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Abstract 
 

When relational database systems have been introduced 

twenty years ago, they were an infrastructure and main 

platform for application development. With today's 
information systems, the database system is a storage 

manager, far away from the applications. Our vision is 
that hyperdatabases become available that move up and 

extend database concepts to a higher level, closer to the 

applications. A hyperdatabase manages distributed 

objects and software components as well as workflows, in 

analogy to a database system that manages data and 

transactions. In short, hyperdatabases, also called 

“higher order databases”, will provide “higher order 
data independence”, e.g., immunity of applications 
against changes in the implementation of components 
and workload transparency. They will be the 

infrastructure for distributed information systems 
engineering of the future, and they are an abstraction 

from the host of current infrastructures and middleware 

technology. 
This article will elaborate on this vision. We will outline 

concrete projects at ETHZ such as PowerDB, a database 

cluster project. We show how an efficient document 
engine can be built on top of a database cluster. A 

further project studies transactional process 
management as a layer on top of database transactions. 
Image similarity and multimedia components is another 
project where a hyperdatabase coordinates specialized 

components such as feature extraction and indexing 

services in a distributed environment. 
 

 

1 Introduction and Background  
 

When relational database systems have been introduced 

twenty years ago, they have been considered as 
infrastructure and main platform for development of 
data-intensive applications. Standard database textbooks 
list this as a main motivation in the introduction. Data 

independence was considered to be a breakthrough: 

programmers were freed from low-level details, e.g., how 

to access shared data efficiently and correctly, given 

concurrent access. But by now, the prerequisites for 
application development have changed dramatically. For 
instance, communication has become fairly cheap, and 

the internet dominates modern information 

infrastructures. Consequently, the role of database 

concepts must be re-visited and newly determined.  
Let us consider current 'hot topics', e.g., the management 
of software components and application services, 
distributed client/middleware/server computing, 
application frameworks, enterprise resource planning 

systems, XML, and e-commerce. Undoubtedly, the 

database system plays an important role. However, it has 

degenerated to a storage manager to a large extent, far 
away from the applications.  
More and more researchers are making these 

observations and start to question the role of databases 

for future distributed and WWW information systems 

engineering. They re-orient their research to make well-
founded and established database concepts more 

applicable, as the following episodes show.  
Carey, Hellerstein and Stonebraker [Regr] observe that 
all current databases have been designed with the 

technology of twenty years ago. They state that due to a 

three-tier architecture, data are at the bottom and 

application code is away from data in the middle tier. 
They also state that databases are "bloated" by object-
relational features, by stored procedures and triggers, and 

by warehouse features. They conclude that we should 

rethink everything. 
In a keynote speech Brodie [Bro99] states that "the 

database era nears its end" because of their inability to 

cope with the vast increases in data and transaction 

volumes. Heterogeneity hinders interoperability and 

accessibility. Architectural complexity is another issue in 

view of the many engine and repository types with ad-
hoc solutions for warehousing and mining. 
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The VLDB Endowment in 1998 has established a future 

directions group1. To bring application development back 

into the fold of database conferences, this group proposed 

to distinguish between the two main directions: (1) core 

database technology, and (2) infrastructure for 
information system development. Accordingly, the future 

program committees will be re-organized [VLDB]. (For 
more details and other interesting observations on the 

evolution of database research the reader is referred to 

documents such as [Si+96].) 
Even though the general awareness of the problem 

slowly proliferates, the database group at ETH Zurich 

has been involved not only in core database technology, 
but also in the cooperation between databases and 

specialized application services for more than ten years. 
“Cooperative Service Management for Open Systems” 

(COSMOS) is our research framework since 1990 

[SSW90].  
Taking all these observations together, database groups, 
while keeping competency in core database technology, 
start moving up to higher levels where workflow and  

distributed component and object management takes 
place. Their results will influence the next-generation 

platform for information-system development. The work 

on hyperdatabases is the contribution of the ETH Zurich 

database group to this vision. 
In the following, we elaborate on this vision and describe 

concrete projects. The presentation is similar to 

[ScW00], but it is more complete with respect to project 
descriptions. [AHST97] is also related and puts more 

emphasis on workflow and process management. 
 

2 The Hyperdatabase Vision 
 

2.1 What is a Hyperdatabase?  

 

First rough definitions are: A Hyperdatabase (HDB) is a 

database over databases. An HDB administers objects 
that are composed of objects and transactions that are 

composed of transactions. Like hyper-matrices in 

numerical analysis are matrices whose elements are 

matrices an HDB is a database, the primitives of which 

are again databases. Therefore instead of talking about 
hyperdatabases we may also call them “higher order 
databases”. We will use both terms synonymously. In a 

more general setting we say that an HDB administers 
distributed components in a networked environment and 

provides a kind of higher order “data independence”. 
Remember that data independence was a major 

                                                
1 Members were Agrawal, Brodie, Carey, Dayal, Gray, 
Ioannidis, Schek, Wang and Widom. 

breakthrough when relational databases were propagated. 
Now we must strive for immunity of application 

programs not only against changes in storage and access 

structure, but also – and this is the point here – against 
changes in location, implementation, workload, the 

number of replica of software components and their 
services.  
What is the difference between a DB and an HDB? In a 

nutshell we say: a DB is a platform for clients 

concurrently accessing shared data. We need data 

definition, data manipulation, and transactions at the 

interface. The DB under the cover performs query 

optimization, correctness for parallel access, recovery, 
persistency, load balancing, admission control, 
availability. 
Similarly, an HDB is a platform for clients, concurrently 

accessing shared application services. As opposed to 

shared data in a DB, in an HDB we have shared 

components and services. At the interface of an HDB we 

need component and service definition and description, 
service customization, transactional processes 

encompassing multiple service invocations. The HDB, 
under the cover, performs optimization of client requests, 
routing, scheduling, parallelization, correctness of 
concurrent accesses, flexible failure treatment, providing 

guaranteed termination, availability, flexible recovery, 
and scalability. 
 

2.2 Hyperdatabases and Middleware 

 
The general architecture where HDB concepts are used is 

shown in Fig. 1. Clients (white boxes) invoke application 

services (black boxes) on server components that are 

coordinated (large rectangle). One application invocation 

in turn may use several other coordinated components 

and invoke one or several lower-level application 

services there. This continues along the invocation 

hierarchy until we finally reach leaf nodes. The leaf 
nodes perform data calls or specialized computations 

(gray boxes). Note that coordinator nodes play the typical 
middleware dual role: they are servers for clients and 

clients to other servers. The repeated use of coordinators 

adds complexity because at any server node we may have 

additional clients also accessing our distributed system 

concurrently to others coming from higher level 
coordinators. Seen from this perspective the HDB 

concept helps us to manage n-tier architectures that exist 
and will further be our realistic information system 

infrastructure. 
Many products or standards and proposed architectures 

provide already the one or the other functionality of an 

HDB, such as TP-monitors now evolving to object 
monitors [BoK99], CORBA [CORBA], Enterprise 
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Resource Planning systems, federated databases, and data 

warehouses. 
All of them provide the one or the other desirable feature 

of an HDB. The HDB in turn provides a unified view of  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

all these approaches, incorporating the essential 
principles. It incorporates database concepts, but at a 

higher level of abstraction than with records or tuples. 
This should allow for a better understanding and for 
convenient implementations. This is the objective of the 

HDB project. In the following we discuss some examples 
of current architectures and sketch the opportunities for 
improvement.  
 

2.3 TP Monitors 
 

A TP-Monitor is - in a narrow definition - an operating 

system for transaction processing. More generally it is 
infrastructure for developing and running applications, 
services, and components in a three-tier architecture. 
While TP-Monitors are definitely helpful, and they are 

used in many large-scale implementations, we see some 

room for extensions: an HDB would add design tools for 
specification of distributed applications and automatic 

generation of program code, as extended workflow 

systems do [AHST97]. Further, an HDB would add a real 
transaction layer above DB-transactions and 

transactional process management with failure treatment, 
availability, guaranteed termination and "semantic" 

correctness. In current TP-monitors or object monitors, 
all components are “transactional". This means that they 

are forced to the 2PC protocol. Coordination of all 
subtransactions is performed at one level of abstraction 

only, namely the data level. Finally, an HDB would add 

optimal routing to components and clever "semantic" 

replication of whole components. 

2.4 Enterprise Resource Planning, SAP 
 

As a next example we consider the architecture of the 

SAP system, a good representative of ERP software. 
Clearly we observe the traditional DBMS at the storage 

level. All application code is at the middle tier in so-
called application servers and presentation stays at the 

utmost level. The architecture is the one of an HDB. But 
a closer inspection of the role of the middle layer and of 
the mapping to the DB layer in a SAP system makes 

clear that a real HDB layer would add the following:  
Most importantly, there should be a real transaction layer 
on application objects above DB-transactions and 

transactional process management with semantic 

recovery and semantic correctness as well as the 

possibility of alternative executions in case of failures 

and guaranteed termination. In the current system there 

is a separate transaction layer on top of DB transactions 

called logical unit of work which is in the sense of an 

HDB. However application programmers must aquire 

locks and so they are responsible for correctness in case 

of parallel access and in case of failures. Also 

consistency of application server buffers in case of 
updates is not provided automatically. 
Second, an HDB would add flexible mapping to many 

database storage managers. In the current system there is 

one big database only, hindering scalability. If more than 

one storage component is allowed, optimal 
decomposition and routing of client requests to storage 

managers can take place and a clever replication of 
whole storage components based on usage patterns can 

be achieved. 
Third, application server caches would be kept consistent 
and would not be under the responsibility of the 

application programmer, as is the case with the current 
version of SAP. An HDB would automatically optimize 

various caches and decide which objects to cache. 
 

3 Hyperdatabase Projects  
 

In the following we summarize some of our projects at 
ETH Zurich in order to give a more concrete explanation 

on what we mean by an HDB approach.  
 

3.1  Composite Transactions and Transactional 
Process Management 
 

Foundation. We have studied the problem of ensuring 

correctness of concurrent executions in architectures like 

the one in Figure 1. A coordinated server component, 
called coordinator in the following, contains a full 
transaction manager for the client transactions 

Fig. 1: Repeated usage of an HDB in a 

distributed n-tier architecture. Clients invoke 

application servers at several coordinators. 
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encompassing invocations of several application services. 
Every coordinator in the composite system performs 
transaction management on its own, ensuring (local) 
correctness and (local) recovery. The problem is how 

global correctness and global recovery is ensured, given 

that each coordinator locally works correct. In other 
words we must know what additional ordering 

restrictions a “caller” coordinator must impose and hand 

over to a “called” coordinator. What handshaking 

between coordinators is necessary in order to correctly 

control concurrency in composite systems as shown in 

Fig. 1. We have extensively studied this problem in the 

past from a foundational point of view (e.g. in [Wei91, 
WeS92, SWY93, Alo+97, Alo+99a, Alo+99b]), we have 

studied practical protocols [SWS91, SSW95] and 

performed several evaluations [KaS96, RNS96]. 
 

Transactional Process Management. In the 

transactional process management project, we go beyond 

the conventional transaction model by grouping single 

transactions into entities with higher level semantics, 
called transactional processes. These processes 
encompass flow of control as one of their basic semantic 

elements. Aside of constraints for regular executions, it is 
also possible to specify alternative executions, which can 

be applied in case of failures. The steps that have to be 

executed within processes are invocations of arbitrary 

complex transactions provided as services by the systems 
of the next lower level. These transactions may differ in 

terms of their termination behavior, which indicates 
whether they can be compensated and whether they lead 

to success after repeated invocation (retriability) 
[MRSK92, ZNBB94]. Given the termination behavior of 
single transaction invocations and the specification of 
control flow and alternatives, single processes can be 

proven correct. This is captured by the notion of 
guaranteed termination, which generalizes the 

traditional notion of transaction atomicity. Having this 
inherent property, a process, once invoked, terminates in 

a well-defined state by correctly executing one of possibly 

several alternatives. Abort is a special option, forward 

recovery (e.g., partial backward recovery combined with 

alternative executions) another. The guaranteed 

termination will also be ensured if several transactional 
processes are executed concurrently. Their more complex 

structure implies more complex dependencies compared 

with traditional transactions and has to be considered 

when transactional processes are scheduled [SAS99], 
thereby extending previous work on concurrency control 
and recovery [Alo+97, SWY93]. Similar approaches on 

combining transaction management and process 
execution can be found, for instance, in [WR92,CD96]. 
Since we do not assume all applications managed by 

coordinators as depicted in Figure 1 to be pure database 

systems, the transactional properties required for single 

invocations may not always be present. Given some basic 

requirements we have analyzed in [SSA99], a 

transactional coordination agent (TCA) is plugged to the 

application, thereby extending its functionality by adding 

transactional properties to service invocations (e.g., 
[NSSW94]). When considering, for instance, 
coordination processes in multimedia information 

systems (which we discuss subsequently), these agents 

are extended to capture the workload of single 

components, which can be exploited for load-balancing 

purposes.  
Work on transactions and transactional processes is a 

foundation and a basis for HDB transaction 

implementations. These principles have been applied, for 
instance, in the context of payment interactions in 

electronic commerce which are mapped to processes, 
thereby making use of the execution guarantees provided 

by a transactional process manager [SPS00]. 
 

3.2 PowerDB  
 

In the PowerDB project we explore an HDB consisting of 
a homogeneous set of component databases in a PC 

cluster. In every component, we have a complete DBMS 

with its data. Clients access data via the coordinator, i.e. 
via the HDB (fig. 2). We explore protocols for high-level 
transaction management under special consideration of 
replication. Replication of complete databases contributes 

to considerable speed-ups in case of read transactions. 
Due to the second layer transaction management we 

avoid a 2PC and avoid synchronous updates 

[GBS99,GBS00]. In addition, query routing aims at 
detecting components that have the shortest response 

time due to queries that have been processed before 

[RBS00]. Replication can be full or be restricted to 

certain parts of the database. We investigate methods 

that dynamically allow to add more components to the 
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cluster. The subprojects ”Routing of OLAP requests in a 

DB Cluster” and “Document Management on a DB 

Cluster” are described below in more detail. 
 

Routing of OLAP requests in a DB Cluster. Online 

Analytical Processing queries (OLAP queries) refer to 

data warehouses i.e. to large collections of data, extracted 

and accumulated from operational databases. Despite 

their complexity, users want OLAP queries to be 

evaluated fast.  
The key to good retrieval performance is an appropriate 

physical data organization combined with query routing. 
In [RBS00], we have compared full replication and a 

hybrid placement scheme combining partial replication 

with partitioning. Both approaches replicate at least 
some data over all nodes. Hence, there are several 
components in the general case that can evaluate a query. 
The Query Routing component decides at the HDB level 
which component is best suited to evaluate the query. We 

have built a prototype system for PowerDB including – 

among other features – a second layer transaction 

management, a routing component providing different 
routing strategies and a parallel distributed query 

processor (based on [RB99]). Using this prototype, we 

have done performance evaluations with the TPC-R 

benchmark comparing the different routing strategies: 
simple, round-robin-kind-of strategies like random, first-
come-first-server or Balance-the-Number-of-Queries 
[CLL85], and a more sophisticated affinity-based routing 

strategy which assigns queries accessing the same data to 

the same component [YCDI87, RBS00]. It turned out 
that the PowerDB architecture in general offers a linear 
speedup of mean response time with increasing number 
of components (cf. Figure 3).  The hybrid data placement 
scheme proved superior to full replication, showing an 

even more than linear speedup due to caching effects: the 

single fragments of the partitioned relation are getting 

smaller with increasing cluster size, which notably 

improves cache hit rates per component. Besides, we 

observed that OLAP queries evaluated concurrently 

typically obstruct each other, leading to a certain 

performance penalty. For example, the mean response 

time when executing queries concurrently per node up to 

a multiprogramming level of 6 is 180% higher than with 

FCFS as shown in Figure 3. This effect can be avoided 

by using affinity-based query routing, which improves 

the mean response time as compared to FCFS-routing by 

30 percent on average. 
We are currently developing routing strategies, which 

keep track of the component's cache state and route 

queries to the node with the best-suited cache content. 
 

Document Management on a DB Cluster. XML 

[W3C98] proliferates, notably for information exchange 

for e-commerce. E-commerce applications require an 

efficient access to large collections of XML-documents 

and the immediate and permanent availability of these 

documents after they have been submitted. But most of 
today’s document management systems still assume that 
new documents are inserted during an off-line period of 
the system. This also holds for many current approaches 

to XML databases where load times for large data sets 

are still prohibitive [FlK99, ST+99]. The major 
drawback with this approach is that the querying user 
never operates on up-to-date data. [KaS96, KaR96, 
BMV96] address this problem with systems that allow 

for concurrent retrieval and insertion of documents. Both 

approaches are based on multi-level concurrency control 
[Wei91] to prevent from inconsistent schedules without 
sacrificing parallelism of lower level operations. But, in 

this previous work, the issues of scalability via a database 

cluster and conformity to the new document format XML 

have not been addressed. In our current investigations of 
document management, a higher order data object is an 

XML document. The HDB provides services for these 

higher order data objects, such as insertion, retrieval and 

deletion. Under the cover the HDB maps these services 

onto a cluster of databases running on off-the-shelf PCs 

(similar to [ink96] and [FG+97]). The HDB additionally 

provides transaction management for document services. 
This leverages conventional database technology to 

document databases.  
The great advantage of a DB cluster is that it gives us the 

freedom to partition and replicate data and indexes and 

to allocate them to as many cluster components as 

necessary.  
Decomposition and parallelization of requests together 
with composite transactions implemented at the 

coordination and the service layer of the HDB ensure 

short query response times and further allow for 
concurrent update and retrieval requests. Fig. 4 shows 

the architecture of such an HDB.  
We have implemented a prototypical document database 

for a specific type of documents (i.e., for newsgroup 

postings) [GBS99, GBS00]. A cluster of relational 
database systems stores the document texts and the Fig. 3: Query Routing - Response Times 
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inverted lists. Our experiments show that document 
insertions scale linearly, and retrieval operations slightly 

less than linear for increasing cluster sizes (c.f. Fig. 5).  
We observed that average response times are interactive 

for mixed workloads of 40 parallel insertion and retrieval 
streams already on a cluster with only 8 database nodes. 
In extension to this prototype system, our current work 

focuses on documents with arbitrary structure and no 

restriction of the acceptable DTDs.  
An essential design issue is to reduce the amount of 
centralized processing in a clustered environment. This 
is important when the cluster size goes into some 

hundreds of database nodes that have to be coordinated. 
Our approach takes this into account as document 
specific functionality is distributed among the 

components. Only a table with information for semantic 

locking is necessarily kept at a centralised coordinator 
node. Results in [BGRS00] are encouraging. 
In our future work, we want to address a self-adapting 

hyperdatabase system. At the data object level, such a 

system automatically partitions, replicates and 

materializes data in order to process requests efficiently. 
At the service level, such a system replicates 
functionality among the coordinated nodes in order to 

meet the changing processing needs of its clients.  
 

3.3 Image Search and Management Systems.  
 

Information systems for image collections consist of 
many specialized software components such as image 

servers, image processing, feature extraction, and 

indexing components. In such a setting, given the 

possibly large number of components and the high 

workload imposed on them, location and workload 

transparency is of great value, and the HDB vision 

applies here.  
In more detail, we use a PC cluster, which contains as 

many specialized software components installed as 

necessary and coordinate them by an HDB. For the 

coordination, we need descriptions of the software 

components including its actual load. Simple 

transactional processes for insertion, similarity search, 
and bulk load can run in parallel and the subtasks are 

“optimally” assigned to the components by the HDB. At 
any point in time new components can be added to the 

cluster in order to improve response times. Interactive 

similarity retrieval is based on the VA-File, a simple but 
efficient approximation of the inherently high-
dimensional feature vectors [WSB98,WeB00]. In the 

following we summarize the infrastructure aspect and the 

parallelization necessary for interactive similarity search 

and relevance feedback.  
 

Coordination of the Image System Component. In 

order to let the HDB coordinate the various components, 
not only static information about the components is 

necessary but also the dynamically changing state of 
every component at any point in time is required. For 
this purpose we have introduced coordination agents 

[SSA99,Web+99] that are plugged-into all components 

(fig.6). A coordination agent observes the status and 

actions of its component and initiates processes that 
make sure that all dependencies between components are 

properly maintained. Examples are processes for index 

maintenance, replication control, or consistency of 
metadata. The specification and execution of such 

processes are the main tasks of the HDB assisted by the 

agents. For instance, if a new image collection extends a 

repository, the agent of that repository initiates a 

bulkload process to extract the required features from 

the images and to insert these features into specialized 

index structures for similarity search.  

Fig. 4: Document Management Hyperdatabase
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The main problem of a bulkload process is the enormous 
cost of extracting features: e.g. for 100,000 images, this 
pre-processing step may last up to 50 days on a single 

machine. To speedup the extraction, the HDB deploys a 

large number of feature extraction components in 

parallel. Each component works off a part of the images 
in the new collection. If the extraction of features would 

last too long, we can dynamically add new components to 

the system. After their registration, the HDB will account 
for these new components and route requests to them 

without the need of reconfiguring or restarting the 

system. Even processes that have started before adding a 

new component can benefit from the additional 
component. The same holds true if components retire 

from the system or fail: the coordination agents notify the 

HDB about this, that component is excluded from future 

processing, and its pending tasks are re-routed to other 
available components.  
Load balancing is a further key aspect of the HDB in our 
image database system. In a bulkload process, for 
example, the pre-processing cost of an individual image 

depends on the size of the image and of the component 
that does the extraction (heterogeneous environment). In 

order to minimize the cost of the entire process, the HDB 

must balance the load over the available components as 
equal as possible. To this end, the coordination agents of 
the extraction services periodically inform the HDB 

about the current load of the service (in our case: the 

time required working off all tasks assigned to the 

service). Then, the HDB assigns a new extraction task to 

the service with the smallest current load, but only if its 
load is below a given threshold (in order not to assign all 
tasks to the components at once). With this policy, we 

can ensure that all components are (almost) equally 

loaded, and that new feature extraction components can 

be used to speedup up current ulkload processes. More 

details can be found in [[Boe+98, Web+99, WeS99, 
ScW00]. The same technique is used for other processes 

like similarity search as discussed in the following. 
 

Parallel Similarity Search and Relevance Feedback. 
The rationale behind our activities in the field of 
similarity search is to provide search mechanisms that 
are easy to use, and that yield results of high relevance to 

the user. Relevance and relevance feedback depends 

largely on the availability of many different feature types 

in order to enable the feedback mechanism to adapt to 

the (subjective) relevance judgement of a user. 
Consequently, similarity search over image collections 

means Nearest Neighbour search (NN-search) in feature 

spaces that are high-dimensional. The dimensionality 

typically is in the range of several hundreds if 
information on several feature types is combined. Thus, 
and this is the first issue, similarity search over large 

image collections requires considerable engineering 

effort in order to ensure interactive response times. In 

this situation, an HDB approach helps in the following 

way: it is able to coordinate as many feature extraction 

components and replica of indexing components as 

necessary, enabling high-level parallelization.  
NN-search in high-dimensional feature spaces is 

provably linear in the number of data objects [WSB98]. 
In order to accelerate the unavoidable linear scan, we use 

bitstring approximations of feature vectors. This data 

structure is called the VA-File [WSB98, WeB00]. NN-
search using the VA-File is as follows: a first phase 

explicitly inspects all bitstring approximations. This 

gives us candidates for the k nearest neighbours. The 

second phase checks the candidates and determines the k 

nearest neighbours. Note that the first phase is well-
suited for parallelization. We can partition or replicate 

the VA File and distribute it over an arbitrary number of 
components.  
However, a number of design decisions arise. A first 
issue is whether to replicate or to partition the 

approximation data. The tradeoff is flexibility vs. update 

costs. In more detail, flexibility means that the system 

can adequately react to changing behavior of  
components. For instance, the workload of a component 
may suddenly increase, or a component may become 

unavailable. The HDB vision is implemented as follows: 
the coordinator takes into account the current states of 
the components and finds an appropriate query 

evaluation strategy. This strategy remains transparent for 
the application on top. As in other projects described in 

this article, agents closely monitor the components and 

feed the coordinator with up-to-date information. Next to 

the workload, the coordinator knows about the cache 

state of the components by approximating it from the 
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queries previously executed and takes it into account 
when assigning subqueries to components. 
What are the performance characteristics of this 
implementation of the HDB vision? A central 
observation is that a relatively small number of 
components is already sufficient for interactive query-
answering times. We believe that this is a major result, 
since much research on similarity search did not yield 

any comparable solutions. 
Given such an efficient implementation of similarity 

search, the natural next step is to allow the user to 

formulate his information need by means of relevance 

feedback mechanisms. I.e., the system collects user 
feedback and interprets it, in order to refine the search in 

subsequent steps. The main idea is to map user feedback 

to a statement in a similarity query language and to 

evaluate the query. A number of such mappings have 

been proposed in literature, e.g., [Roc71,RHOM98]. Our 
solution has been to develop a framework that is 
extensible, and that allows for easy integration of the 

approaches that are around. A distinguished component 
implements the relevance feedback functionality. Its 
embedding into the similarity search process is relatively 

easy, thanks to our component-based approach. The 

spezialized VA-File component can easily be integrated 

and query answering times are again pleasingly low, 
even with complex relevance feedback queries,. 
 

4 Conclusions 
In a first part we have presented the general 
hyperdatabase vision. Its main objective is to provide a 

higher-level platform for distributed application 

developement. Hyperdatabases provide for higher order 
data independence in analogy to databases twenty years 
ago: Application programming will be at a level where 

availability, correctness, well-defined termination, 
caching, materialization, and replication of complete 

software components is merely an issue of the 

hyperdatabase system, taken off from the responsibility of 
the programmer. Many issues must be tackled in order to 

realize the vision. In the second part we have presented 

some concrete projects at ETHZ in order to exemplify 

some of the issues. We have summarized transactional 
process management as an evolution from database 

transactions. We have shortly described PowerDB as an 

HDB project with the main objective of demonstrating 

that coordinating many database systems in a cluster of 
workstations pays off with respect to scalability and that 
there is no need for sacrificing correctness. The 

coordination of heterogeneous, specialized components 
was the main issue of the image system project. The VA-
File and feature extraction are examples of  very special 
components that nicely can be coordinated by an HDB.  
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