
In: Proceedings of the 1st
 International Conference on Web Information Systems Engineering

(WISE’2000), pages 14-23, Hong Kong, China, June 2000.

0-7695-0577-5/00 $10.00 © 2000 IEEE 14

Hyperdatabases

Hans-Jörg Schek, Klemens Böhm, Torsten Grabs,
Uwe Röhm, Heiko Schuldt, Roger Weber

Swiss Federal Institute of Technology, Zurich Switzerland

{schek, boehm, grabs, roehm, schuldt, weber}@inf.ethz.ch

Abstract

When relational database systems have been introduced

twenty years ago, they were an infrastructure and main

platform for application development. With today's
information systems, the database system is a storage

manager, far away from the applications. Our vision is
that hyperdatabases become available that move up and

extend database concepts to a higher level, closer to the

applications. A hyperdatabase manages distributed

objects and software components as well as workflows, in

analogy to a database system that manages data and

transactions. In short, hyperdatabases, also called

“higher order databases”, will provide “higher order
data independence”, e.g., immunity of applications
against changes in the implementation of components
and workload transparency. They will be the

infrastructure for distributed information systems
engineering of the future, and they are an abstraction

from the host of current infrastructures and middleware

technology.
This article will elaborate on this vision. We will outline

concrete projects at ETHZ such as PowerDB, a database

cluster project. We show how an efficient document
engine can be built on top of a database cluster. A

further project studies transactional process
management as a layer on top of database transactions.
Image similarity and multimedia components is another
project where a hyperdatabase coordinates specialized

components such as feature extraction and indexing

services in a distributed environment.

1 Introduction and Background

When relational database systems have been introduced

twenty years ago, they have been considered as
infrastructure and main platform for development of
data-intensive applications. Standard database textbooks
list this as a main motivation in the introduction. Data

independence was considered to be a breakthrough:

programmers were freed from low-level details, e.g., how

to access shared data efficiently and correctly, given

concurrent access. But by now, the prerequisites for
application development have changed dramatically. For
instance, communication has become fairly cheap, and

the internet dominates modern information

infrastructures. Consequently, the role of database

concepts must be re-visited and newly determined.
Let us consider current 'hot topics', e.g., the management
of software components and application services,
distributed client/middleware/server computing,
application frameworks, enterprise resource planning

systems, XML, and e-commerce. Undoubtedly, the

database system plays an important role. However, it has

degenerated to a storage manager to a large extent, far
away from the applications.
More and more researchers are making these

observations and start to question the role of databases

for future distributed and WWW information systems

engineering. They re-orient their research to make well-
founded and established database concepts more

applicable, as the following episodes show.
Carey, Hellerstein and Stonebraker [Regr] observe that
all current databases have been designed with the

technology of twenty years ago. They state that due to a

three-tier architecture, data are at the bottom and

application code is away from data in the middle tier.
They also state that databases are "bloated" by object-
relational features, by stored procedures and triggers, and

by warehouse features. They conclude that we should

rethink everything.
In a keynote speech Brodie [Bro99] states that "the

database era nears its end" because of their inability to

cope with the vast increases in data and transaction

volumes. Heterogeneity hinders interoperability and

accessibility. Architectural complexity is another issue in

view of the many engine and repository types with ad-
hoc solutions for warehousing and mining.

15

The VLDB Endowment in 1998 has established a future

directions group1. To bring application development back

into the fold of database conferences, this group proposed

to distinguish between the two main directions: (1) core

database technology, and (2) infrastructure for
information system development. Accordingly, the future

program committees will be re-organized [VLDB]. (For
more details and other interesting observations on the

evolution of database research the reader is referred to

documents such as [Si+96].)
Even though the general awareness of the problem

slowly proliferates, the database group at ETH Zurich

has been involved not only in core database technology,
but also in the cooperation between databases and

specialized application services for more than ten years.
“Cooperative Service Management for Open Systems”

(COSMOS) is our research framework since 1990

[SSW90].
Taking all these observations together, database groups,
while keeping competency in core database technology,
start moving up to higher levels where workflow and

distributed component and object management takes
place. Their results will influence the next-generation

platform for information-system development. The work

on hyperdatabases is the contribution of the ETH Zurich

database group to this vision.
In the following, we elaborate on this vision and describe

concrete projects. The presentation is similar to

[ScW00], but it is more complete with respect to project
descriptions. [AHST97] is also related and puts more

emphasis on workflow and process management.

2 The Hyperdatabase Vision

2.1 What is a Hyperdatabase?

First rough definitions are: A Hyperdatabase (HDB) is a

database over databases. An HDB administers objects
that are composed of objects and transactions that are

composed of transactions. Like hyper-matrices in

numerical analysis are matrices whose elements are

matrices an HDB is a database, the primitives of which

are again databases. Therefore instead of talking about
hyperdatabases we may also call them “higher order
databases”. We will use both terms synonymously. In a

more general setting we say that an HDB administers
distributed components in a networked environment and

provides a kind of higher order “data independence”.
Remember that data independence was a major

1 Members were Agrawal, Brodie, Carey, Dayal, Gray,
Ioannidis, Schek, Wang and Widom.

breakthrough when relational databases were propagated.
Now we must strive for immunity of application

programs not only against changes in storage and access

structure, but also – and this is the point here – against
changes in location, implementation, workload, the

number of replica of software components and their
services.
What is the difference between a DB and an HDB? In a

nutshell we say: a DB is a platform for clients

concurrently accessing shared data. We need data

definition, data manipulation, and transactions at the

interface. The DB under the cover performs query

optimization, correctness for parallel access, recovery,
persistency, load balancing, admission control,
availability.
Similarly, an HDB is a platform for clients, concurrently

accessing shared application services. As opposed to

shared data in a DB, in an HDB we have shared

components and services. At the interface of an HDB we

need component and service definition and description,
service customization, transactional processes

encompassing multiple service invocations. The HDB,
under the cover, performs optimization of client requests,
routing, scheduling, parallelization, correctness of
concurrent accesses, flexible failure treatment, providing

guaranteed termination, availability, flexible recovery,
and scalability.

2.2 Hyperdatabases and Middleware

The general architecture where HDB concepts are used is

shown in Fig. 1. Clients (white boxes) invoke application

services (black boxes) on server components that are

coordinated (large rectangle). One application invocation

in turn may use several other coordinated components

and invoke one or several lower-level application

services there. This continues along the invocation

hierarchy until we finally reach leaf nodes. The leaf
nodes perform data calls or specialized computations

(gray boxes). Note that coordinator nodes play the typical
middleware dual role: they are servers for clients and

clients to other servers. The repeated use of coordinators

adds complexity because at any server node we may have

additional clients also accessing our distributed system

concurrently to others coming from higher level
coordinators. Seen from this perspective the HDB

concept helps us to manage n-tier architectures that exist
and will further be our realistic information system

infrastructure.
Many products or standards and proposed architectures

provide already the one or the other functionality of an

HDB, such as TP-monitors now evolving to object
monitors [BoK99], CORBA [CORBA], Enterprise

16

Resource Planning systems, federated databases, and data

warehouses.
All of them provide the one or the other desirable feature

of an HDB. The HDB in turn provides a unified view of

all these approaches, incorporating the essential
principles. It incorporates database concepts, but at a

higher level of abstraction than with records or tuples.
This should allow for a better understanding and for
convenient implementations. This is the objective of the

HDB project. In the following we discuss some examples
of current architectures and sketch the opportunities for
improvement.

2.3 TP Monitors

A TP-Monitor is - in a narrow definition - an operating

system for transaction processing. More generally it is
infrastructure for developing and running applications,
services, and components in a three-tier architecture.
While TP-Monitors are definitely helpful, and they are

used in many large-scale implementations, we see some

room for extensions: an HDB would add design tools for
specification of distributed applications and automatic

generation of program code, as extended workflow

systems do [AHST97]. Further, an HDB would add a real
transaction layer above DB-transactions and

transactional process management with failure treatment,
availability, guaranteed termination and "semantic"

correctness. In current TP-monitors or object monitors,
all components are “transactional". This means that they

are forced to the 2PC protocol. Coordination of all
subtransactions is performed at one level of abstraction

only, namely the data level. Finally, an HDB would add

optimal routing to components and clever "semantic"

replication of whole components.

2.4 Enterprise Resource Planning, SAP

As a next example we consider the architecture of the

SAP system, a good representative of ERP software.
Clearly we observe the traditional DBMS at the storage

level. All application code is at the middle tier in so-
called application servers and presentation stays at the

utmost level. The architecture is the one of an HDB. But
a closer inspection of the role of the middle layer and of
the mapping to the DB layer in a SAP system makes

clear that a real HDB layer would add the following:
Most importantly, there should be a real transaction layer
on application objects above DB-transactions and

transactional process management with semantic

recovery and semantic correctness as well as the

possibility of alternative executions in case of failures

and guaranteed termination. In the current system there

is a separate transaction layer on top of DB transactions

called logical unit of work which is in the sense of an

HDB. However application programmers must aquire

locks and so they are responsible for correctness in case

of parallel access and in case of failures. Also

consistency of application server buffers in case of
updates is not provided automatically.
Second, an HDB would add flexible mapping to many

database storage managers. In the current system there is

one big database only, hindering scalability. If more than

one storage component is allowed, optimal
decomposition and routing of client requests to storage

managers can take place and a clever replication of
whole storage components based on usage patterns can

be achieved.
Third, application server caches would be kept consistent
and would not be under the responsibility of the

application programmer, as is the case with the current
version of SAP. An HDB would automatically optimize

various caches and decide which objects to cache.

3 Hyperdatabase Projects

In the following we summarize some of our projects at
ETH Zurich in order to give a more concrete explanation

on what we mean by an HDB approach.

3.1 Composite Transactions and Transactional
Process Management

Foundation. We have studied the problem of ensuring

correctness of concurrent executions in architectures like

the one in Figure 1. A coordinated server component,
called coordinator in the following, contains a full
transaction manager for the client transactions

Fig. 1: Repeated usage of an HDB in a

distributed n-tier architecture. Clients invoke

application servers at several coordinators.

17

encompassing invocations of several application services.
Every coordinator in the composite system performs
transaction management on its own, ensuring (local)
correctness and (local) recovery. The problem is how

global correctness and global recovery is ensured, given

that each coordinator locally works correct. In other
words we must know what additional ordering

restrictions a “caller” coordinator must impose and hand

over to a “called” coordinator. What handshaking

between coordinators is necessary in order to correctly

control concurrency in composite systems as shown in

Fig. 1. We have extensively studied this problem in the

past from a foundational point of view (e.g. in [Wei91,
WeS92, SWY93, Alo+97, Alo+99a, Alo+99b]), we have

studied practical protocols [SWS91, SSW95] and

performed several evaluations [KaS96, RNS96].

Transactional Process Management. In the

transactional process management project, we go beyond

the conventional transaction model by grouping single

transactions into entities with higher level semantics,
called transactional processes. These processes
encompass flow of control as one of their basic semantic

elements. Aside of constraints for regular executions, it is
also possible to specify alternative executions, which can

be applied in case of failures. The steps that have to be

executed within processes are invocations of arbitrary

complex transactions provided as services by the systems
of the next lower level. These transactions may differ in

terms of their termination behavior, which indicates
whether they can be compensated and whether they lead

to success after repeated invocation (retriability)
[MRSK92, ZNBB94]. Given the termination behavior of
single transaction invocations and the specification of
control flow and alternatives, single processes can be

proven correct. This is captured by the notion of
guaranteed termination, which generalizes the

traditional notion of transaction atomicity. Having this
inherent property, a process, once invoked, terminates in

a well-defined state by correctly executing one of possibly

several alternatives. Abort is a special option, forward

recovery (e.g., partial backward recovery combined with

alternative executions) another. The guaranteed

termination will also be ensured if several transactional
processes are executed concurrently. Their more complex

structure implies more complex dependencies compared

with traditional transactions and has to be considered

when transactional processes are scheduled [SAS99],
thereby extending previous work on concurrency control
and recovery [Alo+97, SWY93]. Similar approaches on

combining transaction management and process
execution can be found, for instance, in [WR92,CD96].
Since we do not assume all applications managed by

coordinators as depicted in Figure 1 to be pure database

systems, the transactional properties required for single

invocations may not always be present. Given some basic

requirements we have analyzed in [SSA99], a

transactional coordination agent (TCA) is plugged to the

application, thereby extending its functionality by adding

transactional properties to service invocations (e.g.,
[NSSW94]). When considering, for instance,
coordination processes in multimedia information

systems (which we discuss subsequently), these agents

are extended to capture the workload of single

components, which can be exploited for load-balancing

purposes.
Work on transactions and transactional processes is a

foundation and a basis for HDB transaction

implementations. These principles have been applied, for
instance, in the context of payment interactions in

electronic commerce which are mapped to processes,
thereby making use of the execution guarantees provided

by a transactional process manager [SPS00].

3.2 PowerDB

In the PowerDB project we explore an HDB consisting of
a homogeneous set of component databases in a PC

cluster. In every component, we have a complete DBMS

with its data. Clients access data via the coordinator, i.e.
via the HDB (fig. 2). We explore protocols for high-level
transaction management under special consideration of
replication. Replication of complete databases contributes

to considerable speed-ups in case of read transactions.
Due to the second layer transaction management we

avoid a 2PC and avoid synchronous updates

[GBS99,GBS00]. In addition, query routing aims at
detecting components that have the shortest response

time due to queries that have been processed before

[RBS00]. Replication can be full or be restricted to

certain parts of the database. We investigate methods

that dynamically allow to add more components to the

HDB Coordinator

re
q
u
e
sts

r
e
q
ue
s
ts

r
e
q
u
e
s
t
s

r
e
q
u
e
s
t
s

r
e
q
u
e
s
t
s

DB1 DB2 DB3 DBn

DBMS1 DBMS2 DBMS3 DBMSn
...

...

Fig. 2: The PowerDB Architecture

18

cluster. The subprojects ”Routing of OLAP requests in a

DB Cluster” and “Document Management on a DB

Cluster” are described below in more detail.

Routing of OLAP requests in a DB Cluster. Online

Analytical Processing queries (OLAP queries) refer to

data warehouses i.e. to large collections of data, extracted

and accumulated from operational databases. Despite

their complexity, users want OLAP queries to be

evaluated fast.
The key to good retrieval performance is an appropriate

physical data organization combined with query routing.
In [RBS00], we have compared full replication and a

hybrid placement scheme combining partial replication

with partitioning. Both approaches replicate at least
some data over all nodes. Hence, there are several
components in the general case that can evaluate a query.
The Query Routing component decides at the HDB level
which component is best suited to evaluate the query. We

have built a prototype system for PowerDB including –

among other features – a second layer transaction

management, a routing component providing different
routing strategies and a parallel distributed query

processor (based on [RB99]). Using this prototype, we

have done performance evaluations with the TPC-R

benchmark comparing the different routing strategies:
simple, round-robin-kind-of strategies like random, first-
come-first-server or Balance-the-Number-of-Queries
[CLL85], and a more sophisticated affinity-based routing

strategy which assigns queries accessing the same data to

the same component [YCDI87, RBS00]. It turned out
that the PowerDB architecture in general offers a linear
speedup of mean response time with increasing number
of components (cf. Figure 3). The hybrid data placement
scheme proved superior to full replication, showing an

even more than linear speedup due to caching effects: the

single fragments of the partitioned relation are getting

smaller with increasing cluster size, which notably

improves cache hit rates per component. Besides, we

observed that OLAP queries evaluated concurrently

typically obstruct each other, leading to a certain

performance penalty. For example, the mean response

time when executing queries concurrently per node up to

a multiprogramming level of 6 is 180% higher than with

FCFS as shown in Figure 3. This effect can be avoided

by using affinity-based query routing, which improves

the mean response time as compared to FCFS-routing by

30 percent on average.
We are currently developing routing strategies, which

keep track of the component's cache state and route

queries to the node with the best-suited cache content.

Document Management on a DB Cluster. XML

[W3C98] proliferates, notably for information exchange

for e-commerce. E-commerce applications require an

efficient access to large collections of XML-documents

and the immediate and permanent availability of these

documents after they have been submitted. But most of
today’s document management systems still assume that
new documents are inserted during an off-line period of
the system. This also holds for many current approaches

to XML databases where load times for large data sets

are still prohibitive [FlK99, ST+99]. The major
drawback with this approach is that the querying user
never operates on up-to-date data. [KaS96, KaR96,
BMV96] address this problem with systems that allow

for concurrent retrieval and insertion of documents. Both

approaches are based on multi-level concurrency control
[Wei91] to prevent from inconsistent schedules without
sacrificing parallelism of lower level operations. But, in

this previous work, the issues of scalability via a database

cluster and conformity to the new document format XML

have not been addressed. In our current investigations of
document management, a higher order data object is an

XML document. The HDB provides services for these

higher order data objects, such as insertion, retrieval and

deletion. Under the cover the HDB maps these services

onto a cluster of databases running on off-the-shelf PCs

(similar to [ink96] and [FG+97]). The HDB additionally

provides transaction management for document services.
This leverages conventional database technology to

document databases.
The great advantage of a DB cluster is that it gives us the

freedom to partition and replicate data and indexes and

to allocate them to as many cluster components as

necessary.
Decomposition and parallelization of requests together
with composite transactions implemented at the

coordination and the service layer of the HDB ensure

short query response times and further allow for
concurrent update and retrieval requests. Fig. 4 shows

the architecture of such an HDB.
We have implemented a prototypical document database

for a specific type of documents (i.e., for newsgroup

postings) [GBS99, GBS00]. A cluster of relational
database systems stores the document texts and the Fig. 3: Query Routing - Response Times

Speedup of Mean Response Time with FCFS (compared to 1 node)

0
2
4
6
8

10
12
14

1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes

Full Replication Hybrid Design

19

inverted lists. Our experiments show that document
insertions scale linearly, and retrieval operations slightly

less than linear for increasing cluster sizes (c.f. Fig. 5).
We observed that average response times are interactive

for mixed workloads of 40 parallel insertion and retrieval
streams already on a cluster with only 8 database nodes.
In extension to this prototype system, our current work

focuses on documents with arbitrary structure and no

restriction of the acceptable DTDs.
An essential design issue is to reduce the amount of
centralized processing in a clustered environment. This
is important when the cluster size goes into some

hundreds of database nodes that have to be coordinated.
Our approach takes this into account as document
specific functionality is distributed among the

components. Only a table with information for semantic

locking is necessarily kept at a centralised coordinator
node. Results in [BGRS00] are encouraging.
In our future work, we want to address a self-adapting

hyperdatabase system. At the data object level, such a

system automatically partitions, replicates and

materializes data in order to process requests efficiently.
At the service level, such a system replicates
functionality among the coordinated nodes in order to

meet the changing processing needs of its clients.

3.3 Image Search and Management Systems.

Information systems for image collections consist of
many specialized software components such as image

servers, image processing, feature extraction, and

indexing components. In such a setting, given the

possibly large number of components and the high

workload imposed on them, location and workload

transparency is of great value, and the HDB vision

applies here.
In more detail, we use a PC cluster, which contains as

many specialized software components installed as

necessary and coordinate them by an HDB. For the

coordination, we need descriptions of the software

components including its actual load. Simple

transactional processes for insertion, similarity search,
and bulk load can run in parallel and the subtasks are

“optimally” assigned to the components by the HDB. At
any point in time new components can be added to the

cluster in order to improve response times. Interactive

similarity retrieval is based on the VA-File, a simple but
efficient approximation of the inherently high-
dimensional feature vectors [WSB98,WeB00]. In the

following we summarize the infrastructure aspect and the

parallelization necessary for interactive similarity search

and relevance feedback.

Coordination of the Image System Component. In

order to let the HDB coordinate the various components,
not only static information about the components is

necessary but also the dynamically changing state of
every component at any point in time is required. For
this purpose we have introduced coordination agents

[SSA99,Web+99] that are plugged-into all components

(fig.6). A coordination agent observes the status and

actions of its component and initiates processes that
make sure that all dependencies between components are

properly maintained. Examples are processes for index

maintenance, replication control, or consistency of
metadata. The specification and execution of such

processes are the main tasks of the HDB assisted by the

agents. For instance, if a new image collection extends a

repository, the agent of that repository initiates a

bulkload process to extract the required features from

the images and to insert these features into specialized

index structures for similarity search.

Fig. 4: Document Management Hyperdatabase

Document Service Throughput

0

2

4

6

8

10

12

1 2 4 8
components

n
u

m
b

er
 o

f
se

rv
ic

es
 p

er

se
co

n
d

Retrieval Insertion

Client

Interface

Client

Interface

Client

Interface

Semantic

Concurrency

Control

Retrieval

Decomposition

Parallelization

Retrieval

Decomposition

Parallelization

Insertion

Decomposition

Parallelization

DB1
DB3 DB4DB2

Database

Layer

Service

Layer

Coordination

Layer

Client

Layer

Fig. 5: Document Service Scalability

20

The main problem of a bulkload process is the enormous
cost of extracting features: e.g. for 100,000 images, this
pre-processing step may last up to 50 days on a single

machine. To speedup the extraction, the HDB deploys a

large number of feature extraction components in

parallel. Each component works off a part of the images
in the new collection. If the extraction of features would

last too long, we can dynamically add new components to

the system. After their registration, the HDB will account
for these new components and route requests to them

without the need of reconfiguring or restarting the

system. Even processes that have started before adding a

new component can benefit from the additional
component. The same holds true if components retire

from the system or fail: the coordination agents notify the

HDB about this, that component is excluded from future

processing, and its pending tasks are re-routed to other
available components.
Load balancing is a further key aspect of the HDB in our
image database system. In a bulkload process, for
example, the pre-processing cost of an individual image

depends on the size of the image and of the component
that does the extraction (heterogeneous environment). In

order to minimize the cost of the entire process, the HDB

must balance the load over the available components as
equal as possible. To this end, the coordination agents of
the extraction services periodically inform the HDB

about the current load of the service (in our case: the

time required working off all tasks assigned to the

service). Then, the HDB assigns a new extraction task to

the service with the smallest current load, but only if its
load is below a given threshold (in order not to assign all
tasks to the components at once). With this policy, we

can ensure that all components are (almost) equally

loaded, and that new feature extraction components can

be used to speedup up current ulkload processes. More

details can be found in [[Boe+98, Web+99, WeS99,
ScW00]. The same technique is used for other processes

like similarity search as discussed in the following.

Parallel Similarity Search and Relevance Feedback.
The rationale behind our activities in the field of
similarity search is to provide search mechanisms that
are easy to use, and that yield results of high relevance to

the user. Relevance and relevance feedback depends

largely on the availability of many different feature types

in order to enable the feedback mechanism to adapt to

the (subjective) relevance judgement of a user.
Consequently, similarity search over image collections

means Nearest Neighbour search (NN-search) in feature

spaces that are high-dimensional. The dimensionality

typically is in the range of several hundreds if
information on several feature types is combined. Thus,
and this is the first issue, similarity search over large

image collections requires considerable engineering

effort in order to ensure interactive response times. In

this situation, an HDB approach helps in the following

way: it is able to coordinate as many feature extraction

components and replica of indexing components as

necessary, enabling high-level parallelization.
NN-search in high-dimensional feature spaces is

provably linear in the number of data objects [WSB98].
In order to accelerate the unavoidable linear scan, we use

bitstring approximations of feature vectors. This data

structure is called the VA-File [WSB98, WeB00]. NN-
search using the VA-File is as follows: a first phase

explicitly inspects all bitstring approximations. This

gives us candidates for the k nearest neighbours. The

second phase checks the candidates and determines the k

nearest neighbours. Note that the first phase is well-
suited for parallelization. We can partition or replicate

the VA File and distribute it over an arbitrary number of
components.
However, a number of design decisions arise. A first
issue is whether to replicate or to partition the

approximation data. The tradeoff is flexibility vs. update

costs. In more detail, flexibility means that the system

can adequately react to changing behavior of
components. For instance, the workload of a component
may suddenly increase, or a component may become

unavailable. The HDB vision is implemented as follows:
the coordinator takes into account the current states of
the components and finds an appropriate query

evaluation strategy. This strategy remains transparent for
the application on top. As in other projects described in

this article, agents closely monitor the components and

feed the coordinator with up-to-date information. Next to

the workload, the coordinator knows about the cache

state of the components by approximating it from the

network

Index
Service

Coordinator

Search
Engine

Meta
DB

Feature
Service

Feature
Service

Index
Service

Image
Server

Image
Server

Client

Feature
Service

Feature
Service

Index
Service

Agent

Fig. 6: Image System HDB

21

queries previously executed and takes it into account
when assigning subqueries to components.
What are the performance characteristics of this
implementation of the HDB vision? A central
observation is that a relatively small number of
components is already sufficient for interactive query-
answering times. We believe that this is a major result,
since much research on similarity search did not yield

any comparable solutions.
Given such an efficient implementation of similarity

search, the natural next step is to allow the user to

formulate his information need by means of relevance

feedback mechanisms. I.e., the system collects user
feedback and interprets it, in order to refine the search in

subsequent steps. The main idea is to map user feedback

to a statement in a similarity query language and to

evaluate the query. A number of such mappings have

been proposed in literature, e.g., [Roc71,RHOM98]. Our
solution has been to develop a framework that is
extensible, and that allows for easy integration of the

approaches that are around. A distinguished component
implements the relevance feedback functionality. Its
embedding into the similarity search process is relatively

easy, thanks to our component-based approach. The

spezialized VA-File component can easily be integrated

and query answering times are again pleasingly low,
even with complex relevance feedback queries,.

4 Conclusions
In a first part we have presented the general
hyperdatabase vision. Its main objective is to provide a

higher-level platform for distributed application

developement. Hyperdatabases provide for higher order
data independence in analogy to databases twenty years
ago: Application programming will be at a level where

availability, correctness, well-defined termination,
caching, materialization, and replication of complete

software components is merely an issue of the

hyperdatabase system, taken off from the responsibility of
the programmer. Many issues must be tackled in order to

realize the vision. In the second part we have presented

some concrete projects at ETHZ in order to exemplify

some of the issues. We have summarized transactional
process management as an evolution from database

transactions. We have shortly described PowerDB as an

HDB project with the main objective of demonstrating

that coordinating many database systems in a cluster of
workstations pays off with respect to scalability and that
there is no need for sacrificing correctness. The

coordination of heterogeneous, specialized components
was the main issue of the image system project. The VA-
File and feature extraction are examples of very special
components that nicely can be coordinated by an HDB.

References
[Alo+97] Alonso, G., Blott, S., Fessler, A., Schek, H.-J.:

Correctness and Parallelism in Composite

Systems. In: Proc. of the 16th Symp. on Principles

of Database Systems (PODS'97), Tucson, Arizona,
May 12-15, 1997

[AHST97] Alonso, G., Hagen, C., Schek, H.-J., Tresch, M.:
Distributed Processing over Stand-alone Systems

and Applications, In: Proc. of 23rd International
Conference on Very Large Data Bases (VLDB'97),
August, 1997, Athens, Greece

[Alo+99a] Alonso, G., Fessler, A., Pardon, G., Schek, H.-J.:
Transactions in Stack, Fork, and Join Composite

Systems. In: Proc. of the 7th
 Int. Conf. on Database

Theory (ICDT’99), Jerusalem, Israel, Jan. 10-12,
C. Beeri, P. Buneman (Eds.), LNCS, Vol. 1540,
Springer-Verlag, 1999, pp. 150-168.

[Alo+99b] Alonso, G., Fessler, A., Pardon, G., Schek, H.-J.:
Correctness in General Configurations of
Transactional Components. In: Proc. of the 18th

ACM SIGMOD-SIGACT-SIGART Symp. on

Principles of Database Systems (PODS’99),
Philadelphia, Pennsylvania, May 31-June 2, ACM

Press, New York, 1999, pp. 285-293.
[BGRS00] Böhm, K., Grabs, T., Röhm, U., Schek, H.-J.:

Evaluating the Coordination Overhead of
Synchronous Replica Maintenance in a Cluster of
Databases. To appear in: Proc. of the 5th

European Conference on Parallel Computing

(Euro-Par 2000), Munich, Germany, August 2000.
[BMV96] Barbará, D., Mehrotra, S., Vallabhaneni, P.: The

Gold Text Indexing Engine, In: Proc. of the

Twelfth International Conference on Data

Engineering (ICDE'96), February 26 - March 1,
1996, New Orleans, Louisiana, USA, pp. 172-179.

[Boe+98] Böhm, K., Ma, D., Nerjes, G., Schek, H.-J., Weber,
R.: Metadata Management with the HERMES

Coordination Middleware, ESPRIT project
HERMES (no. 9141), Aug. 1998, Available at
http://www-dbs.ethz.ch/~weber/paper/-
HERMESmeta.ps

 [Boe00] Böhm, K.: On Extending the XML Engine with

Query Processing Capabilities. In: IEEE

Advances in Digital Libraries, 2000, Bethesda,
Maryland, USA.

[BoK99] Boucher, K., Katz, F.: The Essential Guide to

Object Monitors, John Wiley & Sons, New York

etc., 1999.
[Bro99] Brodie, M.L.: Que Sera, Sera: The Coincidental

Confluence of Economics, Business, and

Collaborative Computing, Proc. of the 15th

International Conference on Data Engineering,
Sydney, Austrialia, March 1999, pp. 2-3

[CD96] Chen, Q., Dayal, U.: A Transactional Nested

Process Management System. In: Proc. of the 12th

International Conference on Data Engineering

(ICDE'96), New Orleans, Louisiana, February

1996, pp. 566-573.

22

[CLL85] Carey, M.J., Livny, M., Lu, H.: Dynamic Task

Allocation in a Distributed Database System. In:
Proc. of the 5th IEEE Int. Conf. on Distributed

Computing Systems (ICDCS), Denver, Colorado,
May 1985.

[CORBA] http://www.corba.org

[DFS99] Deutsch, A., Fernandez, M., Suciu, D.: Storing

Semistructured Datawith STORED, In: Proc. of
the ACM SIGMOD International Conference on

Management of Data, June 1-3, 1999, Philadephia,
Pennsylvania, USA, pp. 431-442.

[FG+97] Fox, A. Gribble, S.D., Chawathe, Y., Brewer, E.A.,
Gaulthier, P.: Cluster-Based Scalable Network

Services. In: Proc. of the 16th
 ACM Symposium on

Operating System Principles (SOSP'97), St. Malo,
France, 1997, pp. 78 - 91.

[FlK99] Florescu, D., Kossmann, D.: Storing and

Querying XML Data using an RDBMS. In: IEEE

Data Engineering Bulletin 1999, 22(3), pp. 27-34.
[GBS99] Grabs, T., Böhm, K., Schek, H.-J.: A Document

Engine on a DB Cluster. In: Proc. of the 8th
 Int.

Workshop on High Performance Transaction

Systems (HPTS’99), Asilomar, California, Sept.
26-29, 1999.

[GBS00] Grabs, T., Böhm, K., Schek, H.-J.: A Parallel
Document Engine Built on Top of a Cluster of
Databases -- Design, Implementation, and

Experiences --. Techn. Report No. 340, Dept. of
Computer Science, ETH Zurich, April 2000.

[GHOS96] Gray, J., Helland, P., O’Neill, P.E., Shasha, D.: The

Dangers of Replication and a Solution. In: Proc.
of the SIGMOD Conference, pp. 173-182, 1996.

[ink96] Inktomi Corp., The Inktomi Technology behind

HotBot, http://www.inktomi.com/products/-
network/traffic/tech/clustered.html, 1996

[KaR96] Kamath, M., Ramamritham, K.: Efficient
Transaction Support for Dynamic Information

Retrieval Systems. In: Proc. of the 19th annual
International ACM SIGIR Conference on Research

and Development in Information Retrieval
(SIGIR'96), Zurich, Switzerland, 1996.

[KaS96] Kaufmann, H., Schek, H.-J.: Extending TP-
Monitors for Intra-Transaction Parallelism. In:
Proc. of the 4th Int. Conf. on Parallel and

Distributed Information Systems (PDIS'96), Miami
Beach, Florida, USA, Dec. 18-20, 1996, p. 250-
261

[MRSK92] Mehrotra, S., Rastogi, R., Silberschatz, A., Korth.
H.: A Transaction Model for Multidatabase

Systems. In: Proc. of the 12th
 International

Conference on Distributed Computing Systems
(ICDCS'92), Yokohama, Japan, June 1992, pages
56-63,

[NSSW94] Norrie, M., Schaad, W., Schek, H.-J., Wunderli,
M.: CIM Through Database Coordination. In:
Proc. of the 4th

 International Conference on Data

and Knowledge Systems for Manufacturing and

Engineering (DKSME'94), Hong Kong, May

1994, pp. 668-673.

[RB99] Röhm, U., Böhm, K: Working Together in

Harmony – An Implementation of the CORBA

Object Query Service and its Evaluation. In: Proc.
of the 15th

 Int. Conf. on Data Engineering (ICDE

1999), Sydney, Australia, March 1999.
[RBS00] Röhm, U., Böhm, K., Schek, H.-J.: OLAP Query

Routing and Physical Design in a Database

Cluster. In: Proc. of the 7th
 Conf. on Extending

Database Technology (EDBT 2000), Konstanz,
Germany, March 27-31, 2000.

[Regr] Seminar talk "A sketch of Regres

"http://www.cs.berkeley.edu/~gribble/-
summaries/talks_seminars/regres.html

[RNS96] Rys, M., Norrie, M.C., Schek, H.-J.: Intra-
Transaction Parallelism in the Mapping of an

Object Model to a Relational Multi-Processor

System. In: Proc. of the 22nd VLDB Conf.,
Mumbai (Bombay), India, Sept. 3-6, 1996, p. 460-
471

[Roc71] Rocchio Jr., J.J.: Relevance Feedback in

Information Retrieval, The SMART Retrieval
System: Experiments in Automatic Document
Processing, Prentice Hall, 1971, Englewood Cliffs,
New Jersey, USA, pp. 313--323.

[RHOM98] Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.:
Relevance Feedback: A Power Tool in Interactive

Content-Based Image Retrieval, In: IEEE

Transactions on Circuits and Systems for Video

Technology, Special Issue on Segmentation,
Description and Retrieval of Video Content, 8(5),
1998, pp. 644-655.

[ScW00] Schek, H.-J., Weber, R.: Higher Order Databases

and Multimedia Information, In: Proc. of the

Swiss/Japan Seminar Advances in Database and

Multimedia, Kyoto, Japan, Febr. 2000.
[SAS99] Schuldt, H., Alonso, G., Schek, H.-J.: Concurrency

Control and Recovery in Transactional Process

Management. In: Proc. of the 18th
 ACM

SIGMOD-SIGACT-SIGART Symp. on Principles

of Database Systems (PODS’99), Philadelphia,
Pennsylvania, May 31-June 2, ACM Press, New

York, 1999, pp. 316-326.
[SPS00] Schuldt, H., Popovici, A., Schek, H.-J.: Automatic

Generation of Reliable E-Commerce Payment
Processes. In: Proc. of the 1st

 International
Conference on Web Information Systems

Engineering (WISE’00), Hong Kong, China, June

2000.
[SSA99] Schuldt, H., Schek, H.-J., Alonso, G.:

Transactional Coordination Agents for

Composite Systems. In: Proc. of the International
Database Engineering and Applications

Symposium (IDEAS'99), Montréal, Canada,
August, 1999, pp. 321 - 331.

[Si+96] Silberschatz, A. et al.: Strategic directions in

database systems – breaking out of the box. ACM

Computing Surveys, Vol. 28, No. 4, Dec. 1996,
pp. 764-778.

23

[SSW90] Schek, H.-J., Scholl, M.H., Weikum, G.: From the

KERNEL to the COSMOS: The Database

Research Group at ETH Zurich. Techn. Report
No. 136, Dept. of Computer Science, ETH Zurich,
July 1990

[SSW95] Schaad, W., Schek, H.-J., Weikum, G.:
Implementation and Performance of Multi-level
Transaction Management in a Multidatabase

Environment. In: 5th Int. Workshop on Research

Issues on Data Engineering: Distributed Object
Management, RIDE-DOM'95, Taipei, Taiwan,
March 1995, p. 108-115

[ST+99] Shanmugasundaram, J, Tufte, K., He, G., Zhang,
C., DeWitt, D., Naughton, J.: Relational
Databases for Querying XML Documents:
Limitations and Opportunities. In: Proc. of the

25th
 Int. Conf. on Very Large Data Bases

(VLDB‘99), Sept. 7-10, 1999, Edinburgh,
Scotland, UK, pp. 302-314.

[SWS91] Schek, H.-J., Weikum, G., Schaad, W.: A Multi-
Level Transaction Approach to Federated DBMS

Transaction Management. In: Proc. of the First
Int. Workshop on Interoperability in Multidatabase

Systems, (IMS'91), Kyoto, April 1991

[SWY93] Schek, H.-J., Weikum, G., Ye, H.: Towards a

Unified Theory of Concurrency Control and

Recovery. In: 12th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database

Systems (PODS), Washington, DC, May 1993

(Appeared as Techn. Report No. 190, Dept. of
Computer Science, ETH Zurich, Dec. 1992)

[VD98] Vogels, W., Dumitriu, D., et al.: The Design and

Architecture of the Microsoft Cluster Service - A

Practical Approach to High-Availability and

Scalability. FTCS 1998.
[VLDB] http://www.vldb.org/
[W3C98] The World Wide Web Consortium: Extensible

Markup Language (XML) 1.0 - W3C

Recommendation 10-February-1998. Available

at: http://www.w3.org/TR/1998/REC-xml-
19980210

[Web+99] Weber, R., Bolliger, J., Gross, T., Schek, H.-J.:
Architecture of a Networked Image Search and

Retrieval System. In: Proc. of the 8th
 Int. Conf. on

Information Knowledge Management (CIKM’99),
Kansas City, Missouri, Nov. 2-6, ACM Press, New

York, 1999, pp. 430-441.
[WeB00] Weber, R., Böhm, K.: Trading Quality for Time

with Nearest-Neighbor Search, Proc. of the 7th

Conf. on Extending Database Technology (EDBT

2000), Konstanz, Germany, pp. 21-35.
[Wei91] Weikum, G.: Principles and Realization Strategies

of Multi-Level Transaction Management. In:
ACM Transactions on Database System, Vol. 16,
No. 1, March 1991, pp. 132-180

[WeS92] Weikum, G., Schek, H.-J.: Concepts and

Applications of Multilevel Transactions and Open

Nested Transactions. In: A.K. Elmagarmid (Ed.),
Database Transaction Models for Advanced

Applications, Morgan Kaufmann, San Mateo, CA,
1992

[WeS99] Weber, R., Schek, H.-J.: A Distributed Image-
Database Architecture for Efficient Insertion and

Retrieval. In: Proc. of the 5th
 Int. Workshop on

Multimedia Information Systems (MIS’99), Indian

Wells, California, Oct. 21-23, L. Golubchik, V. J.
Tsotras (Eds.), pp. 48-55.

[WR92] Wächter, H., Reuter, A.: The ConTract Model,
chapter 7, pp. 219-263. In: A.K. Elmagarmid (Ed.),
Database Transaction Models for Advanced

Applications, Morgan Kaufmann, San Mateo, CA,
1992

[WSB98] Weber, R., Schek, H.-J., Blott, S.: A Quantitative

Analysis and Performance Study for Similarity-
Search Methods in High-Dimensional Spaces. In:
Proc. of the 24th

 Int. Conf. on Very Large Data

Bases (VLDB‘98), New York, USA, Aug.24-27,
1998.

[YCDI87] Yu, P.S., et. al.: Analysis of Affinity Based Routing

in Multi-System Data Sharing. Performance

Evaluation, 7:87-109, 1987.
[ZNBB94] Zhang, A., Nodine, M., Bhargava, A., Bukhres. O.:

Ensuring Relaxed Atomicity for Flexible

Transactions in Multidatabase Systems. In: Proc.
of the ACM SIGMOD International Conference on

Management of Data (SIGMOD'94), Minneapolis,
Minnesota, May 1994, pp. 67-78.

