
Supporting Reliable Transactional Business
Processes by Publish/Subscribe Techniques?

Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

Institute of Information Systems
Swiss Federal Institute of Technology (ETH)

ETH Zentrum
8092 Zürich, Switzerland

Email: {schuler,schuldt,schek}@inf.ethz.ch

In: Proceedings of the 2nd International Workshop on Technologies for

E-Services (TES’01), pages 118 - 131, Rome, Italy, September 2001.

Lecture Notes in Computer Science (LNCS), Volume 2193, Springer-Verlag.

Abstract. Processes have increasingly become an important design prin-
ciple for complex intra- and inter-organizational e-services. In particu-
lar, processes allow to provide value-added services by seamlessly com-
bining existing e-services into a coherent whole, even across corporate
boundaries. Process management approaches support the definition and
the execution of predefined processes as distributed applications. They
ensure that execution guarantees are observed even in the presence of
failures and concurrency. The implementation of a process management
execution environment is a challenging task in several aspects. First, the
processes to be executed are not necessarily static and follow a prede-
fined pattern but must be generated dynamically (e.g., choosing the best
offer in a pre-sales interaction). Second, deferring the execution of some
application services in case of overload or unavailability is often not ac-
ceptable and must be avoided by exploiting replicated services or even
by automatically adding such services, and by monitoring and balancing
the load. Third, in order to avoid a bottleneck at the process coordinator
level, a centralized implementation must be avoided as much as possible.
Hence, a framework is needed which supports both the modularization
of the process coordinator’s functionality and the flexibility needed for
dynamically generating and adopting processes. In this paper we show
how publish/subscribe techniques can be used for the implementation
of process management. We show how the overall architecture looks like
when using a computer cluster and publish/subscribe components as the
basic infrastructure to drive the enactment of processes. In particular we
describe how load balancing, process navigation, failure handling, and
process monitoring is supported with minimal intervention of a central-
ized coordinator.

c© Springer-Verlag Berlin Heidelberg 2001

1 Introduction

E-services are, in general, complex sequences of individual steps needed to achieve
some business task. They are not necessarily restricted to be executed within
? Part of this work has been funded by the Swiss National Science Foundation under

the project INVENT.

2 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

a single system but may rather be distributed, both physically and organiza-
tionally. Such complex e-services can be found in b2c (business-to-customer) as
well as in b2b (business-to-business) interactions, thereby even allowing to cross
corporate boundaries by combining existing e-services.

Processes have increasingly become an important design principle for com-
plex intra- and inter-organizational e-services since they seamlessly allow to en-
compass the individual constraints that can be found in e-services by means of
control and data flow dependencies between single process steps. Most exist-
ing process coordinators require that the individual steps of a process have to
be defined at built-time. E-services being characterized by such static processes
can be found, for instance, in e-commerce payment interactions [3,15]. However,
a considerable class of e-services is characterized by the lack of a pre-defined
structure [12], e.g., pre-sales interactions.

Consider, as an example for the management of processes which are dynam-
ically generated at run-time, the supply chain of a car manufacturing company
United Cars (UC). UC uses an automated management system to manage parts
stored on stock. In case this system detects that the number of screws of a par-
ticular type, say SG-H 37 ZC∗, has fallen below a certain threshold, a process
ordering new screws has to be triggered. In order to optimize costs, standard
parts like screws are dealt with a fixed, single supplier, but they are rather or-
dered from the supplier offering the best price currently available on the market.
To this end, UC first has to gather current offers for 10’000 screws of type SG-H
37 ZC∗ from all potential dealers. According to the results of this phase, an
order can be placed by the purchasing department. The purchase order will be
performed and the screws of the type SG-H 37 ZC∗ will be inserted into stock. In
order to guarantee that the production of UC cars will never be stopped due to
some missing screws, the order process has to terminate correctly and as fast as
possible by using clustered services, hence needs dedicated execution guarantees.

parts arrived
Delivery
Wait for

Do Offers

Place Order

Evaluate Results

Do Negotiation

low on screws

Fig. 1. Sample Process: Automated order processing for parts stored on stock

While the example depicted in Figure 1 focuses on execution guarantees and
dynamic assignment of services, other applications may introduce additional re-
quirements. Consider, for instance, business processes in the area of multimedia

Reliable Transactional Business Processes by Pub/Sub Techniques 3

object management which gather image data and finally maintain a search en-
gine on them [20]. These processes feature a high need of replicated services
in order to speed up execution. To support this, the running components have
to be monitored in oder to optimize load balancing. Moreover, this application
shows the need of sophisticated resource management at coordinator level: e.g.,
processing 100’000 images and inserting them into an index will result in 100’000
processes running at the same time which leads to a potential bottleneck of a
centralized process manager. Therefore, we see a need to decouple the function-
ality of a process coordinator and to distribute the individual run-time services
to different components, thereby minimizing the intervention of a centralized
coordinator and avoiding a bottleneck at coordinator level. In summing up, in
order to achieve execution guarantees we must monitor the availability and the
load of services. Based on monitoring we must dynamically select the best avail-
able service. The implementation must avoid a centralized implementation of
the process manager whenever possible.

In this situation — and this is the contribution of the paper — we have come
up with a solution for the implementation of a sophisticated process manager
that combines the advantages of publish/subscribe techniques with transactional
process management. The key feature we are using repeatedly is the following:
Systems providing certain services can register (subscribe) for the service they
offer. Whenever an event like, for instance, the termination of a process step is
evoked (publish), the process coordinator is able to dynamically chose the next
service among all that have been subscribed, thereby considering only those
services that are currently available. Based on this publish/subscribe commu-
nication infrastructure, many features like process navigation, failure handling,
load balancing, and monitoring can be implemented in an elegant and flexible
way.

The paper is organized as follows: in Section 2, we briefly introduce the
process model we are relying on while Section 3 introduces the idea of pub-
lish/subscribe techniques. The application of publish/subscribe techniques to
process management is presented in Section 4. Section 5 discusses related work
and Section 6 concludes.

2 Transactional Processes

In this section, we introduce the basic ideas of transactional processes which
will form the theoretical foundation for the application of publish/subscribe
techniques to implementing complex e-services.

2.1 Process Model

A process is a partially ordered collection of activities. In particular, processes
introduce flow of control and flow of data between activities as basic semantic
elements. Activities, in turn, correspond to invocations of application services.
In order to take into account that certain steps within a process are irreversible,

4 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

activities can be characterized in terms of their termination guarantees: they
are either compensatable, retriable, or pivot — according to the flex transactions
model [9,21]. Compensatable activities can be semantically undone after they
have committed, pivot activities are those which are not compensatable (when
no appropriate compensation is available or when compensation is too expensive
and thus has to be avoided), and retriable activities are the ones that are guar-
anteed to terminate successfully. Due to the special characteristics of processes
which are in general long-running and complex, it is not feasible to encompass
all activities of a process within a single distributed transaction. Each activity
is required to commit immediately after it has been completed — which is even
required for pivots. Hence, additional effort is required to handle failures cor-
rectly within processes. To this end, the regular order between activities (the
precedence order) is complemented by an additional order, the preference order,
indicating alternative executions that can be taken in case of failures [18].

Based on the different termination properties of activities and the precedence
and preference orders, it can be validated whether a single process is defined
correctly. This is the case when all possible failures of process activities can be
handled correctly by either undoing all completed activities (when only compen-
satable activities have committed) or by executing a safe alternative consisting
only of retriable activities (thereby, also failures can be handled which occur
after a pivot activity has been committed). Processes for which these structural
constraints hold are called processes with guaranteed termination [18]. This inher-
ent correctness property of transactional processes is an important and powerful
generalization of the “all-or-nothing” semantics of traditional ACID transactions
since it ensures that one of eventually many valid executions (specified by alter-
natives) is effected, thereby ensuring that the system in a consistent state after
process completion.

2.2 Process Execution

The execution of transactional processes is controlled by a process coordina-
tor. Starting with the correct specification of single processes having guaranteed
termination property, the process coordinator’s task is to enforce the correct
execution of transactional processes even in the presence of failures and concur-
rency, i.e., when different processes simultaneously access shared resources. The
key aspects of the transactional process coordinator can briefly be summarized
as follows: it acts as a kind of transaction scheduler that is more general than a
traditional database scheduler in that it

i.) knows about semantic commutativity of activities,
ii.) knows about the termination properties of activities,
iii.) exploits the regular precedence order of processes when executing activities

and knows about alternative executions paths in case of failures, and
iv.) optimizes execution costs of processes by choosing the best alternative among

the set of alternatives specified by the preference order [17] at each state.

Reliable Transactional Business Processes by Pub/Sub Techniques 5

3 Publish/Subscribe Techniques

In this section, we introduce the basic concepts of the publish/subscribe paradigm
and give a brief overview of the different applications of this technique.

3.1 Introduction to Publish/Subscribe

Message-oriented middleware (MOM) loosely couples individual systems by re-
placing the commonly exploited synchronous, RPC-like invocations with the
asynchronous transfer of messages. The publish/subscribe (pub/sub) paradigm
is a special form of MOM which allows to further decouple a sender and the
receiver(s) of messages [14]. The key characteristics of pub/sub interactions is
an additional indirection in the communication between sender and receiver(s):
rather than addressing a message directly, a sender associates it with a certain
topic, i.e., a description of the message content, and does not have to have any
information about who will be the recipient of this particular message. Yet, pub-
lishing a message just requires transferring it to a dedicated message broker.
The latter is then responsible for distributing this message, according to meta
data indicating who has previously shown interest of messages of that particular
topic. The procedure of registering an individual client profile of topics with the
message broker is referred to as subscription. An alternative to the description
of messages by means of predefined topics is to use filter predicates specified
by recipients to analyze whether or not publications are of particular interest
(consider, for instance, an electronic car auction where a client is interested in
any offer of a VW New Beetle for less than $10.000). Filter predicates increase
flexibility by allowing arbitrary publications, thereby avoiding the restriction of
the publisher to the usage of a common topics schema. Moreover, when given
the capability to persistently store messages together with the associated de-
scription, the message broker may even allow to distribute messages to receivers
which did not exist at the time the message has been published. Persistent queu-
ing functionality also allows to guarantee correct message transfer. A message
is first inserted into the publisher’s local queue. The publication, which then
corresponds to the transfer from this local queue to the queue of incoming mes-
sages located at the broker’s site, is implemented as a two-phase commit (2PC)
[6] coordinated distributed transaction. In a similar way, also the transfer of
messages from the broker to the subscriber is treated, yet in an independent
transaction, thus achieving asynchronous publisher/subscriber interactions. An
additional degree of freedom in pub/sub interactions, depending on the indi-
vidual semantics of a concrete application, is whether or not it is sufficient to
forward a message to exactly one subscriber, to a certain set of subscribers, or
to all of them.

While most commercial pub/sub implementations (e.g., IBM’s MQSeries [10]
or the implementations of the CORBA Event Service [13]) follow the broker ap-
proach, certain products even avoid the centralized broker. In TIB/Rendezvous
[19] of TIBCO, for instance, a publisher distributes messages via broadcast to

6 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

all potential subscribers which then have to filter locally the messages they are
interested in.

3.2 Applications of Pub/Sub Techniques

The pub/sub idea was originally introduced in the context of mailing lists for
Internet newsgroups where a customer explicitly has to subscribe for a couple
of predefined topics so as to receive an e-mail whenever a message to one of
these topics is published. A generalization of this first application can be found
in systems where the recipients of messages are no longer human beings but
arbitrary application programs (e.g., electronic stock brokers logging each sig-
nificant change in the stock value of the shares of United Cars). The usage of
pub/sub techniques can even be further generalized, leading to loosely coupled
distributed information systems, when the receiver actively reacts on a message.
The rationale behind this approach is that a message corresponds to an event
that has been evoked by some application (the publisher) and requires certain
response by another program (the subscriber).

4 Processes Support by Pub/Sub Technologies

Our PMPS approach relies on the above mentioned idea of loosely coupled dis-
tributed information systems and addresses the event-driven execution of busi-
ness processes (process management, PM) by pub/sub (PS) techniques. By this,
core system functionality can be mapped to the underlying pub/sub infrastruc-
ture without having to deal with dedicated components for various runtime
services such as, for instance, distribution of load information for load balancing
purposes. Activities of a process correspond to services provided by one com-
ponent of the system (in certain cases, services are replicated and thus can be
provided by different component systems). In order to avoid that components
drive the execution of processes in a bilateral way by explicitly invoking the
subsequent service at another host by remote procedure call once a local service
has terminated, pub/sub techniques are used. To this end, components offering
services which are used within processes have to register the service they offer
(subscription). After an event is published —via an appropriate message, i.e, the
completion of some task— that triggers another task, the service corresponding
to the latter is invoked. Consider, for example, a component C1 offering a ser-
vice s1 which corresponds to activity a′ of some process P . C1 can subscribe
this service for events ”s1.start” which, in turn, are generated after the event
”s0.terminated” has been raised where s0 is a service corresponding to an ac-
tivity a∗ that directly precedes a′ in process P with respect to the precedence
order. Hence, the component S0 executing the service corresponding to activ-
ity A0 does not have to be aware of where process execution will be continued;
server S1 is contacted by the PMPS system rather than by S0. While control
flow is initiated by means of messages, data to be shipped between tasks is also
encompassed within these messages. A crucial aspect for driving the execution of

Reliable Transactional Business Processes by Pub/Sub Techniques 7

processes in a reliable way is to exploit persistent queuing mechanisms to avoid
the loss of messages.

We use pub/sub techniques also to distribute the implementation of our
process coordinator. This helps to improve load balancing, process navigation,
failure handling, and monitoring. The implementation of these features are dis-
cussed in the following subsections.

4.1 System Model

The PMPS approach is designed to run in a heterogeneous and distributed en-
vironment. We distinguish two types of components participating in the system.
The first type, called KER consisting of a set of dedicated servers, builds the
PMPS kernel (depicted in Figure 2 as the machines belonging to the inner, dark-
shaded area). These components have to feature high availability since they are
exploited to drive the execution of transactional processes and to add services
at run-time, e.g., providing load balancing, or monitoring functionality for the
states of processes. The second type, called APPS, is made up of the components
providing application services which will be combined by processes (depicted in
the outer part of Figure 2). Hence, these components are used for the execution
of single process steps rather than to control the actual process execution. In
particular, these components can dynamically change the set of services they
provide, and they can themselves dynamically join and leave the system. The
overall system should not be affected, even if APPS components crash and never
rejoin the system.

Since all communication in the system is based on asynchronous messages
and pub/sub techniques, no APPS component has to be aware of the network
address of any another component. The communication layer connecting all com-
ponents of either type just has to know how to contact the central pub/sub
directory which is hosted at one of the KER components (and which is, accord-
ing to the requirements imposed for these components, highly available and/or
redundant). This directory lookup service maintains information on pub/sub
topics and all subscriptions to these topics. In the PMPS approach to process
management, topics coincide both with the different events that are raised by
APPS components so as to signal the state of service invocations (whether they
are successfully completed or whether they have failed) and with the events gen-
erated by the KER components, reflecting relevant changes in the meta data of
the system.

Whenever a new component of the APPS type joins the system (note that
all components of the KER type are static and thus can neither dynamically join
nor leave the system), it registers itself at the pub/sub directory by specifying
the different services it provides.

4.2 Load Balancing

In order to the increase the performance and availability of APPS components,
services can be configured to run on more than one component. In this case, the

8 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

Fig. 2. Different types of components: KER for process execution (inner part)
and APPS for individual process steps (outer part)

pub/sub run-time infrastructure has to provide a special component implement-
ing a dedicated load balancing service. This service routes incoming message to
exactly one subscriber of a subscribed group, where the service corresponding
to that particular message can be executed. Since the load balancing compo-
nent can decide freely —but based on load information it dynamically gathers—
where to route a specific task, the result of an execution has to be independent
of the location where the service is executed, i.e., the services among which the
load balancing component chooses have to be (semantically) identical.

To allow for the implementation of sophisticated load balancing services,
each APPS component has to publish its actual load. To prevent a high system
load, due to heavy load update information, PMPS implements an event-based
mechanism that notifies the load balancing service whenever significant changes
in the local load occur (i.e., when the deviation of the load exceeds a pre-defined
threshold). Hence, the load balancing service acts as a subscriber for load infor-
mation published by the APPS components.

4.3 Process Navigation

In addition to transparent service invocation provided by the meta information
maintained at the pub/sub directory allowing to link two subsequent steps of a
process, the overall navigation within processes has to take place on top of this
infrastructure.

Therefore, a process description lookup service must be hosted at a KER
component. This service maintains information about all defined processes, fol-

Reliable Transactional Business Processes by Pub/Sub Techniques 9

lowing the model of transactional processes (c.f. Section 2.1). For process mod-
eling purposes, we are using a graphical process modeling and simulation tool,
IvyFrame of IvyTeam [8], which we have extended in PMPS in order to export
process models in the format used by the process description lookup service
(i.e., in the form of pairs of consecutive activities and the corresponding services
that have to be invoked to execute these activities). In particular, the process
description lookup service has to map events raised by some APPS component
like s0.terminated to events that trigger control flow and that start the sub-
sequent activity by invoking its associated service: s1.start. To this end, the
process description lookup service needs both information on the correlation be-
tween process activities and the associated services as well as on the control flow
of a process (which includes both the precedence order for regular execution and
the preference order for alternative execution which have to be effected in case
of failure).

In general, this mapping is realized by a centralized service which is a sub-
scriber for all ?.terminated and ?.failed events, i.e., events that signal the suc-
cessful completion or failure of services. But this navigation by mapping events
can also be de–centralized: in this case, the local pub/sub daemon which any-
way resides on each APPS component to provide transparent communication
by means of pub/sub , i.e., to publish events after a service has terminated,
takes over this task. To do this, the daemon has to locally cache global informa-
tion maintained by the process description lookup service. Based on this cached
information, the daemon can decide locally which event to publish after the ter-
mination of a service. The prerequisite for this is, however, that the local cache
is kept up to date such that dynamic changes in the process description are im-
mediately propagated to all local daemons. Again, this is realized via pub/sub
techniques in that each daemon subscribes for process description lookup data
which is published by the centralized service whenever changes are performed.
This allows to distribute meta data of the process lookup service for cache update
purposes.

4.4 Failure Handling

Following the model of transactional processes, the failures of single activities
are handled by either re–invoking the service (retry), executing alternatives,
or by compensation. In all cases, the strategy is present in the control flow of
the process (preference and precedence order, respectively) and the termination
characteristics of the activity. To this end, the failure of some local service s1

corresponding to an activity A1 is published “s1.failed” and can be handled
by the process navigation similar to the successful treatment (However, in this
case compensation is required or alternative execution are effected rather than
continuing with the regular control flow).

The failure of individual APPS components, however, requires additional
effort. In particular, it must be guaranteed that all events that have been pub-
lished will be processed by some subscriber. Hence, appropriate support by the
underlying pub/sub infrastructure of PMPS is required. Essentially, following

10 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

load

description
process

information

serviceservice

service
service

services

services

pub/sub
directory

monitoring

A

A

B

D

E
F

B C D
B D E

C

Fig. 3. Dynamic process execution by the PMPS system

the ideas of queued transactions [2], persistent queuing technology can be ap-
plied in order to guarantee not only that a message corresponding to an event
arrives at the subscriber but also that it is actually processed there by some
service s (before a new event signaling the state of s is raised). To this end,
the delivery of a publication which corresponds to a dequeue operation from
a persistent queue maintained by the PMPS system, the service itself, and the
enqueue of the event signaling the state of the service (success or failure) have to
be encompassed within a single transaction. This is the task of the local daemon
which not only provides the basic pub/sub communication facilities but which
also relates the invocation of local services to the events being published and
consumed.

In case some APPS component having subscribed for the execution of a
service cannot be reached, three corrective strategies exist:

i.) if there are other components having subscribed for that particular service,
they can be chosen instead (in an order imposed by their current load), or

Reliable Transactional Business Processes by Pub/Sub Techniques 11

ii.) if alternative services are defined in the process (by means of preference
orders, c.f. 2.1), these services can be invoked, or

iii.) in case a particular service is not replicated and no alternative is defined,
process execution has to be frozen until either that component is available
or until another component has subscribed for this service.

4.5 Monitoring

Meta data on the state of the overall system is very important, both in terms of
individual components (what is their current load, what services they are cur-
rently executing, etc.) and in terms of individual processes (what is their current
state). To this end, an additional run-time service, monitoring, located at one of
the KER components, gathers all information about components connected to
the system, active processes, and so forth. By subscribing itself as consumer of
all types of system state messages, the monitoring component is seamlessly kept
up-to-date without requiring any interception mechanisms on the invocation of
services. By using appropriate filter predicates associated with the subscription,
the granularity of monitoring can be tailored to the individual needs of processes
or users. When, for instance, the state of particular process P1 has to be mon-
itored, only events corresponding to the enactment of this process have to be
gathered, i.e., subscription is restricted to P1.? .

In order to graphically depict the state of processes in a user-friendly way,
PMPS exploits IvyFrame, the same tool that is already used for process mod-
eling purposes. Hence, there is a unique interface towards the users of the
PMPS system.

4.6 Application of Pub/Sub Techniques: Example Revisited

Coming back to our initial example, the supply chain management of United
Cars, a message low on parts is published after the stock management system
detects the need of screws. This message contains information about the exact
type of the parts needed: (screws, SG-H 37 ZC∗).

After the message is published, the pub/sub directory process description
service checks whether subscriptions to this message exist. In this case, it is
detected that the message corresponds to an order parts process —according to
the process description stored in the repository— which has to be executed by
copying information from the low on parts message to the context of the new
process. In order to execute the first activity, it sends a message with the topic
do negotiation.start to the system. The system routes this message to the APPS
component offering this service and having subscribed for this particular topic
before. In this case, subscriptions consist of suppliers announcing the availability
of screws in their catalog. In order to process the initial message published by UC
(which corresponds to a call for bids), each subscribed supplier is contacted. The
implementation of the do negotiation service uses the pub/sub infrastructure to
publish a get offers to reach all suppliers currently connected to the system. The
services executed at the supplier sites generate bids for the number and type of

12 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

screws requested by UC. In addition to the individual bids, they send back the
service name and execution parameters specification (which would be required
when the bid is chosen for the execution of the ordering service). According to
this information, a decision can be made about which dealer will be selected.

After the bidding step is completed, the do negotiation service terminates
which results in a do negotiation.terminated message. First, this message is
mapped to the start message of the next step with respect to the control flow
(place order.start). Second, this message is also consumed by additional KER
components, for instance for monitoring purposes.

The ”place order service” compiles the information for the order and calls
the order service at the dealers place. After the execution of this purchase order,
the next step in the process is an activity that waits for the message indicating
that the parts are shipped and inserted into the stock. In case that this does
not take place within a given time–frame, a timeout occurs and an alternative
branch of the process is executed so as to perform additional activities like the
sending of reminder or the cancellation of the order and the placement of an
order using a different supplier. As a last activity, the payment will take place.

Using transactional processes, it is guaranteed that all possible failures of
services are handled correctly and the system always terminates in a consistent
state. In this case, whenever the screw ordering process is terminated, the stock
is refilled with SG-H 37 ZC∗ screws, either stemming from the initially contacted
supplier or from the supplier chosen alternatively in case the initial one could
not proceed its order.

5 Related Work

There are many different approaches to realize dynamic process management
systems. In general, there are two possibilities to handle dynamic changes during
process execution. First, this can be achieved by changing the process definition
at run–time. This requires a migration of running instances to the new schema.
ADEPTFLEX [16] and rule–based approaches as they can be found, for instance,
in HematoWork [11], handle this migration while preserving consistency of the
process instances.

A second method to deal with dynamic aspects is to define a static process
definition, but assign services at run–time and therefore achieve dynamic process
execution. CrossFlow [7] and eFlow [4] focus on negotiation and service discov-
ery. CrossFlow [7] uses an electronic market to support the dynamic assignment
of services by advertising and searching for compatible business partners. Other
approaches like ADEPT [1] realize a similar effect by dynamically assigning pro-
cess managers. The eFlow [5,4] approach handles changes on process programs
as well as on process instances.

The PMPS approach uses a static process program and dynamically resolves
available APPS servers to decide where to execute activities, while focusing on
execution guarantees, using a transparent communication layer to describe and
to invoke services by pub/sub.

Reliable Transactional Business Processes by Pub/Sub Techniques 13

Commercially available products like IBM’s MQSeries Workflows [10] are us-
ing persistent queues in order to call activities on remote systems. The MQSeries
family also includes publish/subscribe functionality but with a slightly different
focus than PMPS , namely to loosely couple applications rather than controlling
the execution of processes.

All previously discussed approaches rely on a central process coordinator,
while PMPS decouples this functionality in order to distribute process naviga-
tion as well as other run–time services.

6 Conclusion

Transactional process management can be used to integrate existing e–services
seamlessly into new business processes by plugging existing components together.

This paper has shown how to realize a distributed implementation of a process
management system by dividing the functionality into a bunch of decoupled
services. Focused on process navigation, failure handling, load balancing, and
monitoring, we have described how to map process management to the pub/sub
communication primitives.

Our modular framework, supporting transactional process coordination as
well as dynamically adapting the execution of processes, can deal with the dif-
ferent particular problems of e-commerce scenarios. Steps of a process program
are not hard–wired to application servers. By this, processes can even be ex-
ecuted in a highly dynamic environment. The PMPS system determines the
server of a certain service at run–time, so that availability as well as load bal-
ancing is taken into account. Yet, the deferment of process execution as a result
of unavailable or overloaded components can be avoided.

Using the ideas of transactional processes, the consistent termination of ev-
ery business process is guaranteed, such that key transactional properties are
fulfilled.

As future work, a concurrency control service will be integrated into the
system by using a second indirection in the control flow. The goal is that ex-
ploiting a locking protocol for processes, e.g., [17] at process coordinator level,
allows for the correct parallelization of concurrent processes can be guaranteed,
by seamlessly intercepting service calls within the pub/sub infrastructure.

References

1. Th. Bauer and P. Dadam. Efficient Distributed Workflow Management Based on
Variable Server Assignments. In Proceedings 12th Conference on Advanced Infor-
mation Systems Engineering, pages 94–109, Stockholm, Sweden, S., June 2000.

2. P. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan
Kaufmann Publishers, 1997.

3. J. Camp, M. Sirbu, and D. Tygar. Token and Notational Money in Electronic
Commerce. In Proceedings of the 1st USENIX Workshop on Electronic Commerce,
pages 1–12, July 1995.

14 Christoph Schuler, Heiko Schuldt, and Hans–Jörg Schek

4. F. Casati, U. Dayal, and M. Shan. E–Business Applications for Supply Chain
Automation: Challenges. In Proceedings of the 17th International Conference on
Data Engineering, Heidelberg, Germany, April 2001.

5. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and Dy-
namic Service Composition in eFlow. In Proceedings 12th Conference on Advanced
Information Systems Engineering, Stockholm, Sweden, S., June 2000.

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, 1993.

7. P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. CrossFlow: Cross–Organizational
Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises.
IEEE Data Engineering Bulletin, 24:52–57, 2001.

8. IvyTeam, Zug, Switzerland. http://www.ivyteam.com.
9. S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A Transaction Model

for Multidatabase Systems. In Proceedings of the 12th International Conference
on Distributed Computing Systems (ICDCS’92), pages 56–63, Yokohama, Japan,
June 1992. IEEE Computer Society Press.

10. MQSeries Publish/Subscribe User’s Guide. IBM Red Book, No. GC34-5269-05,
2000. IBM, International Business Machines Corporation.

11. R. Müller and E. Rahm. Rule-Based Dynamic Modification of Workflows in
a Medical Domain. In Proceedings of Datenbanksysteme in Büro, Technik und
Wissenschaft (BTW’99), Informatik Aktuell, pages 429–448, Freiburg, Germany,
March 1999. Springer Verlag.

12. P. Muth, J. Weissenfels, and G. Weikum. What Workflow Technology can do
for Electronic Commerce. In Proceedings of the EURO-MED NET Conference,
Nicosia, Cyprus, March 1998.

13. OMG. Object Manegement Group. http://www.omg.org.
14. R. Orfali, D. Harkey, and J. Edwards. Client/Server Survival Guide. John Wiley

& Sons, 3rd edition, 1999.
15. A. Popovici, H. Schuldt, and H.-J. Schek. Generation and Verification of Het-

erogeneous Purchase Processes. In Proceedings of the International Workshop on
Technologies for E–Services (TES’00), Cairo, Egypt, September 2000.

16. M. Reichert and P. Dadam. ADEPT flex – Supporting Dynamic Changes of
Workflows Without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

17. H. Schuldt. Process Locking: A Protocol based on Ordered Shared Locks for the
Execution of Transactional Processes. In Proceedings of the 20th ACM Symposium
on Principles of Database Systems (PODS’01), Santa Barbara, California, USA,
May 2001. ACM Press.

18. H. Schuldt, G. Alonso, and H.-J. Schek. Concurrency Control and Recovery in
Transactional Process Management. In Proceedings of the 18th ACM Symposium
on Principles of Database Systems (PODS’99), pages 316–326, Philadelphia, Penn-
sylvania, USA, May/June 1999. ACM Press.

19. TIB/Rendezvous. White Paper, 1999. TIBCO Software Inc.
20. Roger Weber and Hans-J. Schek. A distributed image-database architecture for

efficient insertion and retrieval. In Fifth International Workshop on Multimedia
Information Systems (MIS’99), Indian Wells, Palm Springs Desert, California, Oc-
tober 21–23 1999.

21. A. Zhang, M. Nodine, B. Bhargava, and O. Bukhres. Ensuring Relaxed Atomicity
for Flexible Transactions in Multidatabase Systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’94), pages
67–78, Minneapolis, Minnesota, USA, May 1994. ACM Press.

	 Supporting Reliable Transactional Business Processes by Publish/Subscribe Techniques

