
Process Locking: A Protocol based on Ordered Shared
Locks for the Execution of Transactional Processes

Heiko Schuldt
Database Research Group

Institute of Information Systems
Swiss Federal Institute of Technology (ETH)

CH–8092 Zürich, Switzerland
schuldt@inf.ethz.ch

In: Proceedings of the ACM Symposium on Principles of Database Systems

(PODS’01), pages 289-300, Santa Barbara, California, USA, May 2001. ACM Press

ABSTRACT
In this paper, we propose process locking, a dynamic schedul-
ing protocol based on ideas of ordered shared locks, that
allows for the correct concurrent and fault-tolerant execu-
tion of transactional processes. Transactional processes are
well defined, complex structured collections of transactional
services. The process structure comprises flow of control
between single process steps and also considers alternatives
for failure handling purposes. Moreover, the individual steps
of a process may have different termination characteristics,
i.e., they cannot be compensated once they have commit-
ted. All these constraints have to be taken into consider-
ation when deciding how to interleave processes. However,
due to the higher level semantics of processes, standard lock-
ing techniques based on shared and exclusive locks on data
objects cannot be applied. Yet, process locking addresses
both atomicity and isolation simultaneously at the appro-
priate level, the scheduling of processes, and accounts for
the various constraints imposed by processes. In addition,
process locking aims at providing a high degree of concur-
rency while, at the same time, minimizing execution costs.
This is done by allowing cascading aborts for rather simple
processes while this is prevented for complex, long-running
processes within the same framework.

1. INTRODUCTION
Traditional locking techniques enforce write access to data

objects to be exclusive. In combination with strict two
phase protocols, this has strong impacts on the degree of
concurrency. Locks with constrained sharing [1] relax this
exclusiveness and allow locks to be shared between different
transactions in dedicated orders, thus increasing the degree
of parallelism. But, this gain goes along with the possi-
bility of cascading aborts. Hence, since avoiding cascading
aborts (ACA) [6] is considered to be an important feature
to shield independent transactions, most database systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2001Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-361-8/01/05 ...$5.00.

still exploit strict two phase locking protocols (S2PL) [11]
with traditional lock compatibility modes.

While the S2PL approach is well suited in the flat transac-
tion model based on read/write operations applied to rather
short transactions, it generally reaches its limits when trans-
actions become more complex, i.e., when their duration sig-
nificantly exceed those of booking or funds transfer transac-
tions, or when transactions are settled at a higher level of
semantics, comprising semantically rich operations. Trans-
actional processes [24] are an example of such complex trans-
actions: they follow the philosophy of hyperdatabases [23]
which are databases sitting on top of databases and which
manage objects being composed of database objects or, as
in the case of processes, manage transactions being com-
posed of transactions. Processes integrate transactions pro-
vided by transactional systems, thereby bringing them into a
higher level semantics. In particular, processes establish flow
of control between the individual steps as one of their basic
semantic elements. This even allows the specification of al-
ternatives that can be executed in the case of failures; hence,
it leads to more general properties than those of traditional
ACID transactions. Finally, a process may reach a point-of-
no-return, i.e., execute a step that cannot be compensated,
already in the middle of execution, which requires that the
subsequent commit of the process has to be enforced. All
these different aspects need to be taken into consideration
when deciding how to interleave processes. To this end, by
extending and applying the unified theory of concurrency
control and recovery [4, 28] to processes, we have identified
correctness criteria that simultaneously account for isolation
and atomicity [24].

Due to the black box semantics of the single steps of pro-
cesses, locking techniques at data level cannot be applied
but must be used at the level of individual transactions.
Hence, also a distinction between read and write access is
not possible such that transactions would have to be exe-
cuted exclusively which, combined with S2PL, would imply
considerable restrictions on the degree of concurrency. Yet,
locks with constrained sharing allow to increase parallelism
but may require the cascading abort of processes which is,
in worst case, not possible when they have already passed
a point-of-no-return. Hence, processes demand vital exten-
sions of ordered shared locking such that cascading aborts
are generally possible for certain processes (otherwise, the
degree of concurrency would be impractically limited) while
cascading aborts must be avoided for other processes, es-

Execution cost c(ai) Failure probability p(ai) Compensation cost c(a−1
i)

ac
i compensatable 0 < c(ac

i) < ∞ 0 ≤ p(ac
i) < 1 0 ≤ c(a−1

i) < ∞

ap
i pivot 0 < c(ap

i) < ∞ 0 ≤ p(ap
i) < 1 c(a−1

i) = ∞

ar
i retriable 0 < c(ar

i) < ∞ p(ar
i) = 0 0 ≤ c(a−1

i) ≤ ∞

a−1
i compensating 0 ≤ c(a−1

i) < ∞ p(a−1
i) = 0 c((a−1

i)−1) = ∞

Table 1: Execution Costs and Failure Probabilities of Activities

pecially for those which cannot be aborted but rather have
to commit. These extensions can be found in process lock-
ing, a dynamic scheduling protocol addressing the correct
execution of transactional processes.

The paper is organized as follows: In Section 2, we briefly
introduce the process model and the correctness criteria for
transactional processes. Section 3 develops the process lock-
ing protocol and Section 4 presents extensions of this basic
protocol. In Section 5, we discuss related work. Section 6
concludes.

2. TRANSACTIONAL PROCESSES
We consider an architecture with two layers. The top

layer controls the execution of transactional processes, as
specified in process programs. Each one of these process pro-
grams is a set of partially ordered activities. Each activity,
in turn, corresponds to a conventional transaction executed
in a transactional application. Hence, activities are, by defi-
nition, atomic and therefore either terminate committing or
aborting. The bottom layer of the system model is formed
by the universe of all available independent transactional
applications (subsystems). Each of these subsystems has to
provide serializable (CPSR) executions and avoid cascading
aborts (ACA) [6]. The concurrent execution of transactional
processes is controlled by a transactional process manager
(PM), which is responsible for scheduling the invocation of
transactions in the underlying applications.

The activity model, the process model, and the criteria
that jointly account for correct concurrency control and re-
covery in transactional processes follow the ideas presented
in [24]. In here, we briefly repeat the most important no-
tions needed to develop a dynamic scheduling protocol for
transactional processes.

2.1 Activity Model
Activities differ in terms of their termination properties.

According to the flexible transaction model, we consider
three cases: compensatable, retriable, and pivot [18, 30].
Let A∗ be the set of all activities available in the system.
A straightforward way to specify these termination proper-
ties is to identify the execution cost c(ai) with c : A∗ 7→ R+

0

and the failure probability p(ai) with p : A∗ 7→ [0, 1) of
each activity ai ∈ A∗, e.g., based on some heuristics on the
associated subsystem transactions.

A compensatable activity ac
i has a compensating activity

a−1
i , namely a compensation transaction provided by the

same system, which semantically undoes its effects. This is
reflected by the compensation cost of ai, i.e., the execution
cost of a−1

i , which yields a finite value. In some cases, com-

pensation may be superfluous — similar to the inverse of a
read operation in the traditional read/write model. There-
fore, the cost of compensating activities may equal zero.
Activities ap

i for which no compensating activity a−1
i exists,

that is, activities which are not compensatable, are pivot.
This is reflected by infinite costs of their compensation a−1

i .
Activities ar

i whose executions are guaranteed to success-
fully terminate after a finite number of invocations are called
retriable. Hence, their failure probability equals zero, inde-
pendent of their cost and the cost of their compensation.
Compensating activities a−1

i finally must be retriable, thus
guaranteed to succeed. Moreover, they are themselves not
compensatable. The characteristics of activities are summa-
rized in terms of execution costs and failure probabilities in
Table 1 (the termination properties of activities are denoted
by their superscript).

In contrast to the original flexible transaction model, retri-
ability on the one hand and the availability of compensation
on the other hand are orthogonal properties. An activity can
have both, one of them, or neither.

2.2 Process Model
A process program specifies the execution of activities ac-

cording to the results of past activities, thereby also allowing
alternative executions for failure handling purposes. More
formally,

Definition 1 (Process Program).

A process program PP = (A, <, �) is a tuple where A ⊆ A∗
is a set of activities, < is a partial order (precedence order)

between these activities with < ⊆ (A× A), and � is a partial
order (preference order) defined over < with � ⊆ (< × <)
establishing alternative executions. 2

A correct process program can be viewed as a tree whose
nodes are activities and whose edges correspond to order
constraints between these activities. The first non-compen-
satable activity on a path from the root in the tree is a
primary pivot of the process. It is a no-return activity: if it
commits, the process cannot rollback any more; it must be
able to complete. Generally, a pivot may have a �-ordered
set of children where the last one consists only of retriable
activities (assured termination tree), and all previous ones,
called subprocess programs, have (recursively) the proper-
ties of a process program. After successfully executing a
pivot, the process program may try different alternatives,
given by �, and only if they fail, execute the one whose ter-
mination is assured. Note that a process program may have
no pivot, in which case it has the same properties as a regu-
lar transaction. If a program allows for concurrent execution

of activities, we group a partially ordered set of activities as
a single (multi-activity) node of the tree, rather than as
singleton nodes. While the activities of such multi-activity
nodes can be executed concurrently, they are <-ordered with
respect the activities of preceding and subsequent nodes.
Pivot activities are always represented as singleton nodes.

In analogy to the traditional terminology, the execution
of a process program is termed process:

Definition 2 (Process).
A process P k

i = (Ai,≺i) is a tuple reflecting the execution
of a process program PPk where Ai is a set of activities that
contains (a subset of) the regular activities Ak of PPk, but
may also contain compensating activities for some of them.
Additionally, Ai may contain one of Ci or Ai. Moreover,
the required order ≺i ⊆ (Ai×Ai) is the minimal partial or-
der that contains <k and that relates regular activities and
their compensation, that enforces the execution of compen-
sating activities in reverse order of the corresponding regular
activities, and that respects the preference order on alterna-
tives imposed by �k. 2

If Ai contains one of the termination activities Ci or Ai,
respectively, then Pi is said to be complete. A process that
is either running or completing is called active. A process
program execution is not a path in the tree. It may contain
aborted activities and compensating activities for the pro-
cess or for its subprocesses. Once instantiated, a process is in
the state running. Prior to the commit of a primary pivot p∗i ,
an abort changes the state to aborting, where compensating
activities are executed in reverse order. After finally having
compensated each activity (called abort process execution),
a process is in the state aborted. The commit of a primary
pivot p∗i causes a state change from running to completing.
The program may now try several alternatives in the order
given by �k. The failure, i.e., abort of an alternative, leads
to an abort subprocess execution and causes it to try the
next one. Finally, if an alternative completes, the process
commits by Ci. When no pivot activity exists, a process can
directly change its state from running to committed. When
a completing process is in an assured termination tree, activ-
ities may abort, but then they are retried until they succeed.
In [30], it has been shown that well-formed flex structures
guarantee that one execution path exists that can be exe-
cuted correctly while all other paths leave no effects. Process
programs having tree structure where at least one child of
each pivot activity is an assured termination tree also cap-
ture this property. We refer to such process programs as
having guaranteed termination. Essentially, this property is
a generalization of the “all-or-nothing” semantics of tradi-
tional ACID transactions [24].

The correct structure of process programs with respect to
guaranteed termination —imposed by the termination char-
acteristics of single process activities and the orders between
them— nicely meets the semantics of practical applications.
The distinction between compensatable steps followed by a
pivot step as point-of-no-return (the commit decision) and
subsequent retriable steps, the latter being arranged in two
alternatives for successful or unsuccessful outcomes can be
found, for instance, in electronic commerce payment pro-
cesses [8, 25, 19].

We summarize the description of processes by comparing
them to transactions: A conventional transaction may con-
tain irreversible actions. However, these have to be deferred

until the commit. Therefore, the essential termination prop-
erty of a transaction is that it can be aborted at any time
until a commit decision is reached. In contrast, a process
may have to perform a non-compensatable activity in the
middle of its execution; this activity cannot be deferred to
its end. After this activity, the process can no longer abort.
Consequently, part of the responsibility for the proper termi-
nation now lies on the process programs. While transaction
programs do not deal with the issue of how to continue after
an abort, process programs contain explicit alternatives for
aborted subprocesses.

2.3 Process Schedules and Correctness
A process schedule S reflects the concurrent execution

of process programs with guaranteed termination. Hence, it
does not only include regular activities but also recovery
related ones as they are considered in a process:

Definition 3 (Process Schedule).
A process schedule S is a quadruple (PS , AS , ≺S , <S)
where

1. PS is a set of processes Pi = (Ai, ≺i).

2. AS ⊆ A∗ with AS = {aij | (aij ∈ Ai) ∧ (Pi ∈ PS)}
is the set of all activities of all processes of PS .

3. ≺S with ≺S ⊆ (AS × AS) is a partial order between
activities of AS , called the required order, which is the
union of the required orders of all processes of PS , that
is ≺S =

⋃
Pi∈PS

≺i.

4. <S with <S ⊆ (AS ×AS) is a partial order between
activities of AS , called execution order, reflecting the
observed order in which activities are executed. The
required order ≺S of S is contained in the observed
execution order <S , that is ≺S ⊆ <S . 2

If S comprises active processes, then it is said to be partial,
otherwise S is called complete.

Note that since a process schedule is defined at the level
of activities, it also includes committed activities of aborted
processes. However, since the underlying subsystems guar-
antee both serializability (CPSR) and atomicity (ACA), ac-
tivities returning with abort can be omitted in S. In par-
ticular, retriable activities appear at most once in a process
schedule, namely when they are committed.

All processes are considered to be independent. Thus, the
only possibility for some flow of information between con-
current processes is when conflicting activities share some
resources in the underlying subsystem. A common mecha-
nism to verify whether there is flow of information between
arbitrary activities is commutativity. Following [28], the no-
tion of commutativity is defined using return values: two ac-
tivities, aik , ajl ∈ A

∗ commute, if for all activity sequences
α and ω from A∗ the return values of all activities in the
activity sequence 〈α aik ajl ω〉 are identical to the return
values of the sequence 〈α ajl aik ω〉. Conversely, two activ-
ities are in conflict if they do not commute. Due to the kind
of system we consider, activities may only conflict if they are
executed in the same subsystem. In practical applications, a
common assumption is that commutativity is perfect. This
is the case when, for all pairs of activities ai, aj ∈ A∗, either

all possible combinations (aα
i , aβ

j) for α, β ∈ {−1, 1} com-
mute, or all possible combinations conflict [28]. Information

about commutativity is crucial and must be available to the
process manager. Since each subsystem provides CPSR ex-
ecutions, all conflicting activities are ordered in a process
schedule.

The formalism we use to derive correctness criteria for pro-
cess schedules is based on the unified theory of concurrency
control and recovery [4, 28], hence addresses both atomicity
and isolation jointly, but extends and generalizes the uni-
fied theory so as to account for the special semantics and
structure of processes [24].

Definition 4 (Reducible Process Schedule).
A process schedule S = (PS ,AS ,≺S , <S) is reducible (RED)
if it can be transformed to a serial process schedule S =
(PS , AS , ≺S , <S) by applying the following two transfor-
mation rules finitely many times:

1. Commutativity Rule: The order aik <S ajl of two
activities aik , ajl ∈ AS can be replaced by ajl <S aik

if the following conditions hold:

(a) Either aik and ajl commute and belong to differ-
ent processes (i 6= j), or they are from the same
process (i = j) and are not ordered in ≺S , i.e.,
their process program allows parallel execution.

(b) There is no aqt ∈ AS with aik <S aqt <S ajl .

2. Compensation Rule: If two activities aik , a−1
ik
∈ AS

such that aik <S a−1
ik

and there is no activity aqt ∈
AS with aik <S aqt <S a−1

ik
, then aik and a−1

ik
can

both be removed from S. 2

The above definition does not require a process schedule to
be complete and thus features a major difference compared
with the original unified theory where, prior to the appli-
cation of reduction techniques, the expansion of a sched-
ule is required. Expansion leads to a a complete schedule
where each running transaction is aborted and where all
recovery-related operations are made explicit. Yet, reduc-
tion for process schedules does not require expansion, since
these schedules already consider abort related activities.

Definition 5 (Prefix–Reducibility).
A process schedule S is prefix–reducible (P-RED) if each
prefix of S is RED. 2

When scheduling processes dynamically, each prefix of a
process schedule has to be reducible. In addition to the
previous ideas considering non-complete process schedules
S, all completing processes must be able to commit while
all aborting ones must abort correctly such that they do
not leave any effects. Thus, all active processes have to
terminate so as to ensure that all compensating activities
are taken into account in the reduction phase. Therefore,
reduction techniques have to be applied to the completed
process schedule C(S) of S, leading to the notion of correct
termination (CT):

Definition 6 (Correct Termination).
A complete process schedule C(S) has correct termination
(CT) property if it is prefix reducible (P-RED). 2

In the original unified theory, a criterion (SOT, serializ-
able with ordered termination) has been introduced that al-
lows to reason about concurrency control and recovery with-
out expanding a schedule [4]. However, a similar criterion

does not exist in the case of processes. The reason being
is that in the traditional transaction model, all recovery-
related operations are known beforehand, i.e., the inverses
of all regular operations. When, in addition, commutativity
is perfect, the also the commutativity behavior of all these
operations is known. In transactional process management,
however, the completion of a process schedule S introduces
new activities which are not related to the ones that have
already been committed. By this, additional pairs of con-
flicting activities may be present in C(S). Hence, relying
only on information of a partial process schedule S is not
sufficient for reasoning about correct concurrency control
and recovery.

While CT guarantees that all aborts are performed cor-
rectly in a completed process schedule, a process manager
deciding dynamically on the execution of activities has addi-
tionally to make sure that each arbitrary subset of all active
(sub-)processes of a partial process schedule can be aborted
correctly. Since this might induce cascading aborts, it must
be enforced that no completing process depends on a run-
ning (sub-)process in the sense that the abort of the latter
implies the abort of a completing process. This leads to
process-recoverability, a generalization of the traditional no-
tion of recoverability:

Definition 7 (Process-Recoverability).
A process schedule S = (PS , AS , ≺S , <S) is process-
recoverable (P-RC), if for each pair of conflicting activities
ac

ik
and ajm of S with ac

ik
<S ajm where ac

ik
is compensat-

able, where a−1
ik
6<S ajm and a∗i 6<S ajm (with a∗i , we denote

the next point-of-no-return succeeding ac
ik

with respect to ≺i;
this may either be the commit Ci or a pivot activity), the fol-
lowing holds:

1. If ajm is compensatable and when a∗j is in S, then the
following order has to exist in S: a∗i <S a∗j where
a∗j is the next point-of-no-return succeeding ac

jm
with

respect to ≺j (again, this may be Cj or a pivot of Pj).

2. If ajm is not compensatable, then the following order
has to exist in S: a∗i <S ajm . 2

When no pivot activities exist as in the traditional case,
then, according to Definition 7.1, only the order Ci <S Cj

is imposed. But the special semantics of pivot activities is
also reflected in this definition: pivot activities are treated
in a similar way than the commit of a process since, by suc-
cessfully committing a pivot, all preceding compensatable
activities can no longer be compensated.

3. PROCESS LOCKING
In this section, we present process locking, a dynamic

scheduling protocol that enforces CT process schedules and
which also guarantees that each prefix of a complete process
schedule is P-RC. We introduce the basic ideas of process
locking and develop the protocol in detail.

3.1 Introduction to Process Locking
Process locking aims at providing a dynamic scheduling

protocol that supports P-RED and P-RC multi-process exe-
cutions and which guarantees the correct termination (CT)
of each partial process schedule. It allows a process manager
to dynamically decide on the execution, deferment, and re-
jection of activities. Such a process manager relying on the

process locking protocol has been implemented as part of the
Wise system [2, 16] which, in turn, is based on the process
support engine OPERA [3, 14].

Process locking makes use of some basic assumptions on
the process programs to be executed and on the commu-
tativity behavior. Each process program has to be inher-
ently correct, i.e., it has to follow the guaranteed termina-
tion property. Additionally, commutativity is assumed to
be perfect.

A process manager has to enforce CT, even for partial
process schedules. Hence, it has to guarantee that all par-
tial processes can be completed correctly. In general, since
the (correct) structure of all process programs is known to
the process manager, execution orders, especially in terms of
the completed process schedule C(S) of some partial process
schedule S, could be determined beforehand by exploiting
information on the future activities of processes. However,
process programs may contain execution paths that are not
followed (e.g., due to some decision choosing one subtree but
skipping others, or since alternative executions need not be
executed). Therefore, the a priori determination of multi-
process executions would have to consider more activities
than are actually executed and thus, would be very restric-
tive in nature. Additionally, it requires the complex analysis
of the transitive closure of the commutativity behavior of all
future activities. This is even the case when completion is
restricted to the safe alternatives (assured termination trees)
of completing processes. Moreover, the predetermination of
execution paths would also neglect the complexity of activ-
ities, i.e., their execution time, and would also prevent the
support for dynamic changes of processes and process pro-
grams [20].

Another strategy to avoid unresolvable situations, i.e.,
cyclic conflicts in which two or more completing processes
are involved (note that this could not be resolved by the
abort of any of these processes), is to allow at most one
completing process at any point in time. Yet, although lim-
iting concurrency, a dynamic scheduling protocol following
this restriction needs only to consider activities that are ac-
tually executed and does not have to take into account all
potential future activities of active processes. Hence, pro-
cess locking applies this strategy to enforce the correct com-
pletion of partial process schedules. This distinguished com-
pleting process then has a special status and will be preferred
against all other processes, much like the “golden transac-
tion” of the System R database [12], the only transaction of
the system that is allowed to perform undo operations at a
time.

3.2 Process Locking: The Core Protocol
In short, the process locking protocol is based on and ex-

tends ideas of locks with constrained sharing [1] and times-
tamp ordering [27, 6]. In what follows, we will motivate the
necessity of advanced mechanisms for supporting CT and
present the protocol in detail.

3.2.1 Locks with Constrained Sharing
Most concurrency control protocols apply locking tech-

niques to control concurrent access to shared resources. In
the traditional read/write model, the semantics of data ac-
cess is exploited which allows to share locks for read opera-
tions which do not change any database state, but requires
exclusive access when data is written.

These locking techniques associate locks with single data
objects. However, activities of processes correspond to trans-
actions which are executed in some subsystem. In general,
these transactions and the objects accessed by them are not
known to the process manager and rather appear as black
boxes. For these reasons, conventional locking techniques
at data level cannot be applied to transactional processes.
Hence, despite of the black box characteristics of the actual
implementation of activities, the process manager neverthe-
less exploits information on their commutativity behavior
(by means of a commutativity relation) which allows to dy-
namically identify pairs of conflicting activities. Yet, in con-
trast to traditional approaches, process locking associates
locks with activity types to indicate whether or not an ac-
tivity can be invoked in the context of a process schedule.

But, activities of transactional processes cannot be qual-
ified as read or write. They are, in general, located at a
semantical higher level of abstraction. As a result, the dif-
ference between shared access and exclusive access blurs and
locks on activities would inevitably have to be exclusive.
When combined with two phase locking or even strict two
phase locking [11], this would unnecessarily reduce the de-
gree of concurrency, especially since the execution of single
activities and thus also those of processes might be very long.

In order to avoid (nearly) serial executions of processes,
sharing of locks should nevertheless be allowed. To this end,
the ideas of locks with constrained sharing [1] can be applied
to process activities. Aside of shared and exclusive locks, a
third category, namely ordered shared locks (OSL), is consid-
ered. Several relaxations of the standard lock compatibility
are proposed, the most permissive of them being the case
where only shared locks (for concurrent read access to data)
and ordered shared locks (for all other concurrent accesses)
are exploited. With each pair of shared locks, an order is
associated which has to be respected for the execution of the
corresponding operations, when acquiring further locks, and
when locks are relinquished. A lock li of a transaction Ti

is said to be on hold if li was acquired after another trans-
action Tj has acquired a lock lj on the same data object
but before lj has been released. The lock relinquish rule
guarantees that all locks are shared with the same order in
that a transaction may not release a lock as long as any of
its locks is on hold. In process locking, the ideas of ordered
shared locks are now combined with the special semantics
that can be found in processes, namely locking at the level
of activities.

The prerequisite for the application of locking techniques
at activity level is that a complete commutativity relation
is available to the process manager. This relation is imple-
mented by an (n×n) matrix CON , with n being the number
of all activities in A∗, where CON(ai, aj) = TRUE when
ai and aj conflict, and CON(ai, aj) = FALSE otherwise.
This matrix indicates conflicts on a rather coarse granular-
ity, on the level of activity types, i.e., for different transac-
tion programs that can be executed in the underlying sub-
systems, but does not consider parameters associated with
these invocations. However, this is the most general possi-
bility that accounts for the black box semantics of activities
which, due the lack of detailed information about their im-
plementation and their structure, does in certain cases not
allow to consider conflicts on a more fine-grained level.

In the previous section, we have seen that the correct in-
terleavings of processes are governed by the conflict behavior

held \
acquired C Lock P Lock

C Lock ⇒ 6⇔

P Lock ⇒ 6⇔

Table 2: Compatibility Matrix of C and P Locks
(⇒: Ordered Shared; 6⇔: Exclusive)

of activities (CT) and their termination properties (P-RC),
i.e., whether or not they can be compensated. Hence, ap-
plied to process schedules, ordered shared locks at activity
level provide a straightforward means to map allowed in-
terleavings of processes into a compatibility matrix of dif-
ferent lock types. Similar to the usage of the read/write
characteristics of operations in traditional locking protocols,
the semantics of activities with respect to their termination
characteristics (compensatable or pivot) can be exploited.

Therefore, C locks for compensatable activities and P
locks for pivot activities, respectively, are used. Two C locks
of different processes as well as a P lock followed by a C
lock can be ordered shared. A C lock ordered shared with a
subsequent P lock would correspond to a violation of P-RC
(the process having acquired the C lock cannot be aborted
correctly since the other process which would have to be
aborted cascadingly is already completing). Hence, a C lock
followed by a P lock cannot be ordered shared but must be
exclusive. Finally, the combination of two P locks has also
to be exclusive so as to avoid that two completing processes
exist at the same time. The lock compatibility matrix of
the process locking protocol is depicted in Table 2 where ⇒
denotes ordered shared mode and 6⇔ stands for non-shared
(exclusive) mode.

3.2.2 Timestamp Ordering
The original OSL protocol has an optimistic character

since the compliance of orders is not checked, due to the lock
relinquish rule, until the first lock is to be released which ac-
tually coincides with the commit decision [1]. This, in turn,
implies that violations of the order constraints associated
with shared locks are detected at a very late stage and even
worse, may occur in situations where appropriate corrective
strategies, i.e., the abort of the processes involved, are not
possible since these processes are completing, not running.

To circumvent this drawback, we impose early verification
of the correct order of shared locks that immediately takes
place whenever locks are acquired. To do this, we adopt
and apply ideas borrowed from timestamp ordering (TO)
protocols [27, 6]. We use the same mechanisms to control
the order in which ordered shared locks are acquired than
the original TO protocol does for an a priori determination
of the serialization order and thus, the order in which shared
data objects are accessed. The only prerequisite is that each
process is assigned a unique timestamp taken from a strictly
monotonically increasing series.

3.2.3 Process Locking: Combining OSL & TO
for Processes

Following the previous discussion, the application of or-
dered shared locks and timestamp ordering in the context of
transactional processes requires that for each activity, i.e.,

for each transaction program that can be invoked by the
process manager, additional information in the form of an
ordered list is maintained which comprises the locks held for
all invocations of that activity. Each lock, in turn, refers to
the process by which the lock has been acquired (and by
which the corresponding activity is invoked), thereby im-
plicitly associating each lock with the timestamp of the cor-
responding process.

Even when combining the extended OSL protocol based
on P and C locks with timestamp ordered lock requests, spe-
cial treatment is necessary for pivot activities. Due to their
commit-like semantics, they make compensation unavailable
for all preceding activities and lead to state changes (of the
process itself or of subprocesses). Recalling the criterion
of P-RC, pivot activities must not not executed when the
corresponding process has locks on hold. This is captured
in process locking by the requirement that all preceding C
locks held for compensatable activities have to be converted
to P locks before a pivot activity can be executed, thereby
reducing the problem to the allowed/disallowed sharing of
locks according to Table 2.

The process locking protocol can be briefly summarized as
follows: When instantiated, a process Pi is assigned a unique
timestamp ts(Pi). Before an activity aik is to be executed
by the process manager, a lock must be acquired which has
to meet the termination property of aik (either a C lock
or a P lock). This lock then corresponds to an entry in the
lock list of the activity. Hence, the process manager exploits
not only information about the commutativity of activities
but also about their termination properties. However, prior
to the permission of a lock, all conflicting activities, and in
particular all locks held for these activities have to be ana-
lyzed so as to decide whether or not the lock for aik can be
granted. The following six rules specify the acquisition and
the release of locks, respectively, and define process locking
in detail:

Comp–Rule: For the execution of a compensatable activ-
ity ac

ik
, a C lock is required. Depending on the pro-

cess timestamp of Pi and the timestamps of potential
other processes holding locks for conflicting activities,
a C lock request can either be granted immediately,
requires the abort of concurrent processes, or has to
be deferred.

Granting C Locks: A C lock for some activity ac
ik

of a
running process can be granted when either no other
process holds a lock for a conflicting activity, or when
all locks held for conflicting activities (either C or P
locks) are from older processes with respect to the pro-
cess timestamp. Once the C lock has been successfully
acquired, ac

ik
can be executed.

Aborting Concurrent Processes: If a process Pj with a
younger timestamp, ts(Pj) > ts(Pi), holds a C lock
for a conflicting activity ajl , then Pj will be aborted.
If Pj is already aborting, then Pi has to wait until Pj is
aborted (aborting processes cannot be aborted). Once
Pj is aborted correctly, its locks are released, the C
lock required for the execution of ac

ik
can be acquired,

and ac
ik

can be executed. After completing the abort
of Pj , it is resubmitted with the same timestamp in
order to avoid its starvation. This is possible since Pi

is able to execute ac
ik

in the meanwhile such that, when
Pj redoes the execution of ajl , the constraints imposed

by the process timestamps on the sharing of locks and
thus, on the associated C locks, are met.

Additionally, the request of a C lock by a completing
process leads to the abort of older processes already
holding a C lock for a conflicting activity since com-
pleting processes are treated as “first-class processes”
and are favored compared to running processes.

Deferment of C Lock Requests: If a younger process Pk,
ts(Pk) > ts(Pi), exists which already holds a P lock for
a conflicting activity, then ac

ik
has to be deferred (since

Pk cannot be aborted) until the commit of Pk. Spe-
cial treatment is also applied if a completing process
Pk with a younger timestamp holds a C lock (this is
possible since we allow a pivot activity of a process pro-
gram to be recursively followed by process programs).
Then, Pi has also to be deferred until the commit of
the completing process Pk. The latter ones are the
only cases where the lock sharing order (and thus, the
serialization order) and the timestamp order do not
coincide.

Piv–Rule: When ap
ik

is pivot, then Pi has to acquire a P
lock before it can be executed. But, prior to this P lock
request, all previously held C locks of Pi have to be
converted to P locks so as to guarantee that P-RC will
not be violated. Again, a distinction on whether the P
lock can be granted immediately after lock conversion,
whether it requires the abort of concurrent processes,
or whether it has to be deferred is possible.

Granting P Locks: A P lock is granted, after lock conver-
sion, if no other process holds a lock for a conflicting
activity.

Aborting Concurrent Processes: In case younger processes
Pj , ts(Pj) > ts(Pi), hold C locks for conflicting activi-
ties, all these Pj have to be aborted if they are running,
otherwise, if they are already aborting, Pi has to wait
until they are aborted. After Aj , they are resubmitted
with the same timestamp so as to avoid starvation.

Deferment of P Lock Requests: If older processes hold C
locks or if any other process holds a P lock, then the
request has to be deferred until the these processes
have terminated. This is the case since, according to
the lock compatibility matrix, a newly acquired P lock
may not be shared with any other lock already held
(and since at most one completing process at a time is
allowed).

Comp→Piv–Rule: This conversion is required for all C
locks of a process Pi as prerequisite for the execution
of a pivot activity ap

ik
. Since the conversion of a C lock

to a P lock is similar to the acquisition of a P lock, the
same conditions hold: C→P lock conversion succeeds
when either no other process holds a lock for a con-
flicting activity or if all existing locks are C locks held
by younger processes Pj , ts(Pj) > ts(Pi), which then
have to be aborted (and which are resubmitted with
the same process timestamp). In case older processes
hold C locks or if any other process holds a P lock,
then C→P lock conversion has to be deferred until the
end of these processes.

C−1–Rule: Prior to compensating ac
ik

, a C lock has to be

acquired for a−1
ik

. Hence, according to the Comp–Rule,

all processes Pj which share locks with Pi but have
younger timestamps, ts(Pi) < ts(Pj), are aborted (i.e.,
when these Pj have executed some ajl that conflicts
with ac

ik
and appears after ac

ik
in <S). All older pro-

cesses Pk having common locks with Pi are not affected
by the C lock request for a−1

ik
.

Abort–Rule: The abort Ai of a process Pi leads to the
release of all locks held by Pi.

Commit–Rule: A process Pi is only allowed to commit if
it does not share any locks with older processes Pj . At
commit time, all locks of Pi are released; hence, process
locking follows the strict two phase locking paradigm
[11]. Otherwise, if Pi holds locks shared with older
processes Pk, ts(Pk) < ts(Pi), Ci is deferred until all
these Pk have committed.

Note that, although compensating activities are them-
selves required to be pivot, we do not demand them to ac-
quire P locks since this would require C→P lock conversion.
Yet, it is sufficient for guaranteeing CT to abort only pro-
cesses which have executed activities between a regular and
a compensating activity which is already captured by re-
quiring C locks for compensation.

Obviously, by allowing to share locks in timestamp order,
a process may induce cascading aborts. Avoiding cascad-
ing aborts would be far too restrictive since it would, in the
case of semantical rich activities where a distinction between
read and write access to data is impossible, degenerate to
rigorousness [7]. However, due to the exclusive treatment of
certain combinations of locks, it is ensured that cascading
aborts are restricted to running processes, not to completing
ones. After the cascading abort of some process Pj is com-
pleted, it is resubmitted with the same timestamp in order
to avoid starvation. Additionally, process locking makes use
of timestamp-based deadlock prevention strategies [21, 6]
which, together with the restriction to at most one complet-
ing process at a time, guarantees the absence of deadlocks
imposed by cyclic wait-for dependencies.

The proofs showing the correctness of process locking with
respect to CT and P-RC can be found in the appendix.

4. COST-BASED SCHEDULING OF
PROCESSES

In process locking, the abort of a process Pi is induced
in one of the following cases: i.) due to the failure of an
activity when Pi is running, ii.) due to the abort of some Pj

which shares locks with Pi where locks of Pj precede those
of Pi, iii.) due to the violation of timestamp orders when
an older, conflicting process Pj issues some lock request, or
iv.) due to a conflict of Pi with a completing process Pj ,
independent of timestamp orders.

While the first case is inherent to the guaranteed termi-
nation property of single processes, the other cases, how-
ever, are based on the optimistic character of process lock-
ing that allows certain locks to be ordered shared and on
the special treatment of completing, “first-class” processes.
Hence, ii.) - iv.) stem from the presence of cascading aborts
and may be subject to a refinement of process locking. We
have previously shown that the total absence of cascading
aborts would impose too strict limitations on the degree
of concurrency. But the protocol could be tightened for

certain, distinguished processes such that cascading aborts
could not affect them although they are running while the
possibility of cascading aborts should still be possible for
other processes for which this is rather tolerable. Consider,
for instance, a process Pi that contains a complex and ex-
pensive activity aik for which a compensating activity a−1

ik

exists (or, similarly, a simple activity aik where a−1
ik

is ex-

pensive). Due to the presence of compensation, aik would
be treated just like any other compensatable activity and
may be subject to compensation when some other process
aborts. In order to avoid situations where complex activi-
ties have to be compensated, we seamlessly extend the basic
process locking protocol, leading to the cost-based process
scheduling protocol, that allows a process manager to ex-
ploit information on the execution cost associated with each
activity. Most importantly, this extension allows to refine
the degree of concurrency on a per-process basis by allow-
ing cascading aborts for some, rather simple processes while
enforcing ACA for “valuable” processes, containing complex
and expensive activities.

In short, the basic idea of cost-based process scheduling is
to assign a cost threshold to each process program PPj , to
accumulate the cost actually effected by a process P j

i in a

process schedule S, and to apply special treatment to P j
i —

similar to the privileges deployed for completing processes—
once its accumulated cost exceeds the threshold specified for
its process program. Hence, the process manager has to keep
track of the cost accumulated by each active process P j

i in
a process schedule S. In order to account also for the cost
of aborting P j

i , this should not only consider the execution
costs of regular activities but also those of the associated
compensating activities, even if P j

i is not aborting in S.
The reason being is that these additional costs will incur in
worst case, when P j

i is aborted. This leads to the notion

of worst-case cost, Wcc(P j
i ,S), of a process P j

i in a process
schedule S (where AReg

i is the set of all regular activities of

P j
i in S):

Wcc(P j
i ,S) =

∑
aik

∈AReg
i

(
c(aik) + c(a−1

ik
)

)
(1)

Obviously, the restriction to the regular activities of a
process schedule S when accumulating the worst-case cost
Wcc(P j

i ,S) of some process P j
i in S stems from the fact

that the execution cost of the inverse a−1
ik

of each activity

aik ∈ AReg
S is already considered in (1). Thus, the notion

of worst-case cost exceeds the actual cost that is caused by
some process P j

i but encompasses additionally the execu-

tion cost given that P j
i would change its state to aborting

and successfully execute all abort-related activities until it is
finally aborted. In addition to the worst-case cost of a pro-
cess gathered dynamically at run-time, a finite cost thresh-
old, Wcc∗(PPj), has to be defined for each process program
PPj which then accounts for all associated processes P j

i .
When a regular activity aik is to be executed in a state

characterized by a process schedule S, the worst-case cost
of P j

i has to be adapted prior to its invocation such that

Wcc(P j
i ,S ′) = Wcc(P j

i ,S) + c(aik) + c(a−1
ik

) (2)

with AS′ = (AS ∪ aik). Based on Wcc(P j
i ,S ′), the pro-

cess manager can now decide on the treatment of aik : if

the worst-case cost is below the cost threshold as defined
in the process program, aik can be treated as compensa-
table, thus deploying the Comp–Rule for lock acquisition.
However, when Wcc(P j

i ,S ′) exceeds Wcc∗(PPj), the pro-
cess manager will treat aik as pivot, thereby enforcing that
it is not compensated due to the failure of some other pro-
cess. Compensating activities are still treated according to
the C−1–Rule. The algorithm allowing cost-based process
scheduling, thereby extending the process locking protocol,
is presented in detail in Figure 1.

In order to provide correct process schedules, the cost-
based extension of process locking has to identify pivot ac-
tivities by the worst-case cost of their process and thus,
to apply the Piv–Rule for lock acquisition. To this end,
Wcc(P j

i ,S) must, in any case, exceed the cost threshold de-

fined in PPj whenever a process P j
i changes its state from

running to completing.

Lemma 1 (Worst-Case Cost & Pivot Activities).
The worst-case cost Wcc(P j

i ,S) of P j
i , determined for the

execution of a pivot activity aik in a process schedule S, ex-
ceeds the cost threshold Wcc∗(PPj). 2

Proof (Lemma 1).
For each pivot activity ap

ik
, the cost of compensation, i.e.,

the execution cost of a−1
ik

, is infinite. Therefore, when the

worst-case cost Wcc(P j
i ,S) of a process P j

i is updated, ac-

cording to (2), due to the execution of ap
ik

, Wcc(P j
i ,S ′) with

A′S = AS ∪ ap
ik

will be infinite. The reason being is that

Wcc(P j
i ,S ′) considers the execution cost of both aik and of

its compensation. Hence, since c(a−1
ik

) = ∞, Wcc(P j
i ,S ′)

evaluates to: Wcc(P j
i ,S ′) = Wcc(P j

i ,S) + c(aik) + c(a−1
ik

)
and contains at least one infinite addend. The cost threshold
defined for a process program is, per definition, a finite value.
Therefore, the worst-case cost of a process in which a pivot
activity is to be scheduled for execution, and in particular
when a process changes its state from running to complet-
ing, always exceeds its cost threshold, independently of PPj

and of Wcc∗(PPj). 2

Aside of pivot activities, the Piv–Rule for lock acquisition
is also applied to activities whose worst-case cost exceeds the
cost threshold although these activities may be compensat-
able. In particular, activities that are treated like pivots but
are actually compensatable and belong to a running process
are called pseudo pivots. For pseudo pivot activities aik , the
following holds (with A′S = AS ∪ aik):

Wcc(P j
i ,S) < Wcc∗(PPj) ∧ Wcc(P j

i ,S ′) ≥ Wcc∗(PPj)

∧ Wcc(P j
i ,S ′) < ∞ (3)

In particular, and conversely to Lemma 1, a running pro-
cess P j

i can always be characterized by finite worst-case cost,

hence Wcc(P j
i ,S ′) < ∞ distinguishes pseudo pivots from

the primary pivot of Pi.

Cost-based process scheduling now allows to circumvent
the abort of a running process P j

i having executed a pseudo
pivot activity (i.e., an activity which is either expensive
or having an expensive inverse) due to the abort of some

initiate process(Process Proc, ProcessProgram PP)
begin

Wcc(Proc) := 0;

ts(Proc) := assign timestamp();

execute process(Proc, PP);

end /* initiate process */

execute activity(Activity act, Process Proc, ProcessProgram PP)
begin

if (act is a compensating activity) then

request C lock(act); /* apply C-1-Rule */

invoke(act);

else
comp := get compensating activity(act);

Wcc(Proc) := Wcc(Proc) + c(act) + c(comp); /* update worst-case cost */

if (Wcc(Proc) < Wcc max(PP)) then /* act is compensatable */

request C lock(act); /* apply Comp-Rule */

invoke(act);

else /* treat act like a pivot */

foreach a in Proc do /* check all activities and */

convert C to P lock(a); /* apply Comp→Piv-Rule */

od
request P lock(act); /* apply Piv-Rule */

invoke(act);

fi
fi

end /* execute activity */

Figure 1: Algorithm for Dynamic Pivot Determination in Cost-Based Process Scheduling

other process, but without generally requiring the avoid-
ance of cascading aborts for all processes. Hence, this pro-
tocol allows to provide the full spectrum of process sched-
ules between ACA and P-RC, i.e., cascading aborts for all
running processes, by specifying the cost thresholds of pro-
cess programs appropriately. Depending on that, a higher
parallelism than ACA is possible while, at the same time,
cascades are avoided on a per-process basis; thus, the cost-
based extensions might be more restrictive than pure process
locking.

5. RELATED WORK
In the context of transactional workflows, a couple of ap-

proaches exist that aim at enriching processes by transac-
tional execution guarantees. However, none of these ap-
proaches addresses concurrency control and recovery jointly,
thereby also taking into account the special semantics of pro-
cesses as transactions at a higher level of semantics. Spheres
of joint compensation, for instance, consider recovery as-
pects without concurrency control [17] while others only ad-
dress isolation but neglect atomicity [5]. Other approaches,
like open process management [9], are unnecessarily restric-
tive in that they defer the visibility of the effects of activities
until the commit of their process. ConTracts [29], finally, al-
though addressing concurrency control and recovery jointly,
impose strong constraints and require the inverses of all pro-
cess steps to exist.

The need for a dynamic scheduling protocol for transac-
tional processes is stemming from the special semantics of

process programs, i.e., the existence of multiple (alterna-
tive) subprocesses which are not necessarily considered in a
process. Hence, predeclaration strategies [13] which would
have to consider all possible activities and thus, in general
considerably more than actually effected, are too restrictive.
Similarly, protocols like altruistic locking [22], although de-
signed for long lived transactions, do not provide a feasible
solution for transactional processes since they require the
access pattern of a process to be known beforehand (which
would again include all possible execution paths).

6. CONCLUSION
This paper provides a dynamic scheduling protocol, termed

process locking, for the correct parallel and fault-tolerant ex-
ecution of transactional processes with respect to correctness
criteria based on the unified theory of concurrency control
and recovery. These processes can be considered as trans-
actions at a higher level of semantics which are defined over
activities corresponding to transactions in component sys-
tems.

Process locking allows to implement a process manager
that exploits not only information about the commutativ-
ity of activities but also about their termination properties
(whether there is an inverse or not), and the process struc-
ture, i.e., the orders that are imposed between activities, and
allows to dynamically decide on the execution or deferment
of single activities. By considering locking techniques at the
level of activities rather than at data level and by distin-
guishing lock types according to the termination properties

of activities, process locking takes into account the special
semantics of processes. Most importantly, however, process
locking allows certain locks to be ordered shared so as to
increase concurrency while still conforming to the unified
correctness criteria. Since process locking allows cascading
aborts for processes, the exploitation of execution costs of
single activities, leading to cost-based process scheduling,
extends the basic protocol and permits cascading aborts for
simple processes while cascading aborts are prevented for
complex processes within the same framework. The con-
sideration of execution costs then allows, for instance, to
distinguish “expensive” activities which require manual in-
teraction and automated (“cheap”) activities that can be
easily redone after an abort.

In the context of the Wise project of ETH, a process
manager following the process locking protocol and the cost-
based extensions has been implemented. In addition, the
process manager is completed by the commercial process
modeling tool IvyFrame [15] which has been extended so as
to allow for the specification of cost information and for the
validation of the correctness of single processes with respect
to guaranteed termination. This framework has been suc-
cessfully used in various applications such as electronic com-
merce, especially for the implementation and coordination
of payment processes [25, 19], virtual enterprises [16], and
subsystem coordination (i.e., in computer integrated manu-
facturing [24], or hospital information systems [26]).

Acknowledgments.The author thanks Hans-Jörg Schek
and Gustavo Alonso for their encouragement and for the
various fruitful discussions on the work presented in this pa-
per. The process model and the unified correctness criteria
for transactional processes have significantly benefited from
discussions with Catriel Beeri.

7. REFERENCES
[1] D. Agrawal and A. El Abbadi. Locks with

Constrained Sharing. In Proceedings of the 9th ACM
Symposium on Principles of Database Systems
(PODS’90), pages 85–93, Nashville, Tennessee, USA,
April 1990. ACM Press.

[2] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano,
H. Schuldt, and N. Weiler. Wise: Business to Business
E-Commerce. In Proceedings of the 9th International
Workshop on Research Issues in Data Engineering.
Information Technology for Virtual Enterprises
(RIDE-VE’99), pages 132–139, Sydney, Australia,
March 1999. IEEE Computer Society Press.

[3] G. Alonso, C. Hagen, H.-J. Schek, and M. Tresch.
Distributed Processing over Stand-alone Systems and
Applications. In Proceedings of the 23rd International
Conference on Very Large Databases (VLDB’97),
pages 575–579, Athens, Greece, August 1997. Morgan
Kaufmann Publishers.

[4] G. Alonso, R. Vingralek, D. Agrawal, Y. Breitbart,
A. El Abbadi, H.-J. Schek, and G. Weikum. Unifying
Concurrency Control and Recovery of Transactions.
Information Systems, 19(1):101–115, March 1994.

[5] B. Arpinar, S. Arpinar, U. Halici, and A. Doğaç.
Correctness of Workflows in the Presence of
Concurrency. In Proceedings of the 3rd Next
Generation Information Technologies and Systems
Conference (NGITS’97), Neve Ilan, Israel, June 1997.

[6] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[7] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz,
and A. Silberschatz. On Rigorous Transaction
Scheduling. IEEE Transactions on Software
Engineering, 17(9):954–960, September 1991.

[8] J. Camp, M. Harkavy, D. Tygar, and B. Yee.
Anonymous Atomic Transactions. In Proceedings of
the 2nd USENIX Workshop on Electronic Commerce,
pages 123–133, Oakland, California, USA, November
1996. The USENIX Association.

[9] Q. Chen and U. Dayal. A Transactional Nested
Process Management System. In Proceedings of the
12th International Conference on Data Engineering
(ICDE’96), pages 566–573, New Orleans, Louisiana,
USA, 1996. IEEE Computer Society Press.

[10] A. Elmagarmid, editor. Database Transaction Models
for Advanced Applications. Morgan Kaufmann
Publishers, 1992.

[11] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The
Notions of Consistency and Predicate Locks in a
Database System. Communications of the ACM,
19(11):624–633, November 1976.

[12] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie,
T. Price, F. Putzolu, and I. Traiger. The Recovery
Manager of the System R Database Manager. ACM
Computing Surveys, 13(2):223–243, June 1981.

[13] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, 1993.

[14] C. Hagen. A Generic Kernel for Reliable Process
Support. PhD thesis, Swiss Federal Institute of
Technology (ETH) Zürich, 1999. Diss. ETH Nr. 13114.

[15] IvyTeam, Zug, Switzerland. http://www.ivyteam.com.

[16] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler.
The Wise Approach to Electronic Commerce.
International Journal of Computer Systems Science &
Engineering, 15(5):343–355, September 2000. Special
Issue on Flexible Workflow Technology Driving the
Networked Economy.

[17] F. Leymann. Supporting Business Transactions via
Partial Backward Recovery in Workflow Management
Systems. In Proceedings of Datenbanksysteme in Büro,
Technik und Wissenschaft (BTW’95), Informatik
Aktuell, pages 51–70, Dresden, Germany, March 1995.
Springer Verlag.

[18] S. Mehrotra, R. Rastogi, A. Silberschatz, and
H. Korth. A Transaction Model for Multidatabase
Systems. In Proceedings of the 12th International
Conference on Distributed Computing Systems
(ICDCS’92), pages 56–63, Yokohama, Japan, June
1992. IEEE Computer Society Press.

[19] A. Popovici, H. Schuldt, and H.-J. Schek. Generation
and Verification of Heterogeneous Purchase Processes.
In Proceedings of the International Workshop on
Technologies for E–Services (TES’00), Cairo, Egypt,
September 2000.

[20] M. Reichert and P. Dadam. ADEPTflex —
Supporting Dynamic Changes of Workflows Without
Losing Control. Journal of Intelligent Information
Systems, 10(2):93–129, March 1998.

[21] D. Rosenkrantz, R. Stearns, and P. Lewis. System
Level Concurrency Control for Distributed Database
Systems. ACM Transactions on Database Systems
(TODS), 3(2):178–198, June 1978.

[22] K. Salem, H. Garcia-Molina, and R. Alonso. Altruistic
Locking: A Strategy for Coping with Long Lived
Transactions. In Proceedings of the 2nd International
Workshop on High Performance Transaction Systems
(HPTS’87), pages 175–198, Asilomar, California,
USA, September 1987. Springer LNCS, Vol. 359.

[23] H.-J. Schek, K. Böhm, T. Grabs, U. Röhm,
H. Schuldt, and R. Weber. Hyperdatabases. In
Proceedings of the 1st International Conference on
Web Information Systems Engineering (WISE’00),
pages 14–23, Hong Kong, China, June 2000. IEEE
Computer Society Press.

[24] H. Schuldt, G. Alonso, and H.-J. Schek. Concurrency
Control and Recovery in Transactional Process
Management. In Proceedings of the 18th ACM
Symposium on Principles of Database Systems
(PODS’99), pages 316–326, Philadelphia,
Pennsylvania, USA, May/June 1999. ACM Press.

[25] H. Schuldt, A. Popovici, and H.-J. Schek. Automatic
Generation of Reliable E-Commerce Payment
Processes. In Proceedings of the 1st International
Conference on Web Information Systems Engineering
(WISE’00), pages 434–441, Hong Kong, China, June
2000. IEEE Computer Society Press.

[26] C. Schuler, H. Schuldt, and H.-J. Schek. Transactional
Execution Guarantees for Data–Intensive Processes in
Medical Information Systems. In Proceedings of the
1st European Workshop on Computer-based Support
for Clinical Guidelines and Protocols (EWGLP’2000),
Leipzig, Germany, November 2000.

[27] R. Thomas. A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases.
ACM Transactions on Database Systems (TODS),
4(2):180–209, June 1979.

[28] R. Vingralek, H. Hasse-Ye, Y. Breitbart, and H.-J.
Schek. Unifying Concurrency Control and Recovery of
Transactions with Semantically Rich Operations.
Theoretical Computer Science, 190(2):363–396,
January 1998.

[29] H. Wächter and A. Reuter. The ConTract Model,
chapter 7, pages 219–263. In: [10]. Morgan Kaufmann
Publishers, 1992.

[30] A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres.
Ensuring Relaxed Atomicity for Flexible Transactions
in Multidatabase Systems. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data (SIGMOD’94), pages 67–78, Minneapolis,
Minnesota, USA, May 1994. ACM Press.

APPENDIX

A. PROCESS LOCKING: PROOF OF
CORRECTNESS

In what follows, we prove the correctness of process lock-
ing. In particular, we show that the protocol produces
P-RED process schedules which can be completed correctly
(CT) and that these process schedules also meet P-RC.

A.1 Process Locking and CT
Process locking has to ensure that each prefix of a com-

plete process schedule can be reduced to a serial process
schedule and, in particular, that this is also possible for each
completed process schedule.

Lemma 2 (Commit Orders).
If two conflicting activities, aik and ajl , exit in a process
schedule S with observed execution order aik <S ajl , then,
if both processes commit, the following order holds on their
commits: Ci <S Cj. 2

Proof (Lemma 2).
Assume that aik and ajl conflict and that the order aik <S
ajl is observed in a process schedule S. Assume further that
Cj <S Ci holds.

1. If Ci <S ajl , that is, if ajl is executed after the termi-
nation of Pi, then aik <S ajl is observed in S but the
order on the commits of Pi and Pj trivially evaluates
to: Ci <S Cj.

2. If ajl <S Ci, that is, if both Pi and Pj are executed con-
currently, the following two cases can be distinguished:

(a) If the locks for aik and ajl cannot be ordered shared
but have to be exclusive, then, due to the Commit-
Rule of process locking, Ci <S ajl is enforced such
that Ci <S Cj holds.

(b) If the locks for aik and ajl can be ordered shared,
then the lock of Pj held for ajl is on hold as long
as Pi is active. Hence, the Commit–Rule requires
Ci <S Cj.

All possible cases contradict with the above assumption such
that Ci <S Cj is enforced by process locking. 2

Correct termination not only requires all pairs of conflict-
ing activities of committed processes to be in the same order
but also accounts for aborted processes.

Theorem 1 (Process Locking and CT).
Process locking guarantees CT. 2

Proof (Theorem 1).
Assume that a complete process schedule S generated by pro-
cess locking is not CT. This is the case when cyclic conflicts
exist in S that cannot be reduced. Let Pi → Pj → . . . →
Pn → Pi the processes involved in this cycle.

1. Assume that all activities imposing the cycle are regular
activities (either compensatable or pivot).

(a) If all processes of this cycle are committed in S,
according to Lemma 2, the following order on the
commits would have to hold: Ci <S Cj <S . . . <S
Cn <S Ci, yet in particular Ci <S Ci.

(b) If some process Pj of the cycle is aborted, then
the corresponding inverse activities are present in
S. Due to the edge Pj → Pj+1, process Pj+1 has
locks on hold and thus cannot commit. Rather,
by the C−1–Rule for compensating activities of Pj,
the cascading abort of Pj+1 is required which again
leads to cascading aborts of all processes Pj+m hav-
ing locks on hold (i.e., all Pj+m appearing after
Pj+1 in the conflict cycle). Due to the isolation

of compensation (c.f. the C−1–Rule and the spe-
cial treatment of aborting processes as part of the
Comp–Rule and the Piv–Rule), each process is cor-
rectly undone and its regular and compensatable ac-
tivities can be removed from S. Assume that some
Pj+m is completing, thus cannot be aborted. In
this case, due to the Piv–Rule and the Comp→Piv–
Rule, preceding processes with locks on hold are
aborted (again, this is done in isolation such that
regular/compensating activities can be removed dur-
ing reduction).

2. Assume that the cycle is imposed by regular and com-
pensating activities. Hence, due to the assumption of
perfect commutativity, such a cycle would be induced
by: aik <S ajl <S a−1

ik
where aik and ajl and, since

commutativity is perfect, also ajl and a−1
ik

do not com-

mute. The C−1–Rule for a−1
ik

requires Pj to abort (since

Pj has a lock on hold, it cannot commit prior to a−1
ik

)

and a−1
ik

to be deferred until Aj such that the following

order can be observed: aik <S ajl <S a−1
jl

<S a−1
ik

.
But, this can be reduced correctly. Moreover, due to the
Piv–Rule, Pj is not allowed to be in state completing
such that the abort required by the C−1–Rule for a−1

ik
is

possible.

3. Assume that the cycle is imposed by compensating ac-
tivities only. But, due to the C−1–Rule and the spe-
cial treatment of aborting processes which is part of the
Comp–Rule and of the Piv–Rule, processes are aborted
in isolation such that this case cannot happen.

All these cases have shown that cyclic conflicts, although
they may appear in a completed process schedule S (when
cyclic conflicts exist, this always goes along with the pres-
ence of compensating activities), can be treated correctly by
applying the reduction rules. Hence, violations of CT cannot
occur. 2

When completing partial process schedules, the restriction
that only one completing process at a time is allowed is
essential for the avoidance of unresolvable deadlocks since,
when cyclic wait-for dependencies exist, at most one of the
processes involved in this cycle cannot be aborted to break
the cycle.

A.2 Process Locking and P-RC
In addition to CT, we have seen that a process manager

has to guarantee that each partial process schedule is P-RC
so as to decide to abort any arbitrary subset of running
processes.

Theorem 2 (Process Locking and P-RC).
Process locking guarantees P-RC. 2

Proof (Theorem 2).
Assume that a process schedule S generated by process lock-
ing is not P-RC. According to Definition 7, a violation of the
constraints imposed by a pair of conflicting activities ac

ik
and

ajl , must exist. Hence, the following two cases depending on
the termination property of ajl have to be considered:

1. Assume that ajl is compensatable, thus its execution
necessitates a C lock to be granted to Pj. The observed
order ac

ik
<S ac

jl
requires shared C locks between Pi and

Pj which is only possible if Pi is older than Pj, that is
if ts(Pi) < ts(Pj), and if additionally Pj is running.

In case process Pj wants to commit, then, due to the
Commit-Rule, Cj has to be deferred until the commit
Ci of Pi since Pj has a lock on hold. Therefore, process
locking enforces the order Ci <S Cj.

In case Pj wants to execute a pivot activity ap
jp

suc-

ceeding ac
jl
, that is ac

jl
≺j ap

jp
, then, according to the

Comp→Piv–Rule for lock conversion, all C locks of Pj

would have to be converted to P locks. Since Pi is older
than Pj, this lock conversion for ac

jl
would have to be

deferred until the C lock held by Pi is released which
will take place at commit time. Therefore, Ci <S ap

jp

will hold such that P-RC is preserved.

2. Assume that ajl is pivot, thus its execution necessitates
a P lock to be granted to Pj. Since ac

ik
and ap

jl
are in

conflict, this P lock request of Pj would not be recon-
cilable with the C lock already held by Pi. Due to the
Piv-Rule, the P lock request of Pj would have to be de-
ferred until Pi has released its locks which, according
to the strict 2PL property of process locking, coincides
with Ci. Therefore, the order Ci <S ap

jl
will be observed

which is compliant to P-RC.

Both cases are treated correctly by process locking such
that P-RC holds for each process schedule S. 2

	Introduction
	Transactional Processes
	Activity Model
	Process Model
	Process Schedules and Correctness

	Process Locking
	Introduction to Process Locking
	Process Locking: The Core Protocol
	Locks with Constrained Sharing
	Timestamp Ordering
	Process Locking: Combining OSL & TO for Processes

	Cost-Based Scheduling of Processes
	Related Work
	Conclusion
	REFERENCES -9pt
	Process Locking: Proof of Correctness
	Process Locking and CT
	Process Locking and P-RC

