactions [24]. But then, the top{level transaction can no longer be



6

(HPW)
Recording
(PMS)

Take
Radiograph
(RAD)

Save
Additional
Documentation
(DOC)

Patient Data
Therapy

Save
Master
Record
(DOC)

commit

c
o
m
m
it

commit commit commit commit

Figure 4: Distributed transaction following the open nested paradigm

rolled back automatically if one subtransaction fails, since some subtransactions may

have already committed. Yet, a compensating subtransaction has to be provided for

each regular subtransaction such that failures can be handled by applying compensation

in reverse order (semantic atomicity [10]). In general, designing a compensating sub-

transaction may be a diÆcult task, since it essentially requires dedicated information

about the concrete application and about the semantics of the corresponding regular

transaction. Even worse, some application services, once committed, cannot be undone

because of their irrevocable nature (e.g., an injection). Other services may, in principle,

be compensatable albeit this might be very expensive such that their compensation is

not desired in order to avoid that costly steps are discarded.

Figure 4 shows our sample process realized by open nested transactions. Due to

its Complexity the 'Take Radiograph' activity should not compensated, i.e., the radio-

graph has to be kept for further treatments, independent whether it is currently needed

or not. Assuming an injection takes places during the 'Therapy' activity. Then, it

must, however, not be compensated because of the irreversible nature of an injection.

An alternative strategy that considers additional treatment after a shot has been given

must be applied for failure handling purposes. Hence, open nested transactions, al-

though loosening the restrictions imposed by distributed transactions, still do not meet

the requirements that can be found in medical information processes. Thus, further

extensions are needed so as to add more exibility to the transaction model, thereby

allowing further improvements and generalizations.

3.3 Transactional Process Management

Classical transaction management as implemented in conventional databases follows

an all{or{nothing semantics of atomicity. If a transaction cannot be terminated suc-

cessfully, the whole transaction is rolled back (in the case of distributed TP{Monitor

transactions), or all committed subtransactions are compensated (according to the open

nested transaction paradigm). For several reasons, a full rollback can not be performed

or is, in certain cases, to be avoided. Therefore, we generalize the dependencies that

exist within global transactions under the notion of process. In short, a process which

consists of a set of activities as basic units of execution allows for more exibility by

(i) considering activities as invocations of arbitrary application services and by (ii)

considering more sophisticated failure handling strategies that are already part of the

model.

Some activities of a process are long running tasks and are too expensive to be

undone and restarted. Activities like injections are irreversible and cannot be undone



7

Take

additional

adaptor

Application Systems

(DOC)
Documentation
Additional
Save

Therapy
(HPW)(RAD)

Radiograph

layer

(PMS)
Recording
Patient Data

Save
Master
Record
(DOC)

Transactional Process Management System

TCATCA TCA TCA

PMS DOC
RAD

HPW

Figure 5: Transactional Process Management on top of arbitrary Application Systems

at all. After such an activity is successfully terminated, the associated process can

only terminate successfully in forward direction, but no longer by performing backward

failure recovery. To this end, �rst a proper classi�cation of the termination properties of

single activities is required before the characteristics of the associated processes can be

addressed. In the activity model of transactional process management [20], borrowed

from the exible transaction model [15, 27], there di�erent classes of activities are

distinguished with respect to their termination characteristics:

� A compensatable activity can be undone by a semantical rollback of e�ects of

the activity. To this end, an appropriate compensating activity has to be available.

� A pivot activity cannot be compensated.

� Retriable activities are guaranteed to succeed after a �nite number of invoca-

tions. This means that each possible failure that occurs during execution is of a

temporary nature only.

In order to cope with these di�erent termination properties, a process is not only

characterized by a regular execution order imposed between its activities but also by

a so-called precedence order which speci�es alternative executions that are applied in

the case of failures. By these alternatives, a process can de�ne several multiple cor-

rect executions between which priorities are implicitly assigned by the preference order.

Each of these execution paths, when executed completely and correctly, must leave

the global system in a consistent state, independent of the failure of single activities.

This is the case when failures can either be captured by a repeated invocation of the

failed activity (in case it is retriable) or if they lead to an alternative execution, i.e.,

execution is switched to another possible path. Based on the termination properties

of all activities and the di�erent orders imposed between them, a validation is possible



8

analyzing whether processes are correctly de�ned or not. In short, a single process, even

in presence of multiple pivot activities, is correct (it supports guaranteed termination)

when each possible failure can be handled correctly and leads to a correct �nal state.

Hence, the inherent guaranteed termination property of a process is a generalization

of the all-or-nothing semantics of atomicity since it requires that one out of several

correct outcomes of a process execution is reached. Based on the inherent correctness

of single processes, transactional process management additionally focuses on the cor-

rect concurrent and fault{tolerant execution of processes by generalizing and applying

the uni�ed theory of concurrency control and recovery [5, 22] for processes, thereby

providing a criterion that simultaneously accounts for atomicity and isolation.

Activities of transactional processes do not necessarily have to correspond to database

transactions but can be arbitrary service invocations in some underlying application sys-

tem. However, the provision of execution guarantees at process level requires certain

properties to be present for each of these services (e.g., a compensation service must

exist in case an activity is considered as compensatable). In general, since we have to

deal with arbitrary black-box applications, these properties might not be provided. To

this end, an additional software layer has to be established between the transactional

process management system and the underlying applications consisting of a transac-

tional coordination agent (TCA) [21] acting as advanced application-speci�c wrapper

tailored to each of these systems (depicted in Figure 5). Aside of exploiting the API of

the underlying application, each TCA has to implement the functionality required by

transactional process management in case this is not directly provided by the underly-

ing application. In terms of compensation, for instance, a TCA can rely on information

extracted from log �les in order to determine how the e�ects of a service can be undone

a posteriori.

4 Combining Transactional Process Management and Communication

Servers

Transactional process management systems are well suited to control the execution of

complex business processes. Communication servers are designed for data{intensive

transfers and message conversions. In order to extend the functionality of both systems

and in order to meet the requirements imposed by real-world medical information pro-

cesses, we combine the advantages of these systems such that complex dependencies can

be handled in a correct way even in the presence of concurrency and failures while, at

the same time supporting data-intensive information exchange between the underlying

applications. In terms of our sample process, a radiograph is sent from the 'X-Ray

Examination' to the 'Therapy' step of the process (see Figure 6) by using communica-

tion server functionality for format conversion and data transfer, while the execution

of the process is under the control of the transactional process management system. In

particular, the latter determines when activities have to be started and guarantees cor-

rect execution, e.g., applies failure handling if necessary. In what follows, we refer to a

system providing this dual functionality as TxProc/IDF system (transactional process

management for intensive data ow).

To realize a TxProc/IDF system, the invocation of activities and the data trans-

fer from/to the associated applications has to be decoupled. In transactional process

management systems, data ow between activities is realized via input and output con-

tainers. These containers are shipped, via the corresponding TCA, to the underlying

application. Since the goal is to avoid large data objects to be passed via the process



9

(HPW)
Therapy

Save
Additional
Documentation
(DOC)

Take
Radiograph
(RAD)

Patient Data
Recording
(PMS) (DOC)

Record
Master
Save

Control ow

Data ow

Figure 6: Separation of control ow and data ow for large data objects (i.e., radiograph)

management system, there must be some place where data ow can be redirected. Af-

ter the completion of activities, large data objects should be sent to a communication

server, while control has to be returned to the transactional process management sys-

tem. This task of redirecting data ow will be performed by the TCA of the respective

application that generates data{intensive parameter transfer.

Since the process management system performs navigation based on the global pro-

cess, it has to make sure that all parameters sent through the communication server

are available to an activity at the time it is invoked. Therefore, each message sent to

the communication server has to have a corresponding reference which holds all meta{

information. Instead of the data object itself, this reference is part of the data ow at

process level. Hence, two parts of a large data object, the data itself and its reference,

must be characterized by a unique ID in order to be able to bring them together, in

addition, the transfer of both independent parts has to be synchronized.

An essential feature of a transactional process management system is to keep the

state of processes persistently, thus allowing processes to recover in forward direction

after system failures. Hence, also the parameters of process activities have be held

in persistent storage. While this is easy to achieve for data that is transferred via the

process management system, this is no longer the case for data objects that are shipped

via a communication server and thus, never reach the transactional process management

system. But if the reference parameter sent to the process management system is

stored persistently in the run-time process database, while the communication server

persistently stores the data object that is part of the message sent to the communication

server, even external data can be recovered after a system failure by the unique identi�er

of both parts.

Normally, the communication server keeps all messages persistent while transferring

them. However, after successful delivery, the message will be deleted. Since transac-

tional process management requires the availability of all parameters at least for the

lifetime of the associated process, the communication server functionality has to be

extended in order to keep the messages until the end of the process. Alternatively, an

additional external temporary persistent storage can be exploited for this purpose.

5 Implementation

Within the TxProc/IDF project, we have implemented the aforementioned concepts

based on the transactional process management system Wise [4] and the communi-

cation server Cloverleaf [2]. Before we go into the details of the combination of both

systems, we �rst take a closer look at the Wise system.



10

Cloverleaf

(DOC)
Documentation
Additional
Save

Therapy
(HPW)(RAD)

Radiograph
Take

(PMS)
Recording
Patient Data

Save
Master
Record
(DOC)

Wise

persistent

TCA Srv
Com

storage

temporary

TCA TCA TCA

DOCPMS
RAD

HPW

Figure 7: Combination of the Wise system and Cloverleaf

5.1 Architecture of the Transactional Process Management System Wise

Wise is a process management system that supports transactional processes. Its mod-

ular architecture consists of a small kernel that provides the functionality required for

navigating through transactional processes, while specialized adapters (TCAs) can be

plugged in so as to support various subsystems.

Processes are stored and managed in the kernel of theWise system, while activities

correspond to service invocations in underlying subsystems. On top of theWise kernel,

a scheduling component has been implemented which controls the access to shared

resources in the presence of concurrent processes. Moreover, the basic functionality of

the Wise system is extended by diverse components, for instance for the monitoring

of process states. In order to support the speci�cation of processes, the commercial

process speci�cation and simulation tool IvyFrame [3] has been extended to export

processes modeled in this tools in a format that can be executed by the Wise system.

TCAs that are exploited for application integration purposes encapsulate arbitrary

systems in that they provide a standardized interface to realize a seamless integration.

Communication takes place only between TCAs and the Wise system; no data is

transferred directly between applications or between two TCAs.

5.2 Integration of Communication Servers

The description of a TxProc/IDF process contains all information on how to invoke

activities in the context of their subsystem. Besides this information, the process spec-

i�cation contains import and export parameters for each activity of a process. These

parameters are then shipped to/from the corresponding applications via input or output

containers, respectively.



11

(DOC)

Save
Additional
Documentation

Take
Radiograph
(RAD)

external

ref ID

Send
Srv

1

3

2 TCATCA

ref ID

Com

4

5

6

Rquest
7

8

9

(HPW)
Therapy

ACK

Store

repository
RAD DOC

Figure 8: Persistent storage of large data object in an external temporary storage

In addition to standard data types, references to external data objects are also

supported. These parameters refer objects which are shipped via communication servers

and which are stored at some temporary persistent storage (shown in Figure 8). To

support externally stored parameters, the Wise system has to be extended in several

directions.

The TCA of a supported system has to split large output parameters in the presence

of large data objects into a Cloverleaf compatible message also comprising the data itself

and aWise reference parameter. These two objects have to be given the same ID. Then,

it is possible to subsequently retrieve the object based on the reference parameter.

In our sample process, the transfer of a radiograph from the radiography (RAD)

to the documentation system (DOC) is required. Figure 8 shows this part of the

process. After the radiograph is available in the RAD system (1), the corresponding

TCA takes control and sends the radiograph to Cloverleaf (2). Based on the internal

routing tables, the radiograph is forwarded to the temporary persistent storage; after

it is stored, an acknowledgement (3) is sent back to the TCA. The external storage can

be located anywhere in a network. An arbitrary database system supporting binary

large objects (BLOBs) can be used for this purpose. At this point, it is guaranteed that

the radiograph is stored persistently and such that the reference parameter is valid.

Now, the TCA is able to con�rm the successful execution of the activity and return

control to the Wise system (4). As part of the data ow, the reference which is part

of the output container of the X{Ray Examination (5) will become part of the input

container of Documentation (6). Then, Wise navigates through the process and starts

the 'Save Additional Documentation' activity. The DOC{system TCA parses the input

parameters and �nds the reference parameter which points on the radiograph. It sends

a Request message to Cloverleaf that routes the message to the external storage in

order to retrieve the object (7). By responding to the request message, Cloverleaf

directly forwards the radiograph object to the DOC{system (8).

After reception of the data, the TCA of the DOC{system replaces the reference

parameter in the invocation string it has received fromWise by the actual data object

and starts the service associated with the 'Save Additional Documentation' activity

(9). Since the radiograph is stored persistently, it can be requested at any point in time

by a TCA, that is, it can serve as input parameter for any subsequent activity. After



12

successful termination of the process, the data object temporarily stored is no longer

needed. Therefore, it can be deleted.

While the transfer of externalized data objects via the communication server and

the external temporary persistent storage is orthogonal to the functionality of theWise

system, the full range of exibility and transactional execution guarantees at process

level can be provided.

6 Related Work

The communication server architecture to integrate heterogeneous systems in hospital

environment is based on the application integration model developed in Heidelberg [26].

The idea of communication server is strongly related to persistent queuing func-

tionality as it is used by Publish{and{Subscribe [18] systems. These systems are also

characterized by decoupling producers and consumers of data where the former do not

have to have any information about a system requesting this data.

The architecture of the Wise system is based on a centralized process management

system whose kernel is responsible for the navigation of processes. Other approaches

rather address a distributed architecture. The ADEPTdistribution [6] approach, for in-

stance, handles variable server assignment in workow management in order to minimize

the communication load.

In the approach followed in this paper, a process speci�cation is assumed to be static,

i.e., does not change during execution. This is, however, not and inherent requirement

for TxProc/IDF. Considerable work addressing dynamic process evolution, in particular

in the context of medical information systems, has been done in [19] and [16]. Since

these concepts are orthogonal to our approach, they can be integrated without a�ecting

the special functionality of TxProc/IDF.

While processes allow to rather loosely couple systems and provide for an application-

centric approach, the work presented in [13] addresses a data-centric integration of

distributed systems in order to access information in a transparent manner.

By exploiting the functionality of our prototype systemWise, we rely on the theory

of transactional process management. Unlike approaches like spheres of joint compensa-

tion [14] which addresses only atomicity of processes, we treat concurrency control and

recovery jointly (similar to ConTracts [23]). In addition, we make intensive use of the

special process structure supported by transactional process management. In particu-

lar, the presence of non-compensatable activities and appropriate alternative executions

which lead to the provable correctness of single processes are extremely important in en-

vironments where reliability is a major concern (such as medical information systems);

this functionality, however, cannot be found in related approaches.

Since we study processes and logical application systems, we focus on the top two

layers of the 3{layer model for medical information systems [25]. The physical archi-

tecture of the application systems is hidden behind communication server and TCAs.

Distributed workow management systems often consist of a large numbers of appli-

cations and services. [11] presents a formal method for con�guring a distributed system

such that the processes' demands regarding performance and availability can be met

while, at the same time, aiming at minimizing the total system costs.



13

7 Conclusion

In this paper we have discussed how two di�erent paradigms, namely the transactional

support for complex processes and data transfer and conversion can be brought together.

Based on a rather simpli�ed process taken from the practice of medical information

systems, we have shown how complex the requirements with respect to control ow and

data ow within this environment can be.

Communication servers help in transferring and transforming data between di�erent

systems, but do not provide any support for global control in distributed heterogeneous

systems. To cope with the latter problem, the paper introduces the theory of trans-

actional process management and motivates why traditional transaction models, as

used in banking and industrial environments, are not sophisticated enough to satisfy

the requirements of medical information systems. TP{Monitors impose too strong re-

strictions on long{running and dynamic processes. Open nested transactions solve this

problem, but only provide for a limited form of failure handling that is restricted to

simple and highly unrealistic cases where each step in the medical process would have

to be compensated in the case of failure.

Finally, we have presented the prototype system TxProc/IDF we have implemented

at ETH. TxProc/IDF combines the functionality of a commercial communication server

with that of the transactional process management systemWise, which has been devel-

oped at ETH in a joint e�ort by the information and communication systems group and

the database research group. Monitoring of processes, although being an integral re-

quirement for the practical use of such a system, has not been discussed in this paper.

Basic monitoring functionality is already integrated in the Wise system; this allows

even to \zoom" into underlying applications in order to gather information on the state

of the service invoked there. We have recently completed a prototype implementa-

tion [17] allowing the monitoring of SAP R/3 Business Processes that are executed as

activities of the Wise system directly from the monitoring interface of Wise. In our

future work, we aim at extending this functionality in order to support a broader range

of applications that can be observed with this paradigm. In addition, we also plan to

extend these monitoring facilities to data which is located in the external temporary

persistent storage of TxProc/IDF. A further extension of the TxProc/IDF system will

be the support for dynamic data routing. Each TCA should have the possibility to

either sent data directly back to the Wise system or to apply the indirection via com-

munication server and temporary persistent storage. The decision on which strategy is

to be used then depends on the size of the data objects to be transferred.

References

[1] e*gate, Software Technologies Corperation (STC), http://www.stc.com.

[2] Healthcare.com, formely HIE, represented by Health{Comm GmbH, http://www.healthcare.com.

[3] IvyTeam , http://www.ivyteam.ch.

[4] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler. WISE: Business to

Business E-Commerce. In Proceedings of the 9th International Workshop on Research Issues

in Data Engineering. Information Technology for Virtual Enterprises (RIDE-VE'99), Sydney,

Australia, March 1999.

[5] G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart, A. El Abbadi, H.-J. Schek, and G. Weikum.

Unifying Concurrency Control and Recovery of Transactions. Information Systems, 19(1):101{

115, 1994.



14

[6] Th. Bauer and P. Dadam. EÆcient Distributed Workow Management Based on Variable Server

Assignments. In Proceedings 12th Conference on Advanced Information Systems Engineering,

pages 94{109, Stockho lm, Sweden, S., 6 2000.

[7] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[8] P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kaufmann Pub-

lishers, 1997.

[9] A. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Morgan Kauf-

mann, 1992.

[10] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Distributed

Database. ACM Transactions on Database Systems (TODS), 8(2):186{213, June 1983.

[11] M. Gillmann, J. Wei�enfels, G. Weikum, and A. Kraiss. Performace and Availability Assessment

for the Con�guration of Distributed Workow Management Systems. In Proc. of the 6th Intl.

Conference on Extending Database Technology (EDBT '00), pages 183{201, 2000.

[12] J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

[13] J. Grimson, W. Grimson, and W. Hasselbring. The SI Challenge in Health Care. Communications

of the ACM (CACM), 43(6):48{55, 6 2000.

[14] F. Leymann. Supporting Business Transactions via Partial Backward Recovery in Workow

Management Systems. In Proceedings of Datenbanksysteme in B�uro, Technik und Wissenschaft

(BTW'95), Informatik Aktuell, pages 51{70, Dresden, Germany, March 1995. Springer Verlag.

[15] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A Transaction Model for Multidatabase

Systems. In Proceedings of the 12th International Conference on Distributed Computing Systems

(ICDCS'92), pages 56{63, Yokohama, Japan, June 1992.

[16] R. M�uller and E. Rahm. Rule-Based Dynamic Modi�cation of Workows in a Medical Domain.

In Proceedings of Datenbanksysteme in B�uro, Technik und Wissenschaft (BTW'99), Informatik

Aktuell, pages 429{448, Freiburg, Germany, March 1999. Springer.

[17] A. Naef, Ch. Schuler, and H. Schuldt. Monitoring of Complex Services in Inter{Enterprise Pro-

cesses with SAP R/3 Business Workows. In Proceedings of BTW 2001, Oldenburg, Germany,

March 2001.

[18] R. Orfali, D. Harkey, and J. Edwards. The Essential Client/Server Survival Guide. John Wiley

& Sons, second edition, 1996.

[19] M. Reichert and P. Dadam. ADEPTex | Supporting Dynamic Changes of Workows Without

Losing Control. Journal of Intelligent Information Systems, 10(2):93{129, March 1998.

[20] H. Schuldt, G. Alonso, and H.-J. Schek. Concurrency Control and Recovery in Transactional

Process Management. In Proceedings of the ACM Symposium on Principles of Database Systems

(PODS'99), Philadelphia, Pennsylvania, USA, May/June 1999.

[21] H. Schuldt, H.-J. Schek, and G. Alonso. Transactional Coordination Agents for Composite Sys-

tems. In Proceedings of the International Database Engineering and Applications Symposium

(IDEAS'99), Montreal, Canada, August 1999.

[22] R. Vingralek, H. Hasse-Ye, Y. Breitbart, and H.-J. Schek. Unifying concurrency control and recov-

ery of transactions with semantically rich operations. Theoretical Computer Science, (190):363{

396, 1998.

[23] H. W�achter and A. Reuter. The ConTract Model, chapter 7. In: [9]. 1992.

[24] G. Weikum and H. Schek. Concepts and Applications of Multilevel Transactions and Open Nested

Transactions, chapter 13. In: [9]. Morgan Kaufmann Publishers, 1992.

[25] A. Winter. Integration of Application Systems into Hospital Information Systems { Strategy and

Experiences, 1996. In German.

[26] A. Winter, H. Jan�en, E. Gl�uck, R. Haux, and J. Wiederspohn. Zur verteilten Datenverarbeitung

bei heterogenen Subsystemen am Beispiel des Heidelberger Klinikuminformationssystems. In GI

Jahrestagung 1990, pages 232{241, Stuttgart, Germany, October 1990.

[27] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed Atomicity for Flexible

Transactions in Multidatabase Systems. In Proc. SIGMOD '94, pages 67{78, 1994.


