
Using Predicates for Specifying Targets of
Migration and Messages in a Peer-to-Peer

Mobile Agent Environment

Klaus Haller and Heiko Schuldt

Swiss Federal Institute of Technology (ETH)
Institute of Information Systems

ETH Zentrum
CH-8092 Zürich, Switzerland

{haller|schuldt}@inf.ethz.ch,
WWW home page: http://www-dbs.inf.ethz.ch

In: Proceedings of the 5th IEEE International Conference on Mobile Agents
(MA’2001), pages 152-168, Atlanta, GA, USA, December 2001. Springer LNCS,
Vol. 2240.

Abstract. Mobile agent systems are a powerful approach to develop dis-
tributed applications since they migrate to hosts on which they have the
resources to execute individual tasks. Existing mobile agent systems re-
quire detailed knowledge about these hosts at the time of coding. This as-
sumption is not acceptable in a dynamic environment like a peer-to-peer
network, where hosts and, as a consequence, also agents become repeat-
edly connected and disconnected. To this end, we propose a predicate-
based approach allowing the specification of hosts an agent has to mi-
grate to. With this highly flexible approach, termed P2PMobileAgents,
we combine the benefits of execution location transparency with those
of code mobility. Similarly, also the recipients of messages can be speci-
fied by predicates, e.g. for synchronisation purposes. For providing meta
information about agents and hosts we use XML documents.

1 Introduction

c© Springer-Verlag Berlin Heidelberg 2001

Mobile agents are a programming paradigm for distributed systems. In partic-
ular, this approach tries to reduce the communication costs and to evade the
problem of network latency. Mobile agents consisting of code and an execution
state are transferred from host to host to achieve these goals. They move in
order to process the data available on hosts they reside on instead of sending
the data to the host which is processing them. Hence, mobile agents are individ-
ual software entities performing tasks autonomously while hopping from host to
host, which know on which host they find the data they need. With this point
of view in mind, mobile agents require only simple mechanisms for messaging
among themselves or choosing a host at run-time – since the latter already has
to be defined when a mobile agent is coded.

On the other side, mobile agents are proposed for executing workflows since
their early days [5]. Semantically corresponding steps are coded within a single
mobile agent, so each agent can be considered as an independent transaction.

Code and Data Mobility
no yes

Execution Location
Transparency

no ”simple” program Mobile Agent
yes RPC P2PMobileAgent

Table 1.

However, when processing takes place on shared resources or data, also synchro-
nisation of different, originally independent mobile agents is required. Under
this perspective, sophisticated methods for specifying targets of messages, espe-
cially for synchronizing agents accessing shared resources, and for migration are
essential.

Existing mobile agent systems usually deal with the problem of implementing
basic technologies, such as strong migration, which are however still subject to
research. Instead, we focus on extending an existing mobile agent framework
with sophisticated methods for specifying message targets and hosts an agent
should migrate to. To be generic, we use predicates for specifying agents and
hosts in a declarative way.

Also, agents are commonly seen as autonomous entities being able to cooper-
ate in a bilateral way. Thus, there is no particular need for centralized services.
Because of this, a peer to peer approach for agent cooperation is obvious.

Consider the following example, which we will use throughout the paper:
An agent interested in buying stocks wants to figure out a place with a stock
exchange agent in order to watch the stock prices and eventually to buy stocks.
Moreover, it is interested to move to the place with the lowest load.

To point out in which way this adds new ideas to the mobile agents world,
we want to compare our approach, called P2PMobileAgents, with other mobile
agents and with remote procedure calls as illustrated in Table 1. We can use
two criteria for classification: Code and data mobility on one side and execution
location transparency, meaning that the programmer does not have to know on
which host (sub)tasks are going to be executed in future, on the other side.

Mobile agents belong to the class that represents code and data mobility,
but no execution location transparency is provided, since a programmer has to
specify explicitly where he wants the agent to migrate to. Conversely, remote
procedure calls (RPCs) hide the fact that a code fragment is executed on a
foreign host. But in contrast to mobile agents, code is not passed through the
network, only parameters. So execution location transparency is supported, but
neither code nor data mobility.

Our P2PMobileAgents as an extension to the mobile agent approach cer-
tainly support code and data mobility, but they additionally offer execution
location transparency. Places, to which an agent has to migrate to continue
its execution, are specified using predicates. The P2PMobileAgents framework
evaluates such predicates at run time, and so combines the advantages of mo-
bile agents and RPCs. The remainder of this paper is structured as follows:
We present an overview of the messaging and migration mechanisms of exist-
ing mobile agent systems and the possibilities for specifying message recipients.

Therefore, we introduce our system architecture in Section 2. In Section 3, we
discuss the query language which is used for describing the features of entities
(places and agents), before we explain how queries are evaluated (Section 4). We
conclude this paper with a short summary in Section 6, after discussing related
work in Section 5.

2 System Architecture

Within the P2PMobileAgent project of the Database Research Group at ETH,
we are implementing a mobile agent platform providing the possibility to choose
and specify agents and hosts in a peer-to-peer environment by using predicates.
In what follows, we present our system architecture.

Our system consists of places on which static and dynamic agents are ex-
ecuted. Resources available on places are encapsulated and can only be used
via static agents bound to particular places. A peer-to-peer network supports
communication between different places. Additionally, meta information for all
agents and places is provided.

An example is shown in Figure 1: There are places connected by a peer-
to-peer network and also both static and a mobile agents running within these
places. The static agent existing at the place identified by ”atp : //inf13.ethz.ch :
4435” represents a stock exchange and supports the buying and selling of stocks.
In addition, there is a mobile agent at the place ”atp : //inf7.ethz.ch : 4435”, a
broker offering the service ”buy stocks”.

We assume that the broker agents task is to buy stocks of the ”ACompany”.
This requires him to monitor the trend of this stock and to be able to react
immediately. Especially the last requirement demands that the agent is executed
on the same place as the stock exchange agent.

For this reason, the broker agent has to migrate to a place with such a
static stock exchange. Therefore, the agent has to find out via the peer-to-peer
network which place is appropriate for its particular demands. The information
about places and agents, called meta information in the remainder of this paper,
has to be provided by each place and agent, respectively.

The task of managing meta data is realized by an additional type of agent,
one per place, called AgentsManagementAgent, AMA (see Figure 1). The concept
of an AMA is essential for the implementation of our new features: Together, all
AMAs form a peer-to-peer network. Additionally, they are responsible for the
meta data management. It is subject to the next two subsections to explain how
these AMAs realize this task, before certain system issues are discussed in the
last subsection.

Already at this place, we want to point out that no programmer using the
P2PMobileAgent framework notices the AMAs: They are started with the
places. Also, communication with these AMA is transparent for mobile agent
programmers, since the latter use an interface providing the extended capabili-
ties of our system.

Fig. 1. Agent System

2.1 Meta Data Management and Querying

The P2PMobileAgent system allows to specify destinations for migration or
messages by predicates. Therefore, meta data describing agents and places is
needed. This subsection describes how this meta data is managed, focusing on
the aspect of both structure and storage.

Structuring the Meta Data A key factor for allowing sophisticated queries
to select places and agents is to structure the meta data needed for that purpose
appropriately. To find the most suitable solution, the characteristics of this kind
of information have first to be classified.

Typically, meta data comprises the description of services an agent provides
or the actual load of a place. For this kind of information, a global schema
can be defined. However, if groups of agents cooperate to solve a problem, it is
sometimes important to be able to make information about their internal state
available to the public. Yet, no universal schema can be found for this kind of
information, since this particular state information differs from agent to agent
not only with respect to the individual instances but also with respect to the
granularity.

Nevertheless, to be able to process queries efficiently, we cannot rely on un-
structured data. Hence, storing the meta data in a semistructured way is sensible.
In particular, we use a subset of XML (eXtended Markup Language) [13] for this
purpose, which doesn’t contain the conept of parameters.

We assume that agents have to have a shared knowledge about the structure
of the internal information (and in particular using a common vocabulary) avail-

able from other agents they wish to interact and cooperate with. Alternatively,
ontologies would be needed, but this is definitely not the objective of our work.

Although the amount of information encapsulated may vary from agent to
agent and from place to place, there is a minimal set of information mandatory
for agents (i.e., their type, that is wether or not they are mobile) and for places
(e.g., their address), respectively.

Figure 1 also shows such XML documents storing semistructured data. They
consist of entities enclosed in tags which also can be used in a nested way. We
want to illustrate this concept by looking at the static agent representing a stock
market. The entity < agent/stocks > with its subentities < stock > names the
stocks which are subject to trade. Knowing this structure and the tags exploited,
every other agent can access and use this information.

Meta Data Storage and Processing Information about the place itself is
managed by the AMA while information about agents are provided by the agent.
Hence, this illustrates that there are two possibilities for query processing: it
could be done by the agents or the AMAs.

If the individual agents evaluate the queries, agents become more complex –
and a lot of code is redundant for all agents. Currently being present at some
place, they would need information about all other agents of the same place.
Additionally, the load of the agents would rise, because they cannot simply
concentrate on their normal task. Concentrating the query evaluation on the
AMAs allows us to benefit from the fact that they can aggregate information
from all local agents making query evaluation faster. This applies especially if a
query is not restricted to the information about either a single place or a single
agent but also includes information on several agents. ”Give me the place where
an agent of the type stock exchange is executing!” is a good example for this
type of query.

To evaluate queries, the required information has to be made available to
the AMAs. Therefore, we have to distinguish two different kinds of information:
static and dynamic.

A piece of information of an agent or place is called static if it cannot change
during its whole life cycle, e.g. the services an agent provides or its type (see
for instance the entities < agent/services/service > or < agent/type > in
Figure 1). This kind of information can be cached by the AMA to improve the
efficiency of the system.

On the other side, there is dynamic information which cannot be cached by
the AMA. Instead, every time an agent has to be asked by the AMA to deliver
the current value when the latter needs this information for query evaluation
purposes. An example of this dynamic meta data is the number of brokers con-
nected to a stock exchange broker (see < agent/status/brokers > in Figure 1).

Dynamic information is always part of the element < status >, so that the
system can determine whether data is dynamic or static. If there are different
kinds of agents, some may store the same information as static whereas others
store them as dynamic information. Because the same kind of information should

Fig. 2. Network Structure

always be addressable by the same tag name, the tag level < status > is masked
for queries. So there is no need to know (for queries) whether the data is static
or dynamic.

2.2 Peer-to-peer Network

The goal of mobile agents issuing queries over places and other agents is to
support their migration within the network. To this end, we want so support an
open environment, since we are not interested in network topologies with any
kind of central management. So, a peer to peer network fits to our requirements.
All nodes are equal in this topology and have to provide the same functionality.
Usually, not every node is aware of all the other nodes, but sees only a fraction
of the whole system. Hence, communication between two nodes might involve
several intermediate nodes.

This network is used for querying on agents and places and not for direct
communication. This service is provided solely by the AMAs, so there is no
reason that every ”normal”, i.e., mobile agent participates. Thus, the network is
spawned by the universe of all AMAs.

Therefore, our system has two layers as shown in Figure 2: There is a
client/server-like communication between agents of one place and their AMA
and a peer-to-peer network between the AMAs of the different places.

Communication between an agent and its AMA is set up when the agent is
started on the place, independently whether it is a new agent or whether the
agent has just migrated to this place. The reason is that the AMA caches static
information about the agent as it is described in Section 4. After the termination
of an agent or after its migration to another place, the connection to the AMA
is closed.

2.3 Implementation Details

Our system of P2PMobileAgents is based on Aglets [9], the mobile agent frame-
work developed by IBM which evolved to an open source project. Using this

Fig. 3. Agent Layers

framework makes it possible to concentrate on implementing new concepts for
specifying communication and migration targets instead of dealing with basic
problems of mobile agents.

The Aglets framework provides mechanisms for weak migration and for send-
ing messages. Each Aglet has a unique ID and by knowing this ID of an agent,
communication mechanisms of the framework can be used for sending messages
directly to it. In addition, the Aglet system allows to receive events when some-
thing important happens, e.g., when a new agent is launched or arrived at a
certain place. These places are usually Tahiti servers, a program also being part
of the Aglet system.

In this subsection, we concentrate on how the functionality for sending mes-
sages and migration based on the specification of targets using predicates can be
added to the existing framework by using its basic features. The most important
question is how to integrate the functionality into the existing Aglet framework.
For this reason, it is either possible to extend and modify existing classes or to
build a new component on top of the existing one.

In order to facilitate maintenance and since it is more convenient for pro-
gramming, we have chosen the latter possibility with the restriction that the
extended functionality for agents is realized by adding two new methods to the
Aglet class. These methods implement mechanisms to send messages, and to
migrate to targets specified by predicates.

In short, we realize theP2PMobileAgent system by adding a new layer to
the Aglet system. This layer provides support for querying on agents and places.

Figure 3 illustrates this for the case of an agent query. In the Aglet system,
an agent inherits from the class Aglet. In theP2PMobileAgent system, a new
subclass is introduced, which provides the functionality for sending messages
to agents and for migrating to places both specified by predicates. All mecha-
nisms of the Aglet framework are not hidden and still available. In Figure 4,
we illustrate the layered architecture for places. The context class of the Aglets
system is the basis, on top of which the Tahiti server is running. Similar to the
agent case, there is still the possibility to address these tiers by agents. In the
P2PMobileAgent approach, we added a new tier, the AgentsManagementAgent
level.

Fig. 4. Place Layers

AMAs are also Aglet agents that use the services provided by the lower level,
especially the event handling and communication primitives and that integrate
them them with the new XML meta data to provide the ability to query about
agents and places. This functionality is used by the new layer of the agents that
implement the new features for sending and migration.

In a peer-to-network, the Aglet system provides the possibility to send mes-
sages to agents if their IDs and addresses are known, but linking the places
together to share knowledge about places or agents is not provided by the Aglet
system framework.

So this peer-to-peer network formed by the AMAs is used for communication
during the processing and evaluation of queries on hosts and agents, but not for
communication between agents. If a message is to be sent to a particular agent
fulfilling the query conditions, the agent is determined and its proxy is returned
to the agent having initiated the query. Having a proxy, it is possible to send
messages directly to the agent, although it might migrate in the future without
indirection via the AMA peer-to-peer network.

3 Query Language

In this section, we address how to access the meta data. Therefore, we define a
query language. The task of this query language is to find agents or places with
particular properties. The result set of such queries consists of places an agent
should migrate to or of a set of agents which are the recipients of a message.

In the context of querying XML documents, various query languages have
been proposed, [8] is a compilation and comparison of the most important ones.
Rather than relying on a fully-fledged XML query language, we follow a slightly
simplified own approach. The reason is, that existing query languages provide a
set of sophisticated features which considerably exceed the requirements of our
P2PMobileAgent approach.

The features of the existing query languages are:

1. Queries consists of a pattern clause, a filter clause and a constructor clause,
including the possibility for information passing between different clauses.
Also, nesting, grouping, indexing, and sorting is supported.

2. A join operator.
3. Tag variables and path expressions.
4. Handling of alternatives.
5. External functions like aggregation, etc.
6. Navigation operators for dealing with references.

In contrast, these are the requirements of the P2PMobileAgent system:

1. Specifying which documents of which places are of interest.
2. How to deal with the problems of a peer-to-peer environment.
3. Only flat result sets and no need to build up complex types.
4. Simple expressions like predicates describing, e.g., agent tag values.

These requirements reflect that in our case, the information itself is stored in
a distributed way in a peer-to-peer network. The existing query languages are
well suited for complex queries to be evaluated on top of a single database. In
our case, the queries itself are less sophisticated. Instead, we need to deal with
a complex environment.

So, of course, a full fledged query language could also be used – after extension
– for this purpose but with the drawback of carrying on an considerable amount
of unneeded overhead.

For these reasons, we have constructed a query language tailored to the
P2PMobileAgent requirements. This query language supports two levels in the
definition of a query. These levels are discussed in the two following subsections:
The meta level deals with the environment, describing what documents are of
interest under which circumstances. In the second subsection, we present how
to specify the criteria driving the selection of entities that form the result set
and by this, representing the target agents or places for messages or migration
purposes. Then, we present an example of such a query.

3.1 Formulating a Query: The Meta Level

Prior to the evaluation of a query against an XML document, the appropriate
place or agent, respectively, managing this document, has to be found under
certain constraints. These aspects are subject to the meta level part of a query.

The four following criteria describe the meta level of a query and are manda-
tory for each query:

1. result type: The result set of a query is either formed by hosts or by agents,
depending in which context the query is used: recipients of a message have
to be agents, whereas places are expected in case of migration.
RESULT TYPE::= AGENT | PLACE

2. cardinality of result set: Depending on the kind of problem, an agent issuing
a query might only be interested in receiving at most one element in the
result set, e.g., if it is booking a flight, it wants to send the message to only
one travel agency agent. Instead, if the agent wants to receive offers before
booking a flight, it is interested in contacting all travel agencies. So we also
have to consider the possibility to retrieve all entities complying with the
specified condition. To be able to restrict the costs for executing a query,
an agent can even restrict the number of entities in the result set to some
individual maximum value.
CARDINALITY ::= ONE | ALL | MAX(int)

3. search space: The concept of mobile agents is based on the assumption that
it is cheaper under certain conditions, to transfer code instead of data. So it
is useful to be able to restrict communication to the local place, although it
might be required to search the whole peer-to-peer network in other cases.
Considering peer-to-peer networks with the dimension of the Internet, it is
reasonable to allow a more differentiated granularity then ”local” or ”global”.
For this purpose, we also introduce the possibility to restrict the number
of tiers the message should be forwarded to. The number of tiers thereby
represents the number of intermediate AMAs having forwarded a request.
SEARCH SPACE ::= LOCAL | GLOBAL | TIERS(int)

4. time-out interval: In a large and dynamic network, it is not reasonable to in-
troduce a protocol that allows a book-keeping mechanism to decide whether
or not all places have evaluated a query. Instead, it is better to define a
time-out interval that restricts how long an agent having initiated a query
accepts answers that shall be added to the result set before it proceeds its
execution. The parameter in this case is an integer value that specifies how
many milliseconds the agent waits for new results at most. Depending on
the values of the ”cardinality” and ”order criteria” parameters, it is even
possible that the agent is able to proceed its program execution earlier.
TIMEOUT ::= MS(int)

3.2 Formulating a Query: Specifying the Selection Process

Additional criteria for carrying out a query are conditions and order criteria.
The latter ones describe which entities shall be chosen if too many entities fulfil
the conditions.

1. conditions: A condition consists of one or more predicates. Such predicates
can be combined by using boolean operators. A predicate specifies expected
element values for the agent (only if the result is an agent) or for places,
thereby making it possible to specify requirements of places or to restrict the
set of agents that are evaluated to the agents on the same place. Additionally,
it can be required that only entities (places resp. agents) are of interested, if
other agents reside on the same place.
CONDITION ::= PREDICATE | (PREDICATE LOG OP PREDICATE)|

NOT (PREDICATE)

PREDICATE ::= PLACE(EXPRESSION) | AGENT(EXPRESSION)* |
EXISTS ALSO AGENT(EXPRESSION)

EXPRESSION ::= EXPRESSION | NOT (EXPRESSION) |
(EXPRESSION LOG OP EXPRESSION)

LOG OP ::= AND | OR
EXPRESSION ::= VALUE COMPA OP VALUE
VALUE::= CONSTANT | TAG
COMPA OP ::= > | < | =
*only if RESULT TY PE is AGENT

2. order criteria: If the cardinality of the result set is not ”all”, it is possible
that more entities fulfil the requirements specified in the field ”condition”.
To this end, we introduce order criteria, like the ORDER-BY-clause in SQL
queries [6]. This allows us to find the best fitting entities. Tags are used as
sorting criteria for the result set. If the result set consists of places, only tags
of the place are allowed, if the result set consists of agents, tags of the agent
itself and also tags of the place can be used. In the latter case, these tags
are dressed by ”place.*”, e.g. ”place.os”.
ORDER CRITERIA ::= Tag (ASC | DESC) [, Tag]

3.3 Example of Place Query

In this subsection, we continue the discussion of the example started in Section 2:
there is a mobile agent representing a broker, which should migrate to a place
where a static agent exists that implements a stock exchange. In Figure 5, a
query is presented that formulates this requirement in a query.

Because the agent wants to migrate, it is interested in a host and thus specifies
”PLACE” in the field ”RESULT TYPE” (1). It is only desired to move to one
place and not to duplicate itself to migrate to different places, so the value of
the field ”CARDINALITY” is set to ”ONE” (2).

There is no restriction on how many places should be involved in this query, so
the whole peer-to-peer network is specified as the search space (3). Nevertheless,
the agent wants to consider only places that are found within the 15 ms timeout
interval (4).

Then the requirements for the acceptable places have to be specified: our
mobile broker agent needs a particular agent on the destination place, so it
uses a predicate of the kind ”EXISTS ALSO AGENT” (5). The tag ”TYPE” is
required to be ”StockExchange” (6). Additionally, this agent has to be static (7)
so that it is guaranteed that it is still there after the mobile broker agent has
migrated to the new place. Moreover, the stock exchange has to be in operation
(8).

It is possible that different places fulfil these conditions. If the agent issuing
the query does not specify any order criteria, the first place fulfilling these con-
ditions would be chosen as migration target. But in case it aims at migrating to
the host with the lowest load, this has to be added as an order criterion (9).

Fig. 5. Sample Query

4 Query Execution

This section concentrates on the evaluation of queries. Especially, it deals with
the interaction between agents and their AMA.

First, we discuss in detail how searching for agents is performed. Since search-
ing for places does not significantly differ, we only give a brief summary of these
differences. In both cases, the query execution is embedded in the execution
of a migration resp. messaging procedure invocation, which takes place syn-
chronously. We illustrate these algorithms by continuing the example started in
the last section.

4.1 Searching for Agents

Searching for agents takes place in the context of sending messages. There is no
specification of a particular target agent but rather a description of the kind of
agent the message should be delivered to. By using the presented query language
(see Section 3), the matching agents have to be found. Therefore, the peer-to-
peer agent system starts to search for such agents in the network.

First, the query is submitted to the local AMA. There, it is distributed to
all AMAs on other places the local AMA knows (i.e., has direct links to). These
AMAs also forward the query to all AMAs they know, until the upper bound of
tiers is reached – if one is specified in the field ”SEARCH SPACE”.

Aside of forwarding the query, each AMA also evaluates which of the agents
at its place fulfil the specified requirements. To this end, it caches all static in-
formation it gets during the communication with newly launched agents, either
static or mobile agents. But if dynamic information is required for evaluating
a query, meaning that information appears within the tag <status> in the de-
scribing XML document, the local agent has to be asked by the AMA to deliver
this information.

If an agent matches the requirements of the query, the information to contact
it are delivered directly to the agent that initiated the query.

After the time-out interval is exceeded, the initiating agent does not expect to
be informed about any further agents matching the criteria of its query meaning
that they are ignored. It finally evaluates the query and sends the message to
the selected agent(s).

A global unique ID is attached to each query, such that each AMA can store
the last queries it evaluated. By this, communication and execution costs are

reduced since it can be avoided that a query is executed and forwarded several
times at/by the same place, because a place can be mostly reached via different
paths in the network. But by means of the ID of a query which is evaluated
against the IDs of executed queries, this phenomenon can be avoided.

The approach followed here has a side-effect: queries can only be evaluated
on a snapshot of the overall system. Hence, agents currently migrating while a
query is launched are not found, because at this moment they are not registered
at any AMA implying that the snapshots need not necessarly be consistent. The
AMA of the place they are leaving does not know them and even if it would
know them, it would not be able to communicate. The new AMA the agent is
migrating to does not know them because they have not started to communicate
with each other.

4.2 Searching for Places

Searching for places is initiated whenever the host or the hosts an agent should
migrate to are specified by a query. As a consequence, the starting point is the
XML document describing the place, even though also references to agents are
possible.

4.3 Example

In this section, we discuss the evaluation of our sample query presented in Sec-
tion 3.3. Therefore, we first have to present a network configuration: As shown
in Figure 6, there are four places with agents. On place 1, there is the agent
initiating the query discussed above. On place 2, there is an agent running that
encapsulates a database. On the places 3 and 4, there are different stock exchange
agents running. Certainly, there is an AMA on every place.

At the time 0, the query is launched by the initiator agent by transfering it
to its AMA. The AMA forwards this query to every AMA it knows and adds a
globally unique query ID to this query. The AMAs on place 2 and 3 receive the
query and both forward it to the other AMAs they know (except for the sender).
Since all AMAs keep a log of the IDs of arriving queries, the new query can be
discarded by places 2 and 3 when it arrives the second time, such that (only)
place 4 gets newly involved into this query.

Now, each AMA first checks whether it has processed this query before by
comparing the query ID with the last queries it has processed. After having
evaluated the first condition of the query, the AMA on place 2 knows that it
cannot fulfil the requirements because there is no stock exchange agent running
on its place. The AMAs on place 3 and 4 notice that they have such a static agent,
but they have to evaluate the third condition that requires that these agents are
currently in operation. Since this is a dynamic information, the AMAs have to
ask the individual agents. Both stock exchange agents are active so the AMAs
on place 3 and 4 send their place ID to the AMA of the first place because these
places fulfil the requirements of the initiating agent. They also send their actual
load information because it is needed as an order criterion.

Fig. 6. Query Execution Example

After the time-out interval has passed, the AMA on place 1 evaluates the
answers it has received. There are two possible places, but only one is desired, so
it has to choose one out of them. Because place 4 has a lower load than place 3,
the AMA of place 1 informs the initiator agent that it should migrate to place 4.

5 Related work

Our work contributes to two aspects: migration and communication. Both of
them are vital to a mobile agent system, so nearly every mobile agent system
published addresses these issues. Related work on these two topics is discussed
in the following two subsections separately.

5.1 Communication

For the purpose of inter-agent-communication, several different approaches have
been published under the term ”coordination” or ”coordination language”.

Basic algorithms for finding mobile agents, e.g., using logging, registration,
and advertisement for relocating are discussed in [1]. All together, they assume
that the agent which is to be found is known – a different focus then that we have.

Besides sending messages to an agent with a known identifier (including
multicast messages), also some concepts with a higher level of abstraction have
been proposed.

The concept of events implies that an agent has to register for a special
kind of event. After this registration, it is informed every time such an event
occurs. That kind of event-based interaction is commonly referred as ”publish
and subscribe” [10]. This approach can be found, e.g., in Concordia [12], Mole
[2], and – in a limited way – also in the Aglet system.

Sessions are an approach proposed in [2]. It supports 1:1 communication of
agents that may stay on different places, but which are not allowed to migrate
during a session is established. The most interesting idea related to our approach
is the idea of badges: a set of strings is attached to every agent. It can be used to
restrict the agents that are allowed to establish a session. As the most important

difference to our approach, there is no structure within these badges and espe-
cially there are no tag value pairs like in XML which complicates sophisticated
queries or even prohibits them. Also, in our case we support 1:n communication
and there is no synchronisation needed between the communicating agents. This
makes it much more easier to establish a connection if it is not known where the
partners are.

The black board approach allows agent interaction with the help of a shared
local data space. As a severe disadvantage, agents have to know the name of a
certain blackboard in order to access the relevant information. A system sup-
porting this approach is described, e.g., in [7].

An interesting special case of the black board approach is linda-like coor-
dination as it is used for instance in the MARS [3] project. Here, associative
methods are used for accessing information of the black board. Recently, it was
decided to use XML for description purposes [4].

In order to summarize the above discussion, to our best knowledge, there
is no other system offering such sophisticated methods for specifying agents on
a high level of abstraction and without the requirement that a communication
partner synchronizes or moves to the same place.

5.2 Migration
Taking a look at the second aspect, namely migration, we have not found any
other system in the literature that allows for a declarative specification of the
place a mobile agent should migrate to. Hence, the approach followed in our work
where agents dynamically choose the place they should migrate to by using
predicates is novel and considerably exceeds existing approaches in terms of
flexibility.

6 Summary and Outlook
In this paper, we have presented a new approach for specifying both places to
migrate to and agents being the recipients of messages. By using predicates, this
specification can be done in a declarative and thus very flexible way.

The architecture is based on Aglets and extends this framework with new
features like a peer-to-peer network, the possibility to describe agents and places
using XML documents, and by allowing agents to query over these documents.
Hence, it brings mobile agent systems and peer-to-peer configurations together.

Fundamental to our architecture is the concept of AgentsManagementAgents
(AMAs), implementing the services mentioned above. AMAs are responsible for
forming the peer-to-peer network, for the management of the meta data and also
for the evaluation of queries.

In our context, queries consist of two parts: Firstly, queries comprise a meta
level that describes how the evaluation process is driven. Secondly, predicates
are used for driving the actual selection process.

Such queries are sent to the local AMA from agents interested in migrating
to other hosts or in sending messages to other agents. This AMA pushes the
query over the network to the other AMAs which also forward the query and
evaluate whether or not this place or agents on this place fulfil the requirements

of the query. Information about matching agents or places are sent to the AMA
of the initiating agent (this is also important for maintaining the peer-to-peer
network, i.e., for increasing the number of direct links to other places/AMAs).
This AMA chooses the fitting entities.

With this approach, we support location transparency as well as code and
data mobility and so combine the advantages of mobile agents and RPCs.

In our future work, we aim at adding additional guarantees known from
databases to mobile agents. In particular, we are looking at these agents as a
special transaction. Hence, agents accessing shared data need to be synchronized
but also need support for failure handling strategies within the same framework.
To this end, our goal is to apply ideas of transactional processes [11] to mobile
agent systems.

The intended result will be a mobile agent framework allowing an easier way
to program mobile agent groups. Combined with execution guarantees, it will
extend the basic framework and is supposed to allow for new kinds of application
in industrial strength.

References
1. J. Baumann: Mobile Agents: Control Algorithms, Springer, Berlin, Germany, 2000
2. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Strasser: Communication

Concepts for Mobile Agent Systems, 1st Int. Workshop on Mobile Agents, Berlin,
1997

3. G. Cabri, L. Leonardi, F. Zambonelli: Reactive Tupel Spaces for Mobile Agent
Coordination, 2nd Int. Workshop on Mobile Agents, Stuttgart, Germany, 1998

4. G. Cabri, L. Leonardi, F. Zambonelli: XML Dataspaces for Mobile Agent Coordi-
nation, Symposium on Applied Computing, Como, Italy, 2000

5. T. Cai, P. Gloor, S. Nog: DartFlow: A Workflow Management System on the Web
using Transportable Agents, Tech.Rep. PCS-TR 96-283, Dartmouth College, 1996

6. C.J. Date, H. Darwen: A Guide to the SQL Standard, 3rd Edition,Addison-Wesley
Publishing Company, Reading, MA, 1992

7. P. Dmel, A. Lingnau, O. Drobnik: Mobile Agent Interaction in Heterogeneous En-
vironments, 1st Int. Workshop on Mobile Agents, Berlin, Germany, 1997

8. M. Fernandez, J. Simon, P. Wadler: XML Query Languages:
Experiences and Exemplars, 1999, available from http://www-
db.research.belllabs.com/user/simeon/xquery.ps

9. D. Lange: Programming and Deploying Java Mobile Agents with Aglets, Addison
Wesley Logman, Reading, MA, 1998

10. R. Orfali, D. Harkey, J. Edwards: Client/Server Survival Guide, 3rd edition, John
Wiley, New York, 1999

11. H. Schuldt: Transactional Process Management over Component Systems, infix,
Berlin, Germany, 2001

12. D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet: Concordia: An In-
frastructure for Collaborating Mobile Agents, 1st Int. Workshop on Mobile Agents,
Berlin, Germany, 1997

13. http://www.w3.org/XML

	Using Predicates for Specifying Targets of Migration and Messages in a Peer-to-Peer Mobile Agent Environment

