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(ETH) Zürich, Department of Computer Science, ETH Zentrum, CH-8092 Zürich, Switzerland,
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1. INTRODUCTION

Processes are well defined sequences of computational steps executed in a coordi-
nated manner. Business processes are an example. A business process represents
the different steps within one organization or among several organizations required
to complete a given task, e.g., open a bank account or providing an electronic ser-
vice. One important advantage of using processes is that they make the application
logic of an information system explicit. Traditionally, this application logic is coded
in C or C++ and is, therefore, difficult to evolve, understand, and maintain. By
using processes, information systems have a high level representation of their inter-
nal logic, thereby greatly facilitating the evolution and maintenance of this logic.
As processes become more widely used, there is a clear need to address the prob-
lem of interprocess interaction. In particular, concurrency control and recovery are
not well understood when transactions are grouped into entities with higher level
semantics [Weihl 1988; Lynch et al. 1994; Vingralek et al. 1998; Schek et al. 2000]
such as processes [Alonso 1997].

Regarding concurrency control, the flow of control of a process is more complex
than in a flat transaction. A process may, e.g., partially rollback its execution or
may follow one of several alternatives. All these different possibilities need to be
taken into consideration when deciding how to interleave processes. Also, because
these are very long executions compared with traditional transactions, blocking
between processes is not acceptable. The question is thus how to allow as much
interaction and parallelism as possible while still guaranteeing correctness.

Similarly, in terms of recovery, a process’ activities are different from operations
within a transaction. Each step has its own termination semantics and there are
dependencies among the different steps. Since these steps are executed over het-
erogeneous, autonomous systems, the transactional properties of these underlying
systems must also be considered.

In this paper, we present a unified model for concurrency control and recovery in
transactional processes that tackles all these problems. We also show how the model
has been implemented in a prototype. The challenge is to design correctness criteria
that account for both concurrency control and recovery, can cope with the added
structure found in processes, and reflect the layered structure of the system. The
approach followed in this paper extends previous work in the area of concurrency
control and recovery in transactional process management [Schuldt et al. 1999] and
it is based on a reformulation of the unified theory of concurrency control and
recovery [Schek et al. 1993; Alonso et al. 1994; Vingralek et al. 1998].

With this, the paper makes three main contributions. First, we clarify the prob-
lem of process structure. Second, starting with the correctness of single processes
based on extensions of the flexible transaction model [Elmagarmid et al. 1990;
Mehrotra et al. 1992; Zhang et al. 1994; Zhang et al. 2001], we provide correctness
criteria for the concurrent execution of processes, taking into account the interac-
tion between hierarchical schedulers [Alonso et al. 1997; Alonso et al. 1999a; 1999b].
Third, we describe a working prototype that we have implemented and which is
being used in electronic commerce, workflow management, and specialized coor-
dination tools [Alonso et al. 1997; Alonso et al. 1999; Schuldt et al. 1999]. This
prototype and its application illustrates the usefulness of the process abstraction
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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and the applicability of the theory developed in this paper.
The paper is structured as follows: Section 2 motivates our approach and dis-

cusses sample transactional processes. Section 3 introduces the system model, the
model of transaction programs, and the process model. A detailed discussion on
how correctness of multi-process executions can be characterized is provided in
Section 4. In Section 5, a dynamic scheduling protocol for the concurrent and
fault-tolerant execution of transactional processes is presented. Details of the pro-
totype system we have implemented are given in Section 6. Section 7 discusses
related work. Section 8 concludes the paper.

2. MOTIVATION

To illustrate and motivate the notion of process and its properties, we present here
two examples. First, we briefly discuss some of the characteristics of processes. A
process is an execution of a process program. Its steps, called activities, typically
have transactional properties. A process may include one or more points of no-
return. After such an activity is executed, rolling back the process is impossible;
it must proceed to the end. If some activity after a no-return point fails, it must
be retried. Or, a different path that guarantees completion must be selected. This
is in sharp contrast to classical transactions where the only no-return point is
the commit operation at the end, and it is assumed that all non-compensatable
activities are deferred to commit time. In classical transactions, a transaction
scheduler’s knowledge about the state of execution of a transaction program is
encapsulated in the begin transaction and end transaction messages. For processes,
because of the existence of no-return points anywhere in the execution, a process
scheduler needs to know more about the state of execution.

The first example shows how process programs define concrete process executions.
To this end, we use the payment interactions found in business-to-customer (B2C)
electronic commerce applications.

Example 2.1 Payment Processes in B2C–Electronic Commerce.
The goal here is to allow on-line purchasing, of possibly several items, in a single
atomic transaction (distributed purchase atomicity [Schuldt et al. 2000]). It is as-
sumed that the items are digital goods, delivered on-line. One issue is to tie the
delivery of the items to the payment — if the payment fails, the customer should
not be able to use the items, and if the items have not been delivered, the payment
will not be performed. This can be done through a trusted third party, a payment
coordinator, which runs appropriate payment process programs. The structure of
such a process program for payments is shown in Figure 1. A crucial aspect is the
use of cryptographic techniques to decouple the transfer of encrypted items from the
transfer of the appropriate cryptographic keys [Camp et al. 1996; Tygar 1996; 1998].
The delivery of the cryptographic keys is performed by the trusted third party, and
is coupled by this party with procedures for ensuring the payment. Note that the
encrypted goods have been delivered to the customer before the start of the process,
but are not usable until the corresponding keys are transferred correctly. 2

In Figure 1, the individual activities of the process program are depicted as circles,
the flow of control between activities as arcs. Note that activities are transactional.
For example, after the first step, the customer is committed to the payment. The

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.



66 · H. Schuldt et al.

Information (@Bank)
Check Validity of Payment

Receive Payment Information

Check Timeout

Notify
Merchants

Receive Key
(from Merchants)

to Customer

(@Bank)

Deliver Keys

Money Transfer

...
...

Abort

Notify Customer

Commit

...

to Merchants
Confirmation (Handle Charges)

Notify Bank

Fig. 1. Process Program for Payment Interactions in Electronic Commerce

business transaction may still fail to go through if, for instance, the bank refuses
to validate and guarantee the payment. Within the process program, two points of
no-return exist, namely “check timeout” and “key delivery”. First, after all keys
have been received and the timeout check has been successful, execution has to ter-
minate (commit or abort). Check timeout essentially writes a legally binding log
entry at the payment coordinator’s site recording the receipt of all cryptographic
keys. After this log record is generated, the process cannot be simply rolled back
by discarding the received information. Second, after the keys have been delivered
to the customer in the commit branch, the correct money transfer must take place.
This is guaranteed by the bank since in a previous step (“check payment infor-
mation”), the money (credit card number or e-cash token) has been identified as
correct and a lock has been placed on it. If any of the activities after the second
point of no-return, e.g., “notify merchant” fails, it will be retried until it succeeds.
Note, however, that the failure of the second no-return activity, i.e., due to the
unavailability of the customer preventing correct key delivery, must not lead to
a complete rollback of the process (it already follows another no-return activity).
Rather, the alternative (abort) branch is taken. The effects of the activities of the
abort branch are similar to an abort of the process prior to the first no-return activ-
ity. However, their semantics is slightly different since the business transaction has
already been marked as completed by the previously generated log record. In some
cases, the abort branch may even consider a small service fee to be charged from
the customer. The shaded boxes represent alternatives where an order indicates a
preference over them (here, the commit branch is preferred over the abort branch).

The previous example presented a process in isolation and illustrated the notion
of a no-return activity and of a retriable activity. The next example, taken from
Computer Integrated Manufacturing, outlines the problems that might occur when
process programs are executed in parallel. It shows that the possibility of aborts in
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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Fig. 2. Concurrent Processes in CIM Applications

the execution of one process may impose restrictions on the execution of another
concurrent process. In particular, the second process may be prevented from exe-
cuting one of its no-return points, until the first process has successfully executed
its no-return activity.

Example 2.2 Computer Integrated Manufacturing (CIM).
The objective here is to bring goods to the marketplace as soon as possible. To
this end, the design and production should run as parallel as possible with the risk
that production must be stopped or modified if tests in the design phase fail. The
two process programs in Figure 2 describe the customized design and production
of certain goods [Schuldt et al. 1998]. Due to the customization, the design of the
product and its manufacture are strongly tied. The link between both processes is
the bill of materials (BOM). The BOM is generated within the design process and
provides the input required by the production process (via services accessing shared
resources in the underlying applications). Thus, the BOM creates a dependency
between both processes. 2

This example shows the tree structure of process programs. This structure guar-
antees a more general notion of atomicity than traditional transactions. In the
case of the design process, for instance, a failure detected during the test activity
undoes only the PDM entry and alternatively documents the CAD drawing so as to
facilitate later reuse. It does not discard the outcomes of the complex CAD activity
as would be the case with the traditional all-or-nothing semantics of atomicity.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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An additional prerequisite is to guarantee consistent interaction between pro-
cesses. Consider the parallel execution of the design and production process. This
parallelization is important in practice. As can be seen in figure 2, only the two ac-
tivities within the PDM system conflict. For concurrency control purposes, to order
these two activities would be sufficient. However, when recovery has to be consid-
ered, further dependencies exist. As no inverse for the production activity exists,
it must not be executed before the test is terminated successfully. If the test fails,
the PDM entry is compensated within the design process and the BOM read by the
production process is invalidated. Therefore, all activities of the production process
would have to be compensated, too, including the “produce” step which is actually
a point of no return of the production process. Yet, if production of parts is already
performed, this would lead to severe inconsistencies as no valid design and BOM
of these parts exists. Hence, in the context of concurrency, compensation might
not be sufficient to guarantee correct executions. Additional dependencies have
to be taken into account. These dependencies arise from the special termination
characteristics of activities, i.e., whether or not an inverse exists. In the traditional
transaction model where each operation has an inverse, these dependencies do not
appear.

3. MODEL

3.1 System Model

We consider an architecture with two layers. The top layer involves the execution
of transactional processes, as specified in process programs. A process program is a
set of partially ordered activities. Each activity, in turn, corresponds to a conven-
tional transaction, or transaction program, executed in a transactional application.
The bottom layer of the system model is formed by the available transactional
applications (see Figure 3).

The concurrent execution of transactional processes is controlled by a transac-
tional process manager (PM), which is responsible for scheduling the execution of
the transaction programs. In here, we are interested in correctness at the level
of the invocation of transaction programs (marked with (∗) in Figure 3). For the
scheduling, the PM exploits information about the commutativity of transaction
programs, termination properties of these programs, and the process structure.
For the underlying applications, we assume a conventional architecture [Bernstein
et al. 1987] where a transaction manager (TMi) executes transactional programs
by submitting operations to a data manager (DMi).

3.2 Transaction Programs Model

Processes are conventionally seen as a collection of activities. In here, a process pro-
gram is a structured collection of transaction programs, or activities. Activities are,
by definition, atomic. Let A∗ be the set of all activities available in the system. To
account for aborts and commits of processes, we augment A∗ to Â := A∗ ∪ {C,A}
where C denotes the commit of a process and A its abort. Each activity is assumed
to provide a return value indicating whether it succeeded or failed. We treat the
transactional service run by an activity as a black box. Hence, the process manager
can only reason about the activity’s outcome on the basis of its return value.
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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Activities differ in terms of their termination guarantees. We consider three cases:
compensatable, retriable, and pivot [Mehrotra et al. 1992; Zhang et al. 1994]. A
compensatable activity has a compensating activity that semantically undoes the
effects of the original activity. More formally,

Definition 3.1 Effect-free Activities.
Let σ = 〈ai aj . . . an〉 be a sequence of activities from A∗. The sequence σ is effect-
free if, for all possible activity sequences α and ω from A∗, the return values of all
activities of α and ω in the concatenated activity sequence 〈α σ ω〉 are the same as
in the activity sequence 〈α ω〉. 2

A special case of effect-free activities is the sequence σ =
〈
ai a−1

i

〉
consisting of

a compensatable activity ai and its compensating activity a−1
i . More formally,

Definition 3.2 Compensatability and Compensating Activity.
An activity ai ∈ A∗ is compensatable if there is an activity a−1

i ∈ A∗ where the
activity sequence σ =

〈
ai a−1

i

〉
is effect-free. Activity a−1

i is called the compensating
activity of ai. 2

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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If an activity is not compensatable, it is called pivot. Obviously, once a pivot has
executed successfully, the process must proceed. Rolling back by compensation is
not an option any more. Activities whose executions are guaranteed to successfully
terminate after a finite number of invocations are called retriable.

Definition 3.3 Retriable Activity.
An activity ai ∈ A∗ is retriable if each sequence α of activities from A∗ can be
expanded to 〈 α ai 〉 by invoking ai a finite number of times such that the last
invocation terminates committing while all the previous ones return with abort. 2

Retriability must be guaranteed by the semantics of the transaction associated
with the activity. Retriable activities can be implemented, for instance, by us-
ing escrow-like mechanisms [O’Neil 1986]. Then, pairs of activities have to exist
where successful execution of the first guarantees that the second is retriable, i.e.,
that its subsequent execution (or repeated execution in case of failures) is guar-
anteed to eventually succeed. Such escrow-like semantics can be found, e.g., in
the money transfer activity of the payment process (Example 2.1). In case the
initial check of the payment information is positive, the bank guarantees that the
money will be eventually credited, if requested. This is usually done by marking
an electronic cash token as “being in use” or by reserving a certain amount on the
credit card account. Hence, the actual guaranteed (retriable) money transfer is
shifted to the end of the process.

Note that in contrast to the flex transaction model [Mehrotra et al. 1992; Zhang
et al. 1994], retriability and availability of compensation are orthogonal properties.
In our model, an activity can have both, one of them, or neither.

Note further that the semantics of compensation does not require each compen-
sating activity to be itself compensatable. However, we assume each compensating
activity to be retriable and, therefore, guaranteed to succeed. In what follows, we
indicate the termination property of an activity ai by a superscript, i.e., ac

i for a
compensatable, ap

i for a pivot, and ar
i for a retriable activity, respectively.

3.3 Ordering Constraints

A process program executes activities according to the results of past activities.
Thus, a process program can be viewed as a tree whose nodes are activities and
whose edges correspond to order constraints between these activities. A path in
the tree reflects the effects of a possible execution.

We generalize this view as follows. If a program allows for concurrent execution
of activities, we group a partially ordered set of activities as a single (multi-activity)
node of the tree, rather than as distinct nodes. Nodes, whether singleton or multi-
activity, are totally ordered with respect to preceding and subsequent nodes of the
tree — if node n1 precedes n2, then all activities of n1 must terminate before any
activity of n2 starts. The temporal order on activities, defined as the union of the
partial orders within the nodes, and the order induced on them by the ordering of
the nodes, is called the strong order, �. It has the semantics of a handshake.

A further generalization is possible if we assume that a process program may
allow some activities, say a and b, to be executed concurrently, but request that the
execution be equivalent to one in which a precedes b (weak order, <) [Alonso et al.
1997]. Ensuring such constraints is a service provided by the underlying systems,
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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and can be accomplished by, e.g., using commit-order serializability [Beeri et al.
1989]. Recalling that a multi-activity node is a partially ordered set of activities,
we represent such requests by associating a weak order request and a partial strong
order with each multi-activity node. Thus, if activities are strongly ordered in a
multi-activity node, they will be executed in this order, since the process program
will invoke the second only when the first returns. If they are weakly ordered, the
necessary ordering will be enforced by the underlying system.

3.4 Process Structure

The first non-compensatable activity on a path from the root in the tree is a (pri-
mary) pivot of the process. It marks a no-return point in the process: if it commits,
the process cannot rollback any more; it must be able to complete. Pivots are al-
ways represented as singleton nodes, rather than as members of a multi-activity
node. This captures the fact that no other activity of a process may be executed
in parallel to a pivot activity. To be able to complete after a pivot commits, there
must be at least one tree, the assured termination tree, starting from the pivot,
consisting only of retriable activities.

After successfully executing a pivot, the process program may try different al-
ternatives, and only if they fail, execute the one whose termination is assured.
Generally, a pivot may have an ordered set of children, each a subprocess program,
such that the last one has an assured termination path, and all previous ones have
(recursively) the properties of a process program. In particular, each of these may
have its own pivots, assured termination path, and so on.

Note that the children of a regular node are not ordered. The program selects
one of them, according to results of previous activities1.

These ideas can be formalized in the following definition.

Definition 3.4 Process Program.
A process program, PP , is a tuple (N,E,�, <, P iv,�), where

(1) N is a set of nodes. Each node n ∈ N consists of a set An ⊆ A∗ of activities.
If card( An) = 1, a node is called singleton node, otherwise, n is called multi-
activity node. Associated with each multi-activity node n ∈ N are two different
orders on the corresponding activities: a partial strong order, �n, and a partial
weak order, <n. Each non-compensatable activity is included in a singleton
node.

(2) E is a set of directed edges which, together with the set of nodes N , forms
a directed tree. Each edge e = (n1, n2) ∈ E corresponds to a strong order
constraint.

(3) The (partial) strong order, �, is the union of the order induced on activities
by the edges and of the partial orders, �n, n ∈ N , within multi-activity nodes.

(4) The (partial) weak order, <, is the union of all weak orders, <n, n ∈ N of all
multi-activity nodes.

1A generalization of this model may also allow a partial order on the children of non-pivot nodes.
Then, for failure handling purposes, this partial order may specify which alternative has to be

taken in case of failure.
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(5) Piv is a set of distinguished singleton nodes in the tree: each singleton node in
the tree containing an activity that is not compensatable is in Piv. The first
nodes of Piv on a path from the root of the tree are called primary pivots2.

(6) The preference order, �, defines a total order on the children of each member
of Piv. The last child must be the root of an assured termination tree. Each
other child must be a process program. 2

The universe APP ⊆ A∗ of all activities explicitly encompassed in a process
program PP is the union of all activities of all nodes, that is APP :=

⋃
n∈N An.

Example. 2.1 Revisited.
The payment process program depicted in Figure 1 encompasses three multi-activity
nodes and two pivot activities, “check timeout” and “transfer keys”. The abort sub-
tree is the assured termination tree of “check timeout” and the remaining activities
of the commit branch are the guaranteed completion after the second pivot activity
“transfer keys”. The preference order, �, guarantees that the commit subtree is
preferred to the abort subtree. 2

Note that a process program may have no pivot, in which case it has the same
properties as a regular transaction, i.e., it can be aborted any time prior to its
commit.

In [Zhang et al. 1994] it has been shown that well-formed flex structures always
guarantee the existence of one execution path that can be executed correctly while
all other paths will leave no effects. The definition above captures this property. If
a program has not reached a primary pivot, it can abort by executing compensating
activities. After executing the pivot, it must proceed but there is always one al-
ternative guaranteed to succeed. Hence, a process program may encompass several
pivots on a path from the root to a leaf as long as each of these pivots is followed
by an assured termination tree. We refer to process programs conforming to Defi-
nition 3.4 as having guaranteed termination. The guaranteed termination property
of transactional processes is a generalization of the atomicity in traditional ACID
transactions.

In the following, when depicting process programs, we will use solid arcs for strong
order constraints and dashed arcs for weak order constraints. The preference order,
�, will be depicted by dotted arcs.

Example 3.2 Process Program Structure.
Consider process program PP1 depicted in Figure 4. PP1 consists of five nodes:
four of them are singleton nodes (n1 encompassing activity ac

1, n2 with activ-
ity ap

2, n3 with activity ac
3, and n4 with activity ap

4), and the multi-activity node
n5 encompassing activities A5 = {ar

5, ar
6}. The strong order, �, is given by

� = {(ac
1 � ap

2), (ap
2 � ac

3), (ac
3 � ap

4), (a
p
2 � ar

5), (a
p
2 � ar

6)} and the weak order
of PP1 by < = {(ar

5 < ar
6)}. Finally, the alternative executions following the commit

of the primary pivot, ap
2, are given by an order on its children � = {PP11 � PP12}

where PP11 is the subprocess program consisting of nodes n3 and n4 while PP12 is
the subprocess program which contains the activities ar

5 and ar
6 of node n5. Given

2In case of branching prior to the first pivot activity in a process program tree, actually more

than one primary pivots may exist.
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these orders, ar
5 and therefore also ar

6 can only be executed after ac
3 has failed or

after ap
4 has failed and ac

3 has been compensated by a−1
3 . 2

While we included the node identifiers in the process program tree depicted in
Figure 4, in what follows we will only attach to each node its associated activities
and omit the node identifiers.

3.5 Process States

We denote the execution of a single process program a process. We consider partial
executions, in which a process may not have terminated. Although executions are in
general concurrent, the underlying system guarantees serializability at the activity
level. Hence, for simplicity of exposition, let us consider totally ordered processes.
In such serialized executions, we assume that all activities of a node are executed
in an order compatible with the strong and weak orders defined within the node.

A process is assumed to have a unique identifier as subscript and, as a super-
script, the id of the process program whose execution it reflects, e.g., process P k

i

corresponds to PPk. The latter index may be omitted when the associated process
program is not relevant. Activities within P k

i are denoted as ac
i1

, ap
i2

, ..., ar
in

. The
superscript denotes the property of an activity, the subscripts are the process id
and a unique id for the activity. Superscripts are omitted when not relevant or
interesting. The commitment of process Pi is denoted by Ci, its abort by Ai.

A process execution is not a path in the tree. It may contain aborted activities,
compensating activities for the process or for its subprocesses, and it may contain
aborted executions of subprocesses. Yet, the actual effects of a process —all activ-
ities that are executed correctly and that are not compensated— are represented
by a path in the tree. It is convenient to represent the point on a path reached by
a process by the notion of a process state.

The possible states of processes and the associated state changes are as follows
(Figure 5):

(1) Once instantiated, a process is in the state running.
(2) Prior to the commit of a primary pivot pi0 , an abort, of a compensatable activity

or of the primary pivot, changes the state to aborting, where compensating
activities are executed.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.
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Fig. 5. Possible States of a Process Pi

(3) After finally having compensated each activity, a process is in the state aborted.
(4) The commit of a primary pivot pi0 causes a state change from running to

completing. The program may now try several alternatives. The failure, i.e.,
abort of an alternative, causes it to try the next one. Thus, its state specifies
the alternative, say j, in which it is now, and its state within the subprocess of
this alternative.

(5) Finally, if an alternative commits, then the subprocess completes and so does
the process, which then contains the commit activity Ci. The process changes
to the final state committed.

A process that is either running or completing is called active.

Example. 2.1 Revisited.
A payment process defined by the process program depicted in Figure 1 is running as
long as the timeout check has not committed. In case of failure prior to the timeout
check (e.g., failed check of an e-cash token), the process changes to aborting and,
after a notification to the customer has been sent, changes to aborted. Once the
timeout check has succeeded (where essentially a log entry is generated), the process
is completing and has to terminate either along the commit or the abort branch.
Due to the assured termination trees following either pivot activity, the process is
guaranteed to finally change its state to committed. 2

3.6 Process Executions

A process is a collection of activities that may be performed in an execution of
a process program, with the partial order that must hold between them in any
execution (in an actual execution, the order may include this partial order). This
partial order, the required order, is mainly induced by the ordering constraints
in the process program, but it also reflects some natural constraints, such as the
precedence of a regular activity to its compensation, if the latter occurs in the
execution. Note that a process contains a subset of the activities explicitly specified
in the associated process program. Since each activity is required to be atomic, the
repeated invocation of retriable activities does not explicitly appear in the notion of
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a process. While aborted instances do not leave any effects, only the last invocation
of a retriable activity, the one that is terminated correctly, is present. In addition
to the regular activities, a process may contain compensating activities for some of
the regular ones. More formally:

Definition 3.5 Process.
A process, P k

i , is a tuple (Ai, ≺i) reflecting the execution of a process program
PPk where

(1) Ai ⊆
(
APPk

∪ {a−1
ij

| ac
ij
∈ APPk

} ∪ {Ci, Ai}
)

is a set of activities that
contains a subset of the regular activities of PPk, but may also contain compen-
sating activities for some of them. In addition, Ai may contain one of Ci or Ai.

(2) The required order ≺i ⊆ (Ai ×Ai) is the minimal partial order such that
(a) If ail

, aim ∈ Ai and ail
�k aim in PPk, then ail

≺i aim (preservation of
strong order)

(b) If ail
, aim

∈ Ai and ail
<k aim

in PPk, then ail
≺i aim

(preservation of
weak order)

(c) If a compensating activity a−1
il

occurs in Ai, then ail
≺i a−1

il
and ail

∈ Ai

(d) If, in addition to a−1
il

, also a compensating activity a−1
im

occurs in Ai and
ail

≺i aim
, then a−1

im
≺i a−1

il

(e) Finally, if one of either Ci or Ai is in Ai, then it has to be after all other
activities of Ai with respect to ≺i. 2

The above definitions show that not all activities of a process are explicitly given
by its process program since Ai also includes compensating activities which are
only implicitly present in PPk. If Ai contains one of the termination activities Ci

or Ai, respectively, then Pi is said to be complete.
Similarly, the order constraints explicitly specified in a process program PPk only

consider regular activities. However, according to Definition 3.5, an order between
compensating activities and their regular activities as well as among compensating
activities (given that the corresponding regular activities are also ordered) has to be
imposed in a process. While a regular activity and its compensation have inevitably
to be strongly ordered, we allow two compensating activities to be executed weakly
ordered given that the two corresponding regular activities are also allowed to be
weakly ordered by the process program. Otherwise, when two regular activities
are strongly ordered, also their compensating activities have to be strongly ordered
(in reverse order). All these constraints are present in the required order, ≺i, of a
process Pi.

A process, i.e., the execution of a process program, can be best discussed based
on its possible states.

(1) If a process is running, its execution is a sequence of compensatable activities,
corresponding to a path from the root.

(2) When a process is aborting, its execution consists of a sequence of committed
activities, followed by one aborted activity (that may be the primary pivot, or a
preceding activity), followed by a sequence of compensating activities, in reverse
order.
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(3) The execution of an aborted process consists of a sequence as in the previous
case, where each committed activity has a corresponding compensating activity,
and the final activity is Ai. We refer to such an execution as an abort process
execution of the process.

(4) After a process has changed its state from running to completing, it contains
the activities on the path from the root to the primary pivot, followed by abort
process executions for alternatives 1, . . . , j − 1, and an execution for alternative j
compatible with its state.

(5) When a process is committed and when it has changed its state from complet-
ing to committed, before committing, retriable activities of the assured termination
tree (of the process or of a subprocess) may abort, but then they are retried, so
a process execution may contain a subsequence of m aborted instances of a retri-
able activity, followed by a committed one. When the commit is executed in state
running, Ci is preceded only by compensatable activities.

3.7 Process Termination

We note that as long as the pivot on the selected path has not committed, the
process can always abort (if executed in isolation). When Pi is either running or
aborting, it is said to be backward-recoverable. The sequence of activities to be
executed in one of these states is called its backward recovery path. All activities
of Pi preceding each primary pivot are compensatable. Therefore, if a primary
pivot or one of the preceding activities fails, or if an abort Ai of Pi is requested for
some other reason, backward recovery can be performed by successively applying
compensation activities.

Once a primary pivot has terminated successfully, the process is in the state
completing. Since it has a final alternative consisting of only retriable activities, and
since all previous alternatives are smaller subprocesses with the same properties,
a process in this state is guaranteed to complete. A process, Pi, is said to be
forward-recoverable when it is completing. The sequence of activities leading from
any activity succeeding a primary pivot to the well-defined termination of a process
is the forward recovery path.

The partially ordered set of activities that need to be executed to terminate a
partial process is called the completion of Pi, and denoted by C(Pi). Note that in
the case of Pi being in state running, C(Pi) consists only of compensating activities.
If Pi is in state completing, the structure of C(Pi) is more complex. If the process
is in the assured termination subprocess, then it consists of a path of retriable
activities; this is also the case if another subprocess of Pi is in an assured path. If
the process is now in another subprocess, and the deepest subprocess is completing,
the completion of Pi is determined by the completion of that subprocess. If this
deepest subprocess is aborting, then it consists of its completion (bringing it to the
aborted state), followed by the assured termination path of its parent. Hence C(Pi)
may consist of both compensating activities (for backward recovery of an aborting
subprocess) followed by a path of retriable activities of a parent process.

Example 3.4 Execution of Process Programs.
Consider again process program PP1 depicted in Figure 4. It is a process program
with guaranteed termination. The four possible complete executions of PP1 are
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depicted in Figure 6. In all these executions, activity ap
12

is its primary pivot.
Denote by P 1

1 a partial execution of PP1. Before the successful termination of ap
12

,
P 1

1 is running and in this state, the completion C(P 1
1 ) consists of {a−1

11
}, if ac

11
has

been executed successfully. After successful termination of ap
12

, P 1
1 is completing.

After ac
13

, for instance, has committed and ap
14

failed, the completion of P 1
1 evaluates

to C(P 1
1 ) = {a−1

13
≺1 ar

15
≺1 ar

16
}. 2

3.8 Correct Subsystem Execution

Before discussing scheduling at the process manager (PM) level, we first have to
clarify the requirements imposed on the subsystems. In here, according to the
traditional transaction model, we consider all operations of a transaction program
—except for those that can be executed after the commit decision— to be compen-
satable.

Each subsystem has to produce SR–ACA schedules [Bernstein et al. 1987] —
that is schedules that are both serializable and avoid cascading aborts— when
executing operations belonging to transactions at the data manager (DM) level of
each subsystem (marked with (**) in Figure 3). In addition, each subsystem must

— provide order preserving serializability (OPSR) [Bernstein et al. 1979; Pa-
padimitriou 1979] so that the serialization order in each subsystem matches the
strong order imposed by the process manager.

— allow the process manager to determine the serialization order for any pair
of activities of the same subsystem and to impose this order to the subsystem.
This can be achieved using commit-order serializability [Breitbart et al. 1991; Raz
1992] in all subsystems. This allows the process manager to map the desired se-
rialization order of activities to the commit order of the associated transactions.
Furthermore, commit ordering implies order preserving serializability, thus fulfilling
the compliance of strong (temporal) orders in all subsystems. When commit-order
serializability is provided, the requirement of order preservation as a handshaking
mechanism between schedulers [Beeri et al. 1989] holds.

A general discussion of these requisites and on how they can be implemented in
practice, can be found in [Schuldt et al. 1998; Schuldt et al. 1999; Schuler et al.
1999].

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.



78 · H. Schuldt et al.

Note that the consideration of a two-level system is not an intrinsic requirement
of transactional process management. Rather, it is motivated by the goal of this pa-
per to clarify the contracts between subsystems and a process manager in order to
provide correct process executions. Yet, the model can be extended to address mul-
tiple levels as long as the above mentioned requirements are met and the resources
accessed by different subsystems are pairwise disjoint.

4. CORRECT PROCESS EXECUTION

4.1 Process Schedule

The main prerequisite for multi-process executions is that each process program
itself is inherently correct:

Axiom 4.1 Guaranteed Termination.
All process programs fulfill the guaranteed termination property. 2

Given the correct structure of process programs with guaranteed termination, a
process schedule reflects concurrent processes, that is, the concurrent execution of
process programs. The notion of process schedule S defined over a set of processes
PS includes both regular activities and recovery related, i.e., compensating, activ-
ities as they are considered in processes. Furthermore, a process schedule not only
includes the observed execution order <S between activities, but also the required
order ≺S which is specified for each process by its corresponding process program.
The need for including the required order explicitly in a process schedule stems from
the fact that a process program may not require any order on some activities, i.e.,
they are not related by ≺i, yet they are ordered by <S in some execution. There-
fore, without ≺S , the requested orders of processes could not be reconstructed from
a process schedule. However, in order to apply reduction techniques (Section 4.6)
to process schedules, this information is required.

Definition 4.2 Process Schedule S.
A process schedule S is a quadruple (PS , AS , ≺S , <S) where

(1) PS is a set of (partial) processes Pi = (Ai, ≺i)
(2) AS ⊆ Â with AS = {aij

| (aij
∈ Ai) ∧ (Pi ∈ PS)} is the set of all activities

of all processes of PS
(3) ≺S is a partial order between activities of AS , called the required order, with

≺S ⊆ (AS × AS) which includes the required order for each process of PS ,
that is ≺S =

⋃
Pi∈PS

≺i

(4) <S is a partial order between activities of AS , called execution order, with
<S ⊆ (AS×AS) reflecting the observed order in which activities are executed.
The required order ≺S of S is contained in its observed execution order <S ,
that is ≺S ⊆ <S . 2

This definition of a process schedule reflects the invocation of activities at the
process manager level as marked with (*) in Figure 3. In general, processes do not
need to have terminated in S. Therefore, the above definition includes both partial
and complete processes. Accordingly, if all processes Pi of a process schedule S
have terminated (either by Ci or Ai), then S is said to be complete, otherwise S is
called partial.
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Note that since a process schedule is defined at the level of activities, it also
includes activities of aborted processes. However, since the underlying subsystems
guarantee both serializability and atomicity, activities returning with abort can
be omitted in S. The serializability property of subsystems allows to consider all
activities of S that belong to the same subsystem (that correspond to transactions
in the same subsystem) as totally ordered.

4.2 Commutativity and Equivalence

We consider all processes to be independent. Thus, the only possibility for informa-
tion to flow between concurrent processes is when conflicting activities share some
resources, that is when there is flow of information between the associated trans-
actions of both activities. Hence, a common mechanism to verify the equivalence
between schedules is commutativity. Following [Vingralek et al. 1998], the notion
of commutativity is defined using the return values of activities: we assume each
activity a to provide a return value, which includes a description of a’s outcome
(success or failure, respectively). The return value of a process is a function of the
return values of all its activities.

Definition 4.3 Commutativity.
Two activities aik

, ajl
∈ A∗ commute if for all activity sequences α and ω from A∗

the return values of all activities in the activity sequence 〈α aik
ajl

ω〉 are identical
to the return values of the activity sequence 〈α ajl

aik
ω〉. 2

Two activities are in conflict if they do not commute. Information about the
commutativity behavior of activities is crucial for the process manager. Hence,
a commutativity relation has to be available to it for scheduling purposes. This
commutativity relation specifies, for each pair of activities from A∗, whether or not
they commute, thereby also considering predicates on the parameters associated
which the invocation of both activities. Yet, a process manager is able to determine
pairs of conflicting activities in a concrete context which is indicated by their actual
parameters.

Activities may only conflict if they are executed in the same subsystem. This
observation is based on the kind of layered architecture transactional process man-
agement addresses. As depicted in Figure 3, all subsystems are independent. In
particular, the resources on which subsystems operate are pairwise disjoint. Hence,
since the conflict behavior of each pair of activities coincides with the conflict be-
havior of the corresponding transactions, once the necessary information about
commutativity of transactions in each subsystem is given, this can be used to de-
rive the global commutativity relation at the process manager level, encompassing
all activities of A∗. Furthermore, this observation guarantees that return value
commutativity can actually be applied as each subsystem is supposed to report
the return values of its activities in a possibly individual but per-subsystem unique
format.

In practical applications, a common assumption is that commutativity is perfect:

Definition 4.4 Perfect Commutativity [Vingralek et al. 1998].
A commutativity relation is perfect, if for every two activities ai ∈ A∗ and aj ∈ A∗

the following holds: if ai commutes with aj , then aα
i has to commute with aβ

j for
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all possible combinations of α, β ∈ {−1, 1} or, if ai and aj do not commute, then
aα

i does not commute with aβ
j for all possible combinations of α, β ∈ {−1, 1} with

the exception of the null activity λ as an inverse activity commuting with every
other activity. 2

Perfect commutativity requires inverses to be carefully defined. Consider, for
example, the activities on electronic cash token that can be found in Example 2.1.
Checking a token t ∈ T , c : T 7→ {−1, 0} verifies the validity and, in case of
approval, sets a lock on this particular token and c(t) = 0, or, if the token is not
approved, terminates without lock and c(t) = −1. Obviously, two checks do not
commute. In case the inverse of a check activity would imprecisely be defined by
a release activity r : T 7→ {0} which releases a lock on a token, if any exists, and
otherwise does nothing, then perfect commutativity would not be given. However,
with more carefully defined inverses that reflect the outcome of the regular activity,
this is not the case. More realistically, the inverse c−1(t, x) of a check activity would
be c−1 : T × {−1, 0} 7→ {−1, 0} where x is the return value of the corresponding
regular activity, with the following semantics: c−1(t,−1) = λ (actually, there is
nothing to undo) while c−1(t, 0) = r(t).

With the notion of commutativity, conflict-equivalence is defined as follows:

Definition 4.5 Conflict Equivalence.
Two process schedules Si = (PSi

, ASi
, ≺Si

, <Si
) and Sk = (PSk

, ASk
, ≺Sk

, <Sk
)

are conflict equivalent, if they are defined over the same set of processes (PSi = PSk
)

and if all pairs of conflicting activities appear in the same order in the observed
execution orders <Si

and <Sk
of both process schedules. 2

Since two conflict equivalent process schedules, Si and Sk, are defined over the
same set of processes (PSi

= PSk
), they also contain the same set of activities

(ASi
= ASk

) and the same required orders (≺Si
= ≺Sk

), although their observed
orders may differ.

4.3 Process-Serializability

Following the traditional approach [Bernstein et al. 1987], when discussing concur-
rency control, we disregard recovery operations. Thus, using the notion of conflict
equivalence, a process schedule is process-serializable if its projection on all com-
mitted and active (running and completing) processes in which also all activities of
abort subprocess executions are omitted is conflict equivalent to some serial process
schedule.

Definition 4.6 Committed and Active Projection (CA).
Let S = (PS , AS , ≺S , <S) be a process schedule. The committed and active
projection CA(S) of S is a process schedule which is defined on all processes that
are running, completing, and committed in S. CA(S) contains all activities from
AS belonging to these processes, except for the activities of aborted or aborting
subprocesses of completing or committed processes. Furthermore, CA(S) contains
the required orders for all these processes, projected on the activities of CA(S).
Analogously, the observed order of CA(S), <CA(S), is the projection of <S on its
activities. 2
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Definition 4.7 Process-Serializability (P-SR).
A process schedule S = (PS , AS , ≺S , <S) is process-serializable (P-SR) if its
committed and active projection CA(S) is conflict-equivalent to a serial process
schedule Sser = (PSser , ASser , ≺Sser , <Sser). 2

Note that CA(S) may contain both a smaller set of processes compared to S
(analogously to the traditional consideration of serializability considering the com-
mitted projection of a schedule in which also a smaller set of transactions is present)
and, for these processes, also a possibly smaller set of activities (namely only the
ones of (sub)processes that are neither aborted nor aborting).

Example 4.1 Non-P-SR Execution.
Consider the two processes, P 1

1 and P 2
2 , being executed in parallel. In Figure 7,

the associated process programs PP1 and PP2 and the process schedule S1 reflect-
ing the concurrent execution of P1 and P2 are depicted. In total, three pairs of
activities exist that do not commute: (ac

11
, ac

21
), (ap

12
, ar

24
), and (ar

15
, ar

25
). At time

t1, S1
t1 = (PS1

t1
,AS1

t1
,≺S1

t1
, <S1

t1
) with the set of processes PS1

t1
= {P1, P2}, the

set of activities AS1
t1

= {ac
11

, ap
12

, ac
13

, ac
21

, ac
22

, ap
23

, ar
24
}, the required order ≺S1

t1
=

{(ac
11
≺S1

t1
ap
12
≺S1

t1
ac
13

), (ac
21
≺S1

t1
ac
22
≺S1

t1
ap
23
≺S1

t1
ar
24

)} and the observed exe-
cution order <S1

t1
= {(ac

11
<S1

t1
ac
21

<S1
t1

ac
22

<S1
t1

ap
23

<S1
t1

ar
24

<S1
t1

ap
12

<S1
t1

ac
13

)}.
However, S1

t1 is not P-SR since no equivalent serial execution exists according
to Definition 4.7 due to a conflict cycle between P1 and P2 caused by the orders
(ac

11
<S1

t1
ac
21

) and (ar
24

<S1
t1

ap
12

). Since none of these activities corresponds to an
aborted (sub-)process, they must be present in an equivalent serial process sched-
ule which, however, would, in any case have a different ordering of one pair of
conflicting activities. 2

Process-serializability is not prefix-closed as the following example shows.

Example 4.2 P-SR is not Prefix-Closed.
Consider the concurrent execution of P 1

1 and P 3
3 reflected in process schedule S2 as

depicted in Figure 8. Activities ac
11

and ac
31

as well as ac
32

and ac
13

do not commute
(denoted by dashed arcs). At time t1, S2

t1 is not process-serializable: both P1 and
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t2

P3 are active (P3 running and P1 completing and the subprocess including ac
13

is
neither aborting nor aborted) but the execution of both processes is not equivalent to
any serial execution (due to cyclic conflicts). Assume now that either activity ap

14

fails or that the process manager decides to abort the subprocess of P1 containing ac
13

and ap
14

in order to break the conflict cycle. Both cases lead to the compensation of
ac
13

and the execution of the assured termination path of P1. By changing the state
of P1’s subprocess from running to aborting, the conflict in which ac

13
is involved

will be neglected. Yet, the compensating activity a−1
13

undoes the effects of its regular
activity. At time t2 after a−1

13
has committed, process schedule S2

t2 is P-SR (CA(S2
t2)

is conflict equivalent to a serial execution of P1 –without its aborted subprocess–
followed by P3). 2

In traditional transactions where only total backward recovery is allowed, this
phenomenon cannot occur (at least when commutativity between activities is per-
fect) since whenever a cycle in a conflict graph exists, there is no way for all in-
volved transactions to finally commit successfully. In process executions where
partial backward recovery combined with alternative executions is possible, this
may however be the case.

Let PSG(S) be a process serialization graph of a process schedule S which con-
tains a node for each running, completing, and committed process and a directed
edge from Pi to Pj whenever a pair of conflicting activities ai ∈ Pi and aj ∈ Pj

exists in S with the observed order ai < aj . Whenever a subprocess is aborted, all
edges introduced by activities of this subprocess (that is, all conflicts in which an
activity of an aborted subprocess is involved) are removed from PSG(S).

Theorem 4.8 Process Serialization Graph and P-SR.
A process schedule S is P-SR if and only if its process serialization graph PSG(S)
is acyclic. 2

Proof Theorem 4.8.

If: . Let PSG(S) be an acyclic process serialization graph of process schedule S
and let S ′ be a process schedule defined over the same set of processes (PS = PS′),
containing the same set of activities as S’s committed and active projection CA(S),
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and encompassing a total order on all processes that is compatible with the orders
encompassed in PSG(S). Process schedule S ′ can be derived from S by applying
a topological sort. Since all pairs of conflicting activities appear in the same order
in CA(S) and S ′ (thus, they are conflict equivalent) and since S ′ is a serial process
schedule, S is P-SR.

Only If:. Let S be a P-SR process schedule, that is, a serial process schedule S ′
exists which is conflict equivalent to CA(S). Assume that the process serialization
graph PSG(S) of S contains a cycle Pi → Pi+1 → . . . → Pi+n → Pi. Since
PSG(S) does only contain edges where activities are involved that also appear in
the committed and active projection of S, all these conflicts have to be present in
S ′. In the serial process schedule S, therefore Pi has to precede Pi+1 and Pi+1, in
turn, has also to precede Pi which obviously leads to a contradiction of the initial
assumption that S is a P-SR process.

2

For convenience, process-serializability can be tested using the standard serial-
ization graph SG(S) that is defined as the process serialization graph (each active
and committed process corresponds to a node, each conflict leads to an edge in
SG(S)). In contrast to the process serialization graph, however, SG(S) addition-
ally contains all edges induced by activities of aborted or aborting subprocesses of
active or committed processes. Therefore, the process serialization graph PSG(S)
of a process schedule S can be considered as the serialization graph, restricted to
the committed and active projection CA(S) of S, that is, PSG(S) = SG(CA(S)).

Theorem 4.9 Serialization Graph and P-SR.
A process schedule S is P-SR if its serialization graph SG(S) is acyclic. 2

Proof Theorem 4.9.
Let SG(S) be an acyclic serialization graph of process schedule S. The committed
and active projection, CA(S), of S is obtained from S by dropping all activities of
aborted and aborting subprocesses. Therefore, the serialization graph of CA(S) is
still acyclic. Since SG(CA(S)) = PSG(S), the process serialization graph of S is
acyclic which, according to Theorem 4.8, implies that S is P-SR. 2

Note that —in contrast to the traditional transaction model— the converse of
Theorem 4.9 does not hold. A process schedule may be P-SR albeit its serialization
graph contains a cycle. This is the case since the serialization graph considers all
active and committed processes and does not omit conflicts in which activities of
aborted or aborting subprocesses are involved.

Although the acyclicity of SG(S) is a stronger criterion than P-SR and allows
a subset of all P-SR process schedules only (called SG-P-SR, encompassing all
process schedules whose serialization graphs are acyclic), it can be used for dynamic
scheduling since the abort of subprocesses does not require the examination of all
edges of the graph and the deletion of those in which activities of these subprocesses
are involved (which would, however, be the case for PSG). In contrast to PSG, it
is not possible to successfully terminate a set of processes (that is, to commit each
of these processes) which induce a cycle in SG such that this cycle disappears after
completion of these processes. Therefore, a process manager has to guarantee that
the serialization graph is at any point in time free of cycles. This leads to a further
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restriction of SG-P-SR, namely a prefix-closed variant, called P-SG-P-SR. Note
that SG-P-SR itself is not prefix-closed3: assume that a cycle in the serialization
graph SG(S ′) of some process schedule S ′ exists. Then, the abort of at least one
process involved in this cycle makes the associated node disappear and may lead
to a process schedule S with prefix S ′ that meets SG-P-SR.

Example 4.2 Revisited.
As we have already seen, the process serialization graph of process schedule S2 con-
tains, at time t1, the cycle P1 � P3, hence S2

t1 is not P-SR. Therefore, this cycle
also exists in SG(S2

t1) such that S2
t1 is also not SG-P-SR. However, the failure of

ap
14

leads to the abort of the subprocess including ac
13

and ap
14

which, in turn, leads to
the deletion of the edge induced by ac

32
<S2 ac

13
and removes the cycle in PSG(S2

t2).
Note that the abort of P1’s subprocess does not make P1 to completely disappear
in PSG(S2

t2) since ap
12

, the primary pivot, has already successfully committed such
that P1 is completing. While the abort of ap

14
has made the edge corresponding to

the conflict pair ac
32

<S2 ac
13

disappear in PSG(S2
t2), it is still present in SG(S2

t2)
such that S2

t2 , even though it is P-SR, does not meet the SG-P-SR criterion. As-
sume further that process P3 is aborted for some reason after the execution of a−1

13
.

Therefore, at time t3, P3 is aborting and activity a−1
32

has been executed for recovery
purposes. Thus, P3 has disappeared from the committed and active projection of
S2

t3 and the corresponding node is removed from both PSG and SG. Hence, SG(S2
t3)

contains only one process, namely P1, such that SG-P-SR trivially holds for S2
t3 .

Since this is not the case for its prefix S2
t2 , S

2
t3 is not P-SG-P-SR. 2

Example 4.3 Correct P-SR Execution.
Consider again the two process programs PP1 and PP2, now executed concurrently
by processes P1 and P2 in process schedule S3 as depicted in Figure 9. At time

3This is not the case in the traditional transaction model where serializability is based on the

notion of committed projection of a schedule. Whenever a schedule is serializable, so is also each

prefix. The restriction to the committed projection of a schedule is possible in the traditional
model since each active transaction can be aborted which is, however, not the case for active

processes once they have committed a pivot.
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t1, the process schedule S3
t1 is P-SR. Again, all conflicting activities do not belong

to any aborted (sub-)process and must be present in an equivalent serial schedule.
The serial execution of all P1 activities of S3

t1 followed by all P2 activities would be
conflict equivalent to the execution of process schedule S3

t1 . 2

While the required order of each process is given and has to be respected in a
process schedule, the process manager is responsible for correctly ordering conflict-
ing activities. By this, we mean that the process manager (PM) has to guarantee
process-serializability of process schedules (while taking into account all the in-
formation available to it). As already mentioned, the process manager has the
possibility to impose a temporal order between conflicting activities, or it can sub-
mit activities concurrently while at the same time specifying the order in which
the associated transactions have to be serialized in the underlying subsystem. In
both cases, commit-order serializability protocols implemented in the subsystems
guarantee compliance with this order. Note, that when activities do not correspond
to transactions in the traditional sense (as we do assume here) but are implemented
again by process programs, the notion of commit-order serializability needs to be
extended. In this case, for each process in a subsystem, its commit and its pivot
activities have to be treated the same way. Each pair of conflicting activities of
any two subsystem processes then requires the next points of no return of both
processes (be it either a pivot or the process’ commit) to follow the imposed seri-
alization order.

The failure of retriable activities now may lead to a special treatment of other
activities. Suppose two activities ar

ik
and ajl

are executed concurrently within the
same subsystem with a serialization order given by the process manager requiring
ar

ik
to be serialized before ajl

. If the local transaction Tik
corresponding to ar

ik
fails

after some operations of Tik
have already been executed, then, in general, the local

transaction Tjl
(which corresponds to activity ajl

) running in parallel to Tik
(with

respect to the given weak order) has to be aborted. However, as this is not due to a
failure of Tjl

(note that ACA is guaranteed by each subsystem such that the abort
of Tik

does not influence Tjl
), it must not lead to an exception of Pj leading to

an other alternative. Therefore, after Tik
is restarted, Tjl

has also to be restarted
within the subsystem, hence guaranteeing compliance with the serialization order
imposed by the process manager.

Therefore, the PM extends a classical transaction scheduler in three ways:

(1) it exploits information about the properties of all activities (compensatable,
pivot, or retriable) and thus, also about the different states of active processes
(running or completing),

(2) it considers for each process P k
i the alternative execution paths defined within

the process program PPk,
(3) it respects the required order for each process as defined within the corre-

sponding process program and explicitly imposes appropriate weak orders between
conflicting activities.

4.4 Process-Recoverability

Process-Recoverability addresses the possibility to abort a subset of running pro-
cesses correctly, even in the presence of concurrency. However, avoiding cascading
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aborts is too strong at the process level since —in the case of semantical rich activ-
ities where a distinction between read and write access to data is hardly possible—
this would degenerate to strictness or even rigorousness [Breitbart et al. 1991]. Yet,
for each arbitrary set RS of running processes of a process schedule S, a superset
R∗
S , also of running processes, has to exist such that all processes of R∗

S together
with all aborting processes can be aborted correctly without affecting other pro-
cesses. Note that one cannot require that all partial processes can be aborted,
since some of them may have already performed a pivot — an activity representing
a point of no return of the process.

That is, for S there must be a schedule S ′ which is defined over the same set of
processes and in which all processes of R∗

S that are running in S and all aborting
processes of S do not leave any effects. Furthermore, the return values of all other
activities (not belonging to aborted processes in S or processes of R∗

S) are the same
in both process schedules. Since the return values of processes is a function on the
return values of all its activities, the latter criterion guarantees the correspondence
of the return values of all committed processes in both process schedules. The fact
that the return values of all other activities, especially those of completing processes
are left unchanged is important because these processes must be able to commit
successfully. Since the effects of all aborting processes and of all processes of R∗

S
have to be eliminated, correspondence between the final states of S and S ′ is not
required.

In the presence of concurrency, care is needed with situations where the execution
of a sequence of activities of a process Pj is affected by the compensation of an ac-
tivity ai of another process Pi when the subprocess, in which ai has been executed,
is running and is now a candidate for being aborted. For, if Pj is running, then we
can decide to abort it as well. But, if Pj is completing (or has already committed),
this is impossible. Note that once Pj has committed a pivot successfully, then it
cannot be aborted. Therefore, process-recoverability must encompass the restric-
tion that no completing process must be dependent on a running process in the
sense that the abort of a running process does imply also the abort of a completing
process which, according to the state diagram depicted in Figure 5, is not possible.

To this end, we have to use the notion of abort dependency to formally specify the
situations possibly leading to a violation of process-recoverability. In short, there
is an abort dependency between two processes Pi and Pj imposed by activities ac

ik

and ajm with ac
ik

<S ajm when the execution of ajm hinders the compensation of
ac

ik
.

Definition 4.10 Abort Dependency.
An abort dependency between two processes Pi and Pj , imposed by activities
aik

∈ Pi and ajm ∈ Pj , exists in a process schedule S = (PS , AS , ≺S , <S) if
the following properties hold:

(1) aik
precedes ajm

in S, that is aik
<S ajm

(2) aik
is compensatable

(3) ajm is neither preceded in S by a−1
ik

nor by a∗ik
, that is a−1

ik
6<S ajm and a∗ik

6<S
ajm

where a∗ik
is the next point of no return of Pi succeeding aik

(this can either
be some pivot activity ap

iq
with aik

≺S ap
iq

or the commit Ci of Pi).
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(4) In S, an activity ajl
of Pj exists which precedes ajm

(ajl
≺S ajm

), which
conflicts with aik

and which succeeds aik
in S, that is aik

<S ajl

(5) ajm
conflicts with the inverse activity a−1

ik
of aik

. 2

Given the conditions of Definition 4.10, in a situation where the sequence aik
<S

ajl
<S ajm <S a−1

ik
appears in a process schedule S, we cannot bring aik

and
a−1

ik
together such that the latter one correctly undoes the effects of aik

(that is,
that both activities can be cancelled). Note that, if perfect commutativity holds,
then we can take ajl

and ajm to be the same. This is the case, for instance, in a
read-from dependency: If aik

writes some data that ajl
reads, then, a−1

ik
is also a

write and ajl
conflicts with both aik

and a−1
ik

. However, due to the semantically rich
nature of activities, a dependency may exist in other situations as well. Essentially,
abort dependencies are imposed between individual processes —like reads-from
dependencies between transactions— while transaction termination dependencies
(e.g., [Türker et al. 2000]) consider dependencies between subtransactions of a single
global transaction.

In the traditional model where each activity is compensatable, the requirement
that all running transactions must be able to abort is captured by the notion of
recoverability. As we have to deal with two different states of processes determining
the way recovery has to be performed, we have to adapt the notion of recoverability
to the structure of transactional processes. This leads to the notion of process-
recoverability. More formally,

Definition 4.11 Process-Recoverability (P-RC).
A process schedule S = (PS , AS , ≺S , <S) is process-recoverable (P-RC), if for each
pair of activities, ac

ik
and ajm

of S with ac
ik

<S ajm
imposing an abort dependency

between Pi and Pj , the following holds:

(1) If activity ajm
is compensatable (ac

jm
) and when a∗j is in S, then the following

ordering has to exist in S: a∗i <S a∗j where a∗i is the next point of no return
succeeding ac

ik
with respect to Pi’s required order ≺i (this may either be the commit

Ci of Pi or a pivot; when Pi is running, then it will be the primary pivot of Pi,
otherwise the pivot of one of Pi’s subprocesses) and a∗j is the next point of no return
succeeding ac

jm
with respect to ≺j (again, this may be Cj or a pivot of Pj).

(2) If ajm is not compensatable, then the following order has to exist in process
schedule S: a∗i <S ajm

where a∗i is the next point of no return succeeding ac
ik

with respect to ≺i (this may either be the commit Ci of Pi or a pivot; when Pi is
running, then it will be the primary pivot of Pi, otherwise the pivot of one of Pi’s
subprocesses). 2

Note that, analogously to the notion of abort dependency being a generalization
of the read-from dependency, the traditional notion of recoverability is a special
case of Definition 4.11. When no pivot activities exist as in the traditional case,
then, according to 4.11.1, only an order between Ci and Cj with Ci <S Cj has to
be imposed. The semantics of “quasi commit” of pivot activities is also included in
this definition since pivots are treated in the same way as the commit of a process.
Obviously, the notion of process-recoverability is weaker than the ACA requirement
which would require the total absence of abort dependencies in a process schedule.
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Fig. 10. Process Schedule S4 violating the P-RC property

For process-recoverability, we do not explicitly require the total absence of abort
dependencies. This absence would, in the case of perfect commutativity, for instance
prevent to consecutively execute two conflicting compensatable activities ac

i and ac
j

of two running processes Pi and Pj in a process schedule S since either ac
i would

have to be compensated prior to ac
j or a∗i would have to be executed prior to ac

j

(where a∗i is either Ci or a primary pivot of Pi). But, this is too strict (it would,
in fact, correspond to the notion of rigorousness [Breitbart et al. 1991], applied to
transactional processes) since in the case of ac

i <S ac
j , an abort of Pi would just

require to abort Pj as well (which is possible when the requirements of P-RC are
met in S).

In most practical applications, commutativity is perfect. This can be used to
enforce P-RC since abort dependencies correspond to pairs of conflicting activities
aik

and ajl
where the first activity to execute is compensatable. In order to enforce

P-RC, the same serialization graph used for SG-P-SR and P-SG-P-SR, respectively,
can be exploited. In terms of this graph, violations of P-RC may occur because of
two reasons: firstly, by introducing an edge corresponding to an abort dependency
and secondly, by a state change of a process. The process manager allows edges
to be introduced in the serialization graph (due to a conflict aik

<S ajl
) between

two nodes that both correspond to running processes as well as edges from a node
corresponding to a completing process to a running process (the first case is not
critical since it can be resolved by a joint abort, the second case also when the
completing process is in a running subprocess). Edges from running processes to
completing processes are prohibited. Edges between two completing processes may
in some cases be allowed when aik

is itself a pivot or when it is succeeded by a pivot
in S, but in general, this kind of edges has to be dealt with care. Furthermore, the
processes associated with nodes may only change their state from running to com-
pleting or from running to committed when they have no incoming edges originating
from nodes corresponding to running processes (that is, they are not dependent on
running processes). Incoming edges originating from nodes corresponding to com-
pleting processes may be allowed but must also be dealt with care, especially in the
case where the source node is in a running subprocess. Note that these mechanisms
guarantee P-RC although they may rule out certain schedules that are correct with
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respect to P-RC. More details of a protocol dynamically providing P-SG-P-SR and
P-RC are discussed in Section 5.

Example 4.4 Non-P-RC Execution.
Consider process schedule S4 depicted in Figure 10 reflecting the execution of two
processes P 1

1 and P 4
4 and assume further that commutativity is perfect in this ex-

ample. At t1, process P4 is committed while P1 is running. An abort dependency
exists between P1 and P4, imposed by ac

11
and ac

41
. According to Definition 4.11,

P-RC requires the following order in S4: ap
12

<S4 ap
43

and, due to ap
43
≺P4 C4 also

ap
12

<S4 C4 which, however, is violated in S4
t1 . Therefore, in an execution where P1

does not leave any effects (where activity ac
11

does not appear), the return value of
P4 would not be the same as it is in S4

t1 . Thus, S4
t1 is not process-recoverable. 2

Example 4.5 P-RC and Abort Dependencies.
Consider the execution of P1 and P2 at time t2 in process schedule S5 as depicted
in Figure 11. Process P1 is completing and P2 is running. An abort dependency
between P2 and P1 exists by ac

21
<S5 ac

11
. At time t1 when this dependency has been

introduced, it was allowed since both processes have been running. However, by
executing ap

12
, P1 changed to completing making the abort dependency a disallowed

one because the order ap
23

<S5 ap
12

required by P-RC was violated. An abort of P2

at time t2 could no longer be treated correctly by a cascading abort including also
P1. Therefore, process schedule S5

t2 is not process-recoverable. 2

The analysis of process-serializability has shown that although a given pro-
cess schedule S may fulfill the P-SR property, there might exist a prefix S ′ of
S that is not process-serializable. This phenomenon cannot be found in process-
recoverability which is subject of the following lemma:

Lemma 4.12 P-RC & Prefixes.
Let S be a P-RC process schedule. Then, each prefix S ′ of S is also process-

recoverable. 2

Proof Lemma 4.12.
Let S be a P-RC process schedule and let S ′ be a prefix of S that is not P-RC.
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Since S ′ is not P-RC, there must exist at least one abort dependency between a pair
of processes (Pi, Pj) whose constraints on the subsequent points of no return are
not met. Let (aik

, ajm
) be the pair of activities imposing such an abort dependency

in S ′ and let ajp be the next point of no return succeeding ajm (in case ajm is
not compensatable, then ajm = ajp). Therefore, in S ′ the following orders have to
exist: aik

<S′ ajm
<S′ ajp

and a∗ik
6<S′ ajp

where a∗ik
is the next point of no return

succeeding aik
. But this order must also be present in S which will then, in turn,

also not be P-RC. 2

4.5 Process-Reducibility

So far, we have addressed isolation without considering atomicity (P-SR), and the
possibility to abort running processes (P-RC). What is missing is a unified criterion
that jointly addresses both problems and that allows to check whether the abort
of (sub-)processes in the presence of concurrency is possible or not. This includes
the property that no conflicting activity ajm

must be executed between a regular
activity aik

and its compensation a−1
ik

except for the case where the compensation
of ajm

also appears between aik
and a−1

ik
.

To this end, reduction techniques based on the permutation and cancellation
of activities can be applied. Recalling the notion of commutativity, it is obvious
that two consecutive activities of different processes can be permuted in a process
schedule S if they do commute, hence this permutation does neither affect the
final state achieved after S nor the return values of all transactional processes.
Additionally, also the elimination of two consecutive activities does neither influence
the return values nor the final state when they together form an effect-free sequence.
More formally,

Definition 4.13 Reducible Process Schedule (P-RED).
A process schedule S = (PS , AS , ≺S , <S) is reducible (P-RED) if it can be
transformed to a serial process schedule S = (PS , AS , ≺S , <S) by applying the
following two transformation rules finitely many times:

(1) Commutativity Rule: The order aik
<S ajl

of two activities aik
, ajl

∈ AS
can be replaced by ajl

<S aik
if the following conditions hold:

(a) Either aik
and ajl

belong to different processes (i 6= j) and they do com-
mute, or they belong to the same process (i = j) and are not ordered in ≺S ,
that is, the corresponding process program allows an unrestricted parallel
execution of both activities

(b) There is no aqt
∈ AS with aik

<S aqt
<S ajl

(2) Compensation Rule: If two activities aik
, a−1

ik
∈ AS such that aik

<S a−1
ik

and there is no activity aqt ∈ AS with aik
<S aqt <S a−1

ik
, then aik

, a−1
ik

can
be removed from S. 2

Reducibility for process schedules is similar to the reduction applied in the tra-
ditional unified theory of concurrency control and recovery except for one major
difference. Prior to the application of reduction techniques, the unified theory
requires the expansion of a schedule where each running transaction is treated as
aborted. This expansion leads to a complete schedule where each transaction either
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has committed or aborted. Reduction for process schedules does not require expan-
sion (since the notion of process schedule already considers abort related activities
and process-recoverability does not require all active processes to abort).

P-RED is not prefix-closed (see, for instance, process schedule S2 of Example 4.2).
A restriction of P-RED which requires that each prefix of a process schedule is P-
RED leads to the notion of prefix-process-reducibility, P-P-RED.

In order to include aborting (sub-)processes, and in analogy to reduction in the
traditional unified theory of concurrency control and recovery which is only applied
after a given schedule has been expanded, processes have to terminate in order to
ensure that all compensating activities are considered in the reduction phase.

4.6 Correct Termination

In addition to the previous ideas addressing non-complete process schedules, all
completing processes must be able to commit correctly. Therefore, reduction tech-
niques (and thus, the P-RED criterion) have to be applied to the completed process
schedule, C(S), of a process schedule S. This leads to the notion of correct termi-
nation (CT). In the completed process schedule, all aborting processes of S and
all running processes of R∗

S for which an abort is requested are aborted and all
completing processes of S have committed. Correct termination has to guarantee
that it is possible to perform all aborts and all completions correctly, even in the
presence of concurrency.

While guaranteed termination addresses the well-formed structure and inherent
correctness of single processes, correct termination addresses the correctness of
complete multi-process executions. The first step in formulating correct termination
is that a given process schedule is completed:

Definition 4.14 Completed Process Schedule.
Let S = (PS , AS , ≺S , <S) be a process schedule. The completed process schedule
C(S) is a process schedule defined over the same set of processes (PS = PC(S)) with

(1) Each activity a ∈ AS is also in AC(S), that is AS ⊆ AC(S)

(2) S is a prefix of its completed process schedule C(S). That is, for each pair of
activities a, a∗ with a ∈ AS and a∗ ∈ AC(S) \ AS , the following has to hold:
a <C(S) a∗

(3) C(S) is complete. That is, in C(S), all processes that are aborting in S are
aborted and all completing processes of S are committed in C(S). Furthermore,
for each arbitrary set of running processes RS of S, there must be a set R∗

S of
running processes with RS ⊆ R∗

S ⊆ RS , RS being the set of all of S’s running
processes, where all processes of R∗

S are aborted in C(S) and all processes of
RS \R∗

S are committed in C(S). 2

Once a process schedule S is completed to C(S), correct termination requires the
existence of a schedule C(S) that is serial on all processes and that is equivalent
to C(S) with respect to the return values of all processes and the initial and final
state. Note that this is more than process-serializability of C(S). In P-SR, only
running, completing and committed processes are considered (in this case, since
C(S) is complete, this would be only committed processes), but aborted processes
are ignored (including aborted subprocesses of completing processes). However,
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an important aspect of correct termination is to address also the correct abort of
processes, that is, the correct execution of compensating activities in the presence of
concurrency, which requires C(S) to be serial on all processes. Correct termination
therefore requires a completed process schedule to be reducible. If this is the case,
it is guaranteed that all aborted (sub-)processes do not leave any effect since all
their regular activities together with the corresponding compensation activities will
have disappeared.

Definition 4.15 Correct Termination (CT).
A complete process schedule C(S) has correct termination (CT) property if it is
reducible (P-RED). 2

Example 4.6 Non-CT Execution.
Consider the concurrent execution of the process programs PP1 and PP5 by pro-
cesses P 1

1 and P 5
5 , reflected in process schedule S6 (see Figure 12). At time t1, S6

t1
is correct with respect to P-RC (P5 is already completing, that is, ac

51
will never be

compensated) and P-RED (thus, also P-SR) holds. However, the completion C(S6
t1)

of S6
t1 does not have the CT property. The execution of ar

53
, which is inevitably re-

quired to complete P5, introduces cyclic dependencies. Since in the meanwhile also
P1 has changed to completing, this conflict cycle cannot be resolved. Therefore, the
only possibility to successfully complete S6

t1 correctly would be to abort P1 which
would then impose activity a−1

11
to be executed. After the commit of a−1

11
, P5 would

be able to proceed forward by executing ar
53

and to finally terminate correctly. 2

Example 4.7 Correct CT Execution.
A CT execution of process programs PP1 and PP2 is given by process schedule S7

depicted in Figure 13. At time t1, S7
t1 is both P-RED and P-RC (the constraints

imposed by the only abort dependency ac
11

<S7 ac
21

are met). Furthermore, although
conflicts exist between the activities of the completion of both processes, the com-
pleted schedule C(S7) is correct since it is equivalent to a serial schedule where P 1

1

precedes P 2
2 . Note that completion of S9

t1 does not require P2 to abort although it
is running in S9

t1 . However, once P2 changes its state from running to completing,
it must be ensured that it will commit correctly. In process schedule C(S7), this is
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trivially the case since this state change by the execution of ap
23

is performed after
the commit of P1, C1 <C(S7) ap

23
and since the serialization order in the reduced

process schedule C(S7) is P1 → P2. 2

Following the ideas of the unified theory of concurrency control and recovery
[Schek et al. 1993; Alonso et al. 1994; Vingralek et al. 1998], the notion of CT for
process schedules addresses atomicity and isolation jointly. However, it extends this
theory for two reasons.

First, we do not require all running processes to abort when a process schedule
is completed. Moreover, CT does not necessarily require completing processes to
terminate via the retriable activities of their assured termination trees but rather
allows to continue the execution of subprocesses according to the processes’ prefer-
ence order.

Second, the traditional unified theory does not consider recovery-related oper-
ations in a schedule until expansion. During this expansion phase, each abort
operation in a schedule is replaced by all appropriate undo operations which are,
by a set of rules, related both to all conflicting regular operations and to undo
operations of concurrent transactions, thereby assuming that these rules are ac-
tually respected by the system. In the case of transactional process management
where the scheduling of compensating activities is explicitly performed by the pro-
cess manager, expansion is made obsolete. However, despite the differences in the
model, the correctness criteria induced by CT as well as the reduction rules for
permutation and elimination of activities still follow the original unified theory of
concurrency control and recovery.

In the original unified theory, the criterion SOT (serializable with ordered termi-
nation) has been introduced in order to reason about correct concurrency control
and recovery of a schedule S without considering its expanded schedule S̃ [Alonso
et al. 1994]. However, a similar, SOT-like criterion does not exist in the case of
transactional process management. The reason being is that in the traditional
transaction model, all operations required for recovery purposes are known before-
hand. When, in addition, commutativity is perfect, then also the commutativity
behavior of all recovery-related operations is known. In transactional process man-
agement and especially in the presence of completing processes, that is, when pivot
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activities have to be considered, such a criterion does not exist.
According to Definition 4.15, CT for a process schedule S can be verified only

over the completed process schedule C(S). However, completing a process schedule
is not practical. Therefore, special considerations or even restrictions are required
to guarantee that no violation of CT occurs during completion:

— A first approach is to require that all activities of all completing processes
of S have to be known beforehand to analyze whether conflicting activities exist
(transitively) or not and whether the joint completion of these processes may violate
CT (even when conflicting activities exist, they may correspond to paths that are
not effected).

— Alternatively, the analysis can be restricted to the assured termination trees
of all completing processes only. Then, it has to be ensured that at least one
concurrent execution of all assured termination trees exists in which all completing
processes successfully commit, that is, where P-SR is not violated. However, this
would again be based on future activities and would, at the same time, restrict each
completing process to a path within its assured termination tree.

— The previous variant could even be further restricted in that no pair of con-
flicting activities must exist in the assured termination trees of all completing pro-
cesses which would trivially fulfill the requirement of CT (together with P-RED
and P-RC of the given prefix S of C(S)) since no new conflicts will be introduced
during completion. Again, the drawback of this approach is that it forces each
completing process to execute the assured termination trees while neglecting all
other subprocesses with higher priority.

— Yet another approach could also be to allow only one completing process at
a time. Although limiting concurrency, this variant does not restrict completion to
the assured termination trees only and does also not require information about the
future behavior of process programs.

These possibilities for guaranteeing CT stem from the fact that the way a given
process schedule has to be completed is left intentionally vague (c.f. Definition 4.14).
Hence, the problem is shifted to the design and implementation of concrete proto-
cols.

4.7 Relationship Between Classes of Process Schedules

In the previous sections, we have reformulated the traditional notions of serializabil-
ity and recoverability in the context of transactional processes and, in particular,
we have introduced criteria that jointly consider isolation and atomicity in trans-
actional process management. In this section, we recall the different criteria that
have been introduced and we show how they are related.

To this end, we first consider the different levels of serializability for transactional
processes:

Corollary 4.16 P–SR ⊃ SG–P–SR ⊃ P–SG–P–SR.
The classes P-SR, SG-P-SR, and P-SG-P-SR are related in the following way:

(1 ) SG–P–SR ⊃ P–SG–P–SR: P-SG-P-SR is a proper subclass of SG-P-SR.
(2 ) P–SR ⊃ SG–P–SR: SG-P-SR is a proper subclass of P-SR. 2
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Fig. 14. Relation between P-SR, SG-P-SR, and P-RC

Proof Corollary 4.16.

(1) SG–P–SR ⊃ P–SG–P–SR: When P-SG-P-SR holds for some process schedule
S, not only each prefix of S is SG-P-SR but also S itself. Process schedule S2

t3 ,
which is SG-P-SR (after P 3

3 changes its state to aborting, it does not appear
in SG(S2) at time t3), with prefix S2

t2 that is not SG-P-SR finally shows that
P-SG-P-SR is a proper subclass of SG-P-SR.

(2) P–SR ⊃ SG–P–SR: A process schedule S is SG-P-SR when SG(S) is acyclic.
Since P-SR holds when PSG(S) is acyclic and since PSG(S) is obtained from
SG(S) by deleting edges, each SG-P-SR process schedule is also P-SR. Process
schedule S2

t2 of Example 4.2 is P-SR but not SG-P-SR. Therefore, SG-P-SR is
a proper subclass of P-SR.

2

The following discussion analyzes the relation between P-RC and P-SR as well
as the relation between P-RC and the two variants of serialization graph-based
process-serializability. This is also illustrated in Figure 14.

Theorem 4.17 P-RC vs. P-SR; P-RC vs. SG-P-SR; P-RC vs. P-SG-P-SR.
P-RC, the class of process-recoverable process schedules and P-SR, the class of
process-serializable process schedules are not comparable. Analogously, P-RC and
SG-P-SR as well as P-RC and P-SG-P-SR are not comparable. 2

Proof Theorem 4.17.
The relation between P-SR and P-RC is shown using the following examples:

(1) ¬P-SR & P-RC: Consider, for instance, process schedule S2
t1 of Example 4.2.

It has been shown that S2
t1 is not P-SR. However, as no order imposed by abort

dependencies is violated, S2
t1 is P-RC.

(2) P-SR & ¬P-RC: An example for a process schedule fulfilling P-SR but vio-
lating P-RC can be found in S4

t1 of Example 4.4.
(3) P-SR & P-RC: The classes P-SR and P-RC are not disjoint. This is shown

by process schedule S8
t1 of Example 4.8 which accounts for both criteria.

Cases (1)-(3) also show the relation between P-RC and SG-P-SR. The same is true
for the relation between P-RC and P-SG-P-SR. 2
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Fig. 15. P-SR & P-RC execution of process programs PP1 and PP2

Example 4.8 P-SR and P-RC Execution.
Consider again the concurrent execution of process programs PP1 and PP2, re-
flected in process schedule S8 depicted in Figure 15. At time t1, CA(S8

t1) is conflict
equivalent to the serial execution of P1 before P2. As additionally also P-RC is met,
S8

t1 accounts for both criteria, namely P-SR and P-RC, simultaneously. Note that
the pair of conflicting activities (ap

12
<S8 ar

24
) does not impose an abort dependency

between P1 and P2 since ap
12

is not compensatable. 2

Process-reducibility has been introduced as a criterion to account for both atom-
icity and isolation in transactional processes. In what follows, we compare P–RED
and its prefix-closed variant, P–P–RED, to process-recoverability and to the differ-
ent levels of serializability that have been identified for transactional processes.

Theorem 4.18 P-SR ⊃ P-RED.
P-RED is a proper subclass of P-SR. 2

Proof Theorem 4.18.
Let S be a P-RED process schedule and assume that S is not P-SR. Then, a cycle
Pi → Pi+1 → . . . → Pi+m → Pi has to exist in the committed and active projection
CA(S) of S. Since no aborting and aborted (sub-)processes appear in CA(S),
none of the activities involved in the conflict cycle is compensated in S. Therefore,
this cycle cannot be eliminated by any reduction rule which contradicts with the
initial assumption of S being P-RED. Furthermore, P-RED is a proper subclass of
P-SR. The latter considers only committed and active (sub-)processes. A conflict
cycle imposed by compensating activities only will not affect P-SR but leads to a
violation of P-RED which is shown in Example 4.9. 2

Example 4.9 Non-P-RED Execution.
Consider process schedule S9 reflecting the concurrent execution of process programs
PP3 and PP4 illustrated in Figure 16. At time t1, no active or committed process
exists. Therefore, P-SR trivially holds. However, S9

t1 is not P-RED. The pairs of
conflicting activities ac

31
<S9

t1
ac
41

and a−1
31

<S9
t1

a−1
41

lead to a case that cannot be
resolved by reduction techniques. 2
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Fig. 16. Non-P-RED but P-SR process schedule S9

Lemma 4.19 P-RED vs. SG-P-SR; P-RED vs. P-SG-P-SR.
P-RED and SG-P-SR are not comparable. Analogously, P-RED and P-SG-P-SR
are not comparable. 2

Proof Lemma 4.19.
The following examples show the relation between P-RED and SG-P-SR:

(1) ¬P-RED & SG-P-SR: Consider again process schedule S9
t1 of Example 4.9.

It has already been shown that S9
t1 is P-SR. Since no active processes exist in

S9
t1 , it is also SG-P-SR. However, due to the cyclic conflicts imposed by the

compensating activities in the case of perfect commutativity, P-RED does not
hold.

(2) P-RED & ¬SG-P-SR: Process schedule S2
t2 of Example 4.2 is P-RED but it

is not SG-P-SR.
(3) P-RED & SG-P-SR: Process schedule S3

t1 of Example 4.3 shows that P-RED
and SG-P-SR are not disjoint. Since no (sub)process of S3

t1 is aborted, thus it
contains no compensating activity, and since SG(S3

t1) is acyclic, both criteria
hold simultaneously.

Cases (1)-(3) also apply for the relation between P-RED and P-SG-P-SR. 2

We have previously shown that P–RED and P–SR are not comparable. The same
is true when comparing the classes P–RED and P–RC:

Theorem 4.20 P-RC vs. P-RED.
P-RC and P-RED are not comparable. 2

Proof Theorem 4.20.
The relation between P-RC and P-RED is shown using the following examples:

¬P-RC & P-RED:. It is possible that violations of constraints imposed by
abort dependencies exist in a process schedule S albeit S is P-RED. This is the
case when, for instance, the (sub-)processes involved in the abort dependency is
not aborted (note that P-RC does not require all active processes to be aborted),
that is, the compensating activity that would violate P-RED is not present in S.
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Process schedule S4
t1 of Example 4.4 represents such a case: S4

t1 is not P-RC but it
is P-RED; yet the compensation of a11 —which is not executed at t1— would also
violate P-RED.

P-RC & ¬P-RED:. Consider process schedule S2
t1 of Example 4.2. Since no

compensating activity exists, the compensation rule cannot be applied and the
commutativity rule does not allow to transfer S2

t1 to a serial schedule. Thus, it
is not P-RED. However, it can be shown that S2

t1 is P-RC since no constraints
imposed by abort dependencies are violated.

P-RC & P-RED:. Process schedule S8
t1 of Example 4.8 holds for both P-RC

and P-RED. The commutativity rule allows to rearrange all activities in order to
transform S8

t1 to a serial execution of P1 succeeded by P2. The compliance of S8
t1

with P-RC has already been shown.
2

Process-reducibility not only guarantees process-serializability but it also ad-
dresses the correct execution of compensating activities, both from aborting pro-
cesses and aborting subprocesses. However, P-RED does not provide both P-SR
and P-RC jointly:

Lemma 4.21 P-RED 6⊆ P-SR ∩ P-RC.
P-RED does not hold for P-RC and P-SR simultaneously. 2

Proof Lemma 4.21.
Consider again process schedule S4

t1 of Example 4.4. We have already shown that
S4

t1 is P-RED. However, it has also been shown that it is not P-RC. Therefore, it
does also not meet P-RC ∩ P-SR, that is, both process-recoverability and process-
serializability simultaneously. 2

P-RED does not jointly hold for both P-RC and P-SR for two reasons. First, we
do not require all active processes of a process schedule S to abort but only a subset
R∗
S of all running processes. Therefore, violations of constraints imposed by abort

dependencies do not affect P-RED when the corresponding processes will not be
aborted. Second, P-RED does not require process schedules to be complete. Even
if violations of P-RC exist and the associated (sub-)processes do not commit, they
might be aborting and the compensating activity finally leading to a violation of
P-RED might not yet be present in the process schedule. However, P-RED ensures
that no aborted process Pi is involved in an abort dependency with another process
Pj that is not aborted. More formally,

Definition 4.22 Abort–Process–Recoverability (P–RC–A).
A process schedule S is P-RC-A if the constraints imposed by P-RC —restricted
to all abort dependencies between activities ac

ik
and ajl

where the (sub-)process of
ac

ik
is aborted— are met in S. 2

Obviously, since the absence of abort dependencies imposed by pairs of activities
(aik

, ajm
) where Pi is aborted, but not Pj , is essential in a P-RED process schedule,

it meets both P-SR and P-RC-A simultaneously, that is P-RED ⊂ P-SR ∩ P-RC-A.

Corollary 4.23 P-P-RED.
The following relationships can be identified between the classes P-P-RED and
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P-RED, P-P-RED and SG-P-SR, P-P-RED and P-SG-P-SR, as well as between
P-P-RED and P-RC:

(1 ) P-P-RED ⊂ P-RED: P-P-RED is a proper subclass of P-RED.
(2 ) P-P-RED vs. SG-P-SR: P-P-RED and SG-P-SR are not comparable
(3 ) P-P-RED vs. P-SG-P-SR: P-P-RED and P-SG-P-SR are not comparable
(4 ) P-P-RED vs. P-RC: P-P-RED and P-RC are not comparable 2

Proof Corollary 4.23.

(1) P-P-RED ⊂ P-RED: When each prefix of a process schedule S is P-RED,
so is also S. Moreover, P-P-RED is a proper subset of P-RED: process schedule
S2

t2 of Example 4.2, for instance, is P-RED although its prefix S2
t1 is not P-RED.

(2) P-P-RED vs. SG-P-SR: Process schedule S7
t1 is not P-P-RED but it is SG-

P-SR. Conversely, a process schedule S might be P-P-RED but not SG-P-SR when
a conflict cycle is induced by two completing processes ac

il
<S ac

jm
<S a−1

jm
<S a−1

il

with ap
ig

<S ac
il

and ap
jh

<S ac
jm

. In this case, since both Pi and Pj are completing,
the conflicts of their aborted subprocesses are included in SG(S) but by applying
the commutativity and compensation rules, all activities of the conflict cycle can
be cancelled. Finally, P-P-RED and SG-P-SR are not disjoint since, for instance,
process schedule S8

t1 meets both criteria.
(3) P-P-RED vs. P-SG-P-SR: A process schedule S is P-SG-P-SR but not

P-P-RED if it is, for instance, defined over two processes, say Pi and Pj , and
if it contains a conflict cycle ac

il
<S ac

jm
<S a−1

il
<S a−1

jm
where both processes

are aborted or aborting and where no other pairs of conflicting activities exist.
Although the cycle cannot be eliminated by the reduction rules, SG is, for S as
well as for each prefix S ′ of S, acyclic (since at least one process has been aborting
when the conflict cycle was introduced). A process schedule S over two completing
processes, Pi and Pj , is P-P-RED but not P-SG-P-SR when, for instance, a conflict
cycle ac

il
<S ac

jm
<S a−1

jm
<S a−1

il
with ap

ig
<S ac

il
and ap

jh
<S ac

jm
exists. Although

all activities of the conflict cycle can be eliminated by applying reduction rules, a
cycle is present in SG(S). Process schedule S8

t1 of Example 4.8 accounts for both
criteria such that P-P-SG-SR and P-P-RED are not comparable.

(4) P-P-RED vs. P-RC: Process schedule S4
t1 of Example 4.4 is P-P-RED but

not P-RC. When a conflict cycle ap
ik

<S ap
jm

<S ap
il

exists in a process schedule S
formed by pivot activities only and when, in addition, S is free of abort dependen-
cies, it is P-RC but not P-P-RED. Therefore, the classes P-P-RED and P-RC are
not comparable.

2

In Lemma 4.21, we have proven that process-reducibility does not meet P-SR
and P-RC jointly. In what follows, we show that the same is true for P-P-RED,
the prefix-closed subclass of P-RED:

Lemma 4.24 P–P–RED 6⊆ P–RC ∩ P–SR.
P-P-RED does not hold for P-RC and P-SR simultaneously. 2

Proof Lemma 4.24.
In order to show the relation between P-P-RED and P-SR ∩ P-RC, again process
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Fig. 17. Relation between P-SR, SG-P-SR, P-SG-P-SR, P-RC, P-RC-A, P-RED, and P-P-RED

schedule S4
t1 can be analyzed. Since each prefix of S4

t1 can be correctly reduced,
it meets P-P-RED. However, since S4

t1 is not P-RC, P-P-RED does not provide
process-serializability and process-recoverability jointly. 2

The above discussion is summarized in Figure 17 where the relationships between
the classes P-SR, SG-P-SR, P-SG-P-SR, P-RC, P-RC-A, P-RED, and P-P-RED
(thus, also CT) are illustrated.

Since CT corresponds to P-P-RED for completed process schedules, it holds for
both P-SR and P-RC-A. But since the process-recoverability requirement explicitly
includes the possibility to chose, for each partial process schedule S, an arbitrary set
RS of running processes and to abort all processes of its superset R∗

S correctly, P-
RC-A is not sufficient. The reason being is that, in contrast to the traditional unified
theory, we do not require all active processes to abort and that, when scheduling is
performed dynamically, the subset of active processes that will finally be aborted
in the completed process schedule is not known in advance. Therefore, a dynamic
scheduling protocol for transactional processes has to provide P-RC and P-P-RED
simultaneously. In addition, such a dynamic protocol has to guarantee that CT, the
correct termination, is possible for each partial process schedule by implementing
one of the four strategies for completion we have discussed in Section 4.6.

5. PROCESS LOCKING: DYNAMIC PROTOCOL FOR PROCESS SCHEDULES

Based on the Wise system [Alonso et al. 1999; Lazcano et al. 2000], a transactional
process manager has been implemented which supports P-P-RED & P-RC & P-
SG-P-SR process executions and which guarantees the correct termination of each
partial process schedule. Before introducing process locking [Schuldt 2001a], the
protocol that has been implemented, the basic assumptions are clarified.

First of all, each process program to be executed has to be inherently correct:
it has to follow the guaranteed termination property (Axiom 4.1). Additional as-
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sumptions address commutativity and compensation: the commutativity relation
must be perfect (see Definition 4.4) and compensation must be state-independent.

Assumption 5.1 Commutativity.
Commutativity is perfect. 2

Assumption 5.2 State-independent Compensation.
Compensation is state-independent, that is a compensating activity can be executed
(exactly once) but at any point in time (thus in any state) after the commit of the
according forward activity. 2

Summarizing the discussion of Section 4, a dynamic scheduling protocol has to en-
force P-P-RED, P-RC, and, for completed process schedules, CT (i.e., it must avoid
unresolvable situations in which two or more completing processes are involved).

The process locking protocol within the Wise system is based on and extends
ideas of locks with constrained sharing [Agrawal and Abbadi 1990] and timestamp
ordering [Thomas 1979]. In what follows, we will motivate the necessity of advanced
mechanisms for supporting CT and present the protocol in detail. In particular,
process locking exploits the restriction to only one completing process at a time to
correctly terminate a partial process schedule (as discussed in Section 4.6) in order
to avoid the consideration of future activities of process programs. Hence, due to
these restrictions, process locking does not only provide P-P-RED and P-RC but
also P-SG-P-SR. The superclass P-P-RED & P-RC & P-SG-P-SR of all process
schedules produced by process locking is highlighted in gray color in Figure 17.

5.1 Locks with Constrained Sharing

When considering the type of locks to be used, the nature of processes needs to
be taken into account. Activities in a transactional process are high level semantic
abstractions. They typically correspond to complex application invocations. To
use conventional notions like exclusive or shared access would be too restrictive. A
more appropriate concept is to exploit locks with constrained sharing [Agrawal and
Abbadi 1990]. The idea is to use, in addition to shared and exclusive locks, a third
category, termed ordered shared locks (OSL). OSL can be shared between different
transactions under certain constraints: with each sharing, an order is associated
which has to be respected for the execution of the respective operations, when
acquiring further locks, and when locks are relinquished. A lock li of a transaction
Ti is said to be on hold if li was acquired after another transaction Tj has acquired a
lock lj on the same data object but before lj has been released. The lock relinquish
rule guarantees that all locks are shared with the same order and that a transaction
may not release a lock as long as any of its locks is on hold. In process locking,
the ideas of ordered shared locks are now combined with the special semantics that
can be found in processes in that locks on activities can be ordered shared. Yet,
the prerequisite for the application of locking techniques at activity level is that a
complete commutativity relation is available to the process manager.

In Section 4, we have seen that the allowed (as well as the disallowed) interleavings
of processes are governed by the conflict behavior of activities and their termina-
tion properties, i.e., whether or not they can be compensated. Hence, applied to
process schedules and to the requirements imposed by transactional process man-
agement, ordered shared locks at activity level provide a straightforward means to
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Table I. Compatibility matrix of C and P locks

(⇒: ordered shared; 6⇔: exclusive)

held \
acquired C P

C ⇒ 6⇔
P ⇒ 6⇔

map allowed interleavings of processes into a compatibility matrix of different lock
types. For this purpose, and similar to the usage of the read/write characteristics of
operations in traditional locking protocols, the semantics of activities with respect
to their termination characteristics (compensatable or pivot) can be exploited.

Therefore, C locks for compensatable activities and P locks for pivot activities,
respectively, are used [Schuldt 2001a]; since retriable activities are also either com-
pensatable or pivot, the same types of locks are applied to them. While two C
locks of different processes as well as a P lock followed by a C lock may be ordered
shared, this is not the case for a C lock followed by a P lock. In the latter case,
when the process having requested the C lock is running, this would correspond
to an abort dependency which has to be prevented in order to guarantee P-RC.
Therefore, C and P locks cannot be ordered shared but must be exclusive. Finally,
the combination of two P locks has also to be dealt with care since this combina-
tion of locks implies that both associated processes are completing and may impose
deadlocks that cannot be resolved. The compatibility matrix is depicted in Table I
where ⇒ denotes ordered shared mode and 6⇔ stands for non-shared (exclusive)
mode. Note that this compatibility matrix corresponds to the algorithm deciding
whether edges in the serialization graph are allowed or disallowed, as discussed in
Section 4.4.

5.2 Timestamp Ordering

The original protocol proposed by Agrawal and El Abbadi [Agrawal and Abbadi
1990] generalizes standard two phase locking. This protocol has an optimistic char-
acter since the compliance of orders is not checked until the first lock is to be
released (due to the lock relinquish rule). And since preclaiming does not appear
to be the ultimate solution in the case of transactional processes (all possible paths
would have to be considered although eventually only few of them are effected), the
validation would more or less coincide with the commit of a process. This, in turn,
means that violations of the order constraint of locks are detected at a very late
stage and even worse, may occur in situations where appropriate corrective strate-
gies, i.e., the abort of the processes involved, are not possible since these processes
are completing, not running.

To circumvent this drawback, we impose early verification of the correct order
of shared locks. To do this, we adopt and apply ideas borrowed from timestamp
ordering (TO) protocols [Thomas 1979]. We use the same mechanisms to control
the order in which ordered shared locks are acquired than the original TO protocol
does for an a priori determination of the serialization order and thus, the order in
which shared data objects are accessed. The only prerequisite is that each process is
assigned a unique timestamp taken from a strictly monotonically increasing series.
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5.3 Process Locking: Combining OSL & TO for Processes

Following the previous discussion, the application of ordered shared locks and times-
tamp ordering in the context of transactional processes requires that for each activ-
ity, i.e., for each transaction program that can be invoked by the process manager,
additional information in the form of an ordered list is maintained which comprises
the locks held for all invocations of that activity. Each lock, in turn, refers to the
process by which the lock has been acquired (and by which the corresponding activ-
ity is invoked), thereby implicitly associating each lock with a process timestamp.
Finally, for each activity ai, the set of activities aj with CON(ai, aj) = TRUE,
taken from a matrix reflecting the complete commutativity relation, has to be avail-
able.

Even when combining the original OSL protocol based on P and C locks with
timestamp ordered lock requests, special treatment is necessary for pivot activities.
The previous sections made the dual character of pivot activities obvious: on the
one hand, they are “normal” activities; on the other hand, they have a commit-like
semantics since they make compensation unavailable for all preceding activities.
Due to this dualism, a pivot activity can neither be treated like the commit of a
process nor like a normal activity. Although, for instance violations of constraints
imposed by abort dependencies between processes Pi and Pj are no longer possible
once a subsequent pivot of Pi is executed, locks on these compensatable activities
must not be released (as would be the case for a commit). Otherwise, P-SR could
no longer be guaranteed. When pivot activities are considered as regular activities,
only abort dependencies could be detected in which the pivot itself is involved,
but no others. Reconsider the P-RC algorithm based on the serialization graph,
sketched in Section 4.4, where also certain state changes of a process (e.g., by
executing a pivot) provoked the verification of all existing dependencies of this
process. This verification is captured by the conversion of all C locks already held
for compensatable activities to P locks once a pivot activity is to be executed.

Aborting processes executing compensating activities require special treatment
because it has to be guaranteed that aborting processes themselves are not aborted.
Additionally, once a process is completing, it will be favored in that it may override
timestamp orders for lock requests.

Process locking can be briefly summarized as follows: When instantiated, a pro-
cess Pi is assigned a unique timestamp ts(Pi). Before an activity aik

is to be
executed, a lock must be acquired which has to meet aik

’s termination property
(either a C lock or a P lock). This lock then corresponds to an entry in the lock list
of the activity. However, prior to the permission of a lock, all conflicting activities,
and in particular all locks held for these activities have to be analyzed so as to de-
cide whether or not the lock for aik

can be granted. The following six rules specify
the acquisition and the release of locks, respectively, and define process locking in
detail:

(1) Comp–Rule: Execution of a Compensatable Activity ac
i

For the execution of a compensatable activity, a C lock is required. Depending on
the process timestamp of Pi and the timestamps of potential other processes holding
locks for conflicting activities, a C lock request can either be granted immediately,
requires the abort of concurrent processes, or has to be deferred.
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Granting C Locks:. A C lock for some activity ac
ik

of a running process can be
granted when either no other process holds a lock for a conflicting activity, or when
all locks held for conflicting activities (either C or P locks) are from older processes
with respect to the process timestamp. Once the C lock has been successfully
acquired, ac

ik
can be executed.

Aborting Concurrent Processes:. If a process Pj with a younger timestamp,
ts(Pj) > ts(Pi), holds a C lock for a conflicting activity ajl

, then Pj will be aborted.
If Pj is already aborting, then Pi has to wait until Pj is aborted (aborting processes
cannot be aborted). Once Pj is aborted correctly, its locks are released, the C lock
required for the execution of ac

ik
can be acquired, and ac

ik
can be executed. After

completing the abort of Pj , it is resubmitted with the same timestamp in order
to avoid its starvation. This is possible since Pi is able to execute ac

ik
in the

meanwhile such that, when Pj redoes the execution of ajl
, the constraints imposed

by the process timestamps on the sharing of locks and thus, on the associated C
locks, are met. Additionally, the request of a C lock by a completing process leads
to the abort of older processes already holding a C lock for a conflicting activity
since completing processes are treated as “first-class processes” and are favored
compared to running processes.
Deferment of C Lock Requests:. If a younger process Pk, ts(Pk) > ts(Pi),
exists which already holds a P lock for a conflicting activity, then ac

ik
has to be

deferred (since Pk cannot be aborted) until the commit of Pk. Special treatment
is also applied if a completing process Pk with a younger timestamp holds a C
lock (this is possible since we allow a pivot activity of a process program to be
recursively followed by process programs). Then, Pi has also to be deferred until
the commit of the completing process Pk. The latter ones are the only cases where
the lock sharing order (and thus, the serialization order) and the timestamp order
do not coincide.

(2) Piv–Rule: Execution of a Pivot Activity ap
i

When aik
is a pivot activity, then Pi has to acquire a P lock before it can be

executed. However, prior to the P lock request for ap
ik

, all C locks of Pi held for
activities aih

preceding ap
ik

have first to be converted to P locks. The reason being
is the dual character of pivots. There can be C locks ordered shared with older
processes which are still running or are in a running subprocess. The execution
of the pivot ap

ik
, which additionally corresponds to a state change from running

to completing in the case it is a primary pivot, could violate constraints imposed
by potentially existing abort dependencies which, in turn, would correspond to a
violation of P-RC. Again, a distinction is required on whether the P lock can be
granted immediately after lock conversion, whether it requires the abort of some
concurrent processes, or whether it has to be deferred.
Granting P Locks:. A P lock is granted, after lock conversion, if no other pro-
cess holds a lock for a conflicting activity.
Aborting Concurrent Processes:. In case younger processes Pj , ts(Pj) >
ts(Pi), hold C locks for conflicting activities, all these Pj have to be aborted if
they are running, otherwise, if they are already aborting, Pi has to wait until they
are aborted. After Aj , they are resubmitted with the same timestamp so as to
avoid starvation.
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Deferment of P Lock Requests:. If older processes hold C locks or if any
other process holds a P lock, then the request has to be deferred until the end
of these processes. This is the case since, according to the lock compatibility ma-
trix, a newly acquired P lock may not be shared with any other lock already held
(and since at most one completing process at a time is allowed).

(3) Comp→Piv–Rule: Conversion of C Locks to P Locks

This conversion is required for all C locks of a process Pi as prerequisite for the
execution of a pivot activity ap

ik
. Since the conversion of a C lock to a P lock

is similar to the acquisition of a P lock, the same conditions hold: C→P lock
conversion succeeds when either no other process holds a lock for a conflicting
activity or if all existing locks are C locks held by younger processes Pj , ts(Pj) >
ts(Pi), which then have to be aborted (and which are resubmitted with the same
process timestamp). In case older processes hold C locks or if any other process
holds a P lock, then C→P lock conversion has to be deferred until the end of these
processes.

(4) C−1–Rule: Execution of a Compensating Activity a−1
i

When a process Pi is aborting, it must be able to correctly undo all its activities.
Eventually, there are processes Pj with younger timestamps than Pi, ts(Pi) <
ts(Pj), that have executed an activity ajl

which conflicts with ac
ik

and which appears
after ac

ik
with respect to the observed order <S in a process schedule S. According

to the Comp–Rule, this case is allowed, at least when all these processes Pj are
running. To correctly undo ac

ik
, again a C lock has to be acquired by a−1

ik
. This leads

to the abort of all such processes Pj which have common locks with Pi but younger
timestamps. Yet, the abort of a process Pi may induce cascading aborts, conforming
with the notion of P-RC. In the case of cascading aborts, all aborted processes are
resubmitted in timestamp order, thereby keeping their original timestamp. All
older processes Pk having locks in common with Pi are not affected by the C lock
request induced by a−1

ik
and thus, by the abort of Pi.

(5) Abort–Rule: Abort Ai of a Process

The abort Ai of a process Pi leads to the release of all locks held by Pi.

(6) Commit–Rule: Commit Ci of a Process

In accordance with the lock relinquish rule of the original OSL protocol, a process
Pi is finally allowed to commit if all its locks are shared in the correct order. Applied
to transactional processes and to the criterion of P-RC, a process must not commit
if it has common locks (which correspond to abort dependencies) shared with older
processes Pj , ts(Pj) < ts(Pi). In this case, Ci must be deferred until all these Pj

have committed. Note that all common locks shared with older processes may only
be C locks. Otherwise, if no common locks with older processes exist, Pi is allowed
to commit and to release all its locks; therefore, process locking follows the strict
two phase locking (S2PL) paradigm [Eswaran et al. 1976].

Note that, although compensating activities are themselves required to be pivot,
i.e., compensation cannot be compensated, we do not demand them to acquire P
locks since this would, due to the Piv–Rule, require C→P lock conversion for all
C locks of aborting processes. Essentially, this would not be possible if older pro-
cesses exist holding ordered shared C locks. Yet, it is sufficient for guaranteeing
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CT to abort only processes which have been executed conflicting activities between
a regular and a compensating activity — which is already captured by requiring
C locks for compensation (as part of the special treatment being part of the acqui-
sition rules for C and P locks). In the case of retriable activities ar, once they have
acquired the adequate lock (either C or P), the corresponding transaction can be
invoked in the subsystem; yet, even in the case of a failure of this transaction, the
lock granted to ar guarantees that it can be safely re-invoked.

Obviously, by allowing to share locks in timestamp order, a process may induce
cascading aborts. However, due to the exclusive treatment of certain combinations
of locks, it is ensured that cascading aborts are restricted to running processes.
After the cascading abort of some process Pj is completed, it is resubmitted with
the same timestamp in order to avoid starvation. Additionally, process locking
makes use of timestamp-based deadlock prevention strategies [Rosenkrantz et al.
1978; Bernstein et al. 1987] which, together with the restriction to at most one
completing process at a time, guarantees the absence of deadlocks imposed by
cyclic wait-for dependencies.

Process locking supports the correctness criteria for transactional processes we
have identified in Section 4. In particular, it provides P-SG-P-SR and P-RC process
schedules and it guarantees that each process schedule can be terminated correctly
(CT), thus also accounts for P-P-RED. More formally,

Theorem 5.3 Process Locking.
Each process schedule S generated by process locking is P-SG-P-SR, P-RC, and
P-P-RED. In addition, each completed process schedule S∗ generated by process
locking is CT 2

The proof of Theorem 5.3 can be found in [Schuldt 2001b].
Due to the usage of process timestamps and the assignment of timestamps to

processes when the latter are instantiated, process locking may rule out certain
process schedules which are considered as correct, hence supports only a subset of
P-SG-P-SR & P-RC & P-P-RED process schedules. This is shown in the following
example:

Example 5.1 Restrictions of Process Locking.
Consider process schedule S10, depicted in Figure 18. Obviously, S10 accounts for
P-SG-P-SR, P-RC, and P-P-RED as well as for CT. However, since the process
timestamps do not coincide with the serialization order, the sharing of locks between
P1 and P6 for (ac

11
, ac

62
) violates the Comp–Rule. Hence, S10 cannot be produced

by process locking. 2

6. IMPLEMENTATION

Support for transactional processes has been implemented on top of the Wise
system [Alonso et al. 1999; Lazcano et al. 2000] which acts as transactional process
manager. The Wise system, in turn, builds upon the process support system
Opera [Hagen 1999]. In addition to the process manager functionality, Wise
provides support for various practical problems:

—the modeling and development of process programs by integrating existing services
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as process activities and the specification of control flow dependencies (precedence
and preference orders)

—the monitoring of the state of active processes
—the facilities to make the state of each active process persistent so as to recover

after system failures, and
—the possibility to integrate arbitrary transactional subsystems by appropriate

subsystem adapters.

Figure 19 shows the overall architecture of the Wise framework. In what follows,
we discuss only the two most important components, namely the process program
specification tool and the Wise transactional process manager.

6.1 Process Program Specification

We use a commercial tool, IvyFrame [IvyTeam 2001] for specifying process pro-
grams. This is done by graphically bringing activities as core building blocks to-
gether with control flow aspects, i.e., precedence and preference dependencies, and
data flow constraints between activities. The specification tool supports the full
capabilities of the process programs model like conditional branching and partially
ordered activities of multi-activity nodes. In the latter case, this is modeled by
encompassing the activities of such multi-activity nodes into a nested subprocess
program which can be recursively embedded within a top-level process program.
In addition, the process program specification in the extended IvyFrame system
considers special runtime information about activities. This contains the location
of the subsystem providing a service (IP address of the respective hosts), the pa-
rameters of the service invocation, and the service characteristics, i.e., whether or
not compensation exists, whether a service is retriable, and so forth. Essentially,
this information is vital to the actual execution of the process programs.

An important extension that has been added to the IvyFrame system is the
possibility to check whether single process programs are correctly defined, that is
whether they meet the guaranteed termination criterion. This verification is based
on the control flow dependencies as well as on the individual properties of activities.

The graphical representation produced by IvyFrame is finally compiled into
a language called OCR (Opera Canonical Representation) [Hagen 1999] that is
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understood by the Wise process manager and can be directly used for execution
purposes.

6.2 Process Program Execution

The Wise engine is the core component of the complete framework orchestrating the
concurrent execution of process programs, thereby acting as transactional process
manager. The main components of the Wise engine are depicted in Figure 20. In
what follows, we will concentrate on the discussion of the most crucial features for
transactional process support. More details on the Wise engine and the Opera
process support kernel can be found in [Lazcano et al. 2000; Hagen 1999].

The most relevant components for the purposes of this paper are the navigator,
scheduler, and dispatcher modules. The navigator interprets the process program
described in OCR and determines for each active process, according to the control
flow dependencies, what activities have to be executed next, i.e., it “navigates”
through process programs. Prior to invoking the services corresponding to process
activities, the navigator contacts the scheduler which determines whether activities
are allowed to be executed in the presence of concurrency, whether they have to be
deferred, or even whether certain processes have to be aborted. To this end, the
scheduler implements the process locking protocol (see Section 5). In particular,
the scheduler makes use of a conflict matrix containing the specification of the
commutativity characteristics of all activities (which has to be provided by some
administrator) as well as of the termination properties of individual activities as
specified in OCR. In addition, the scheduler is responsible for assigning and for
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.



Atomicity and Isolation for Transactional Processes · 109

X

–

–

a3

X

X

X

–
–

–

X
X

a4
X

–

X
a5

–
–
–
–
a2

a4

a1
a2

X

–

–

–

–

a1

–

a5

a3

–

Dispatcher

Navigator

Scheduler

D
a
ta

b
a
se

A
b
st

ra
ct

io
n

L
a
y
er

Template

Instance

...

Space

Space

History

Space
Config

Space

Space
Object

Wise

Matrix
Conflict

Fig. 20. General Architecture of the Wise Engine

managing timestamps associated with processes. Once the navigator in accordance
with the scheduler decide which activity to execute, the information is passed to
the dispatcher which, in turn, associates it with a processing node in the cluster
and a service of a particular application. Hence, the dispatcher deals with physical
distribution by transparently managing the communication with remote system
components.

All information necessary to execute processes is made persistent in the un-
derlying Wise database(s). According to the characteristics and purpose of this
information, it is subdivided into in separate spaces. The template space contains
all process programs that have been loaded into the Wise engine. For each active
process, a copy of the corresponding process program is made and placed in the
instance space. This copy is used to record the process’ state as execution proceeds.
Storing instances persistently guarantees forward recoverability, i.e., execution can
be resumed as soon as the failure is repaired, which solves the problem of dealing
with failures of long lived processes [Dayal et al. 1991]. In addition, the runtime
information of the instance space also contains the timestamp and the currently
held locks of each process. The history space manages information about termi-
nated processes while the config space encompasses global system information, i.e.,
it persistently stores the conflict matrix.

7. RELATED WORK

In this section, we introduce related work in the area of transactional workflows.
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7.1 ConTracts and Spheres of Isolation

The ConTract model [Wächter 1991; Wächter and Reuter 1992; Wächter 1996;
Reuter et al. 1997] aims at bringing together elements of programming languages
(control flow specifications, iterations, conditional branching, etc.) and transaction
processing. A ConTract is equivalent to a long-running transaction, or process, and
consists of a set of steps that are combined by a script which specifies the execution
dependencies between them and which allows to encompass single steps in atomic
units of work. Associated with each single step, which is required to be compensa-
table, is an entry invariant and an exit invariant. The entry invariant reflects the
conditions that must be true in order to start the execution of a step. The exit in-
variant of a step contains the post conditions that hold after its successful execution.
If this condition is present in the entry invariant of a subsequent step, it must not
be violated in between (= establishment of an invariant). The concurrency control
mechanism exploited for ConTracts is therefore called invariant-based serializabil-
ity. In spite of the existence of compensation for each step, the default strategy for
dealing with failures is forward recovery, based on the persistently stored ConTract
state and the context of the current execution. A joint criterion for fault-tolerant
concurrent ConTract executions exists which exploits the notion of expansion of
the original unified theory of concurrency control and recovery. However, forward
recovery —although it is the default mechanism for recovery— is not present in
this joint criterion where only backward recovery is considered.

The core model the Spheres of Isolation approach [Schwenkreis and Reuter 1996]
is an extension of the ConTract model. Basic elements are activities and transitions
specifying the conditions for activities to be started. Unlike the basic ConTract
model, constraints are settled at object level. The goal of a concurrent execution
of processes is to provide two properties: success and correctness. The success
of a process execution denotes the possibility for correct termination even in the
presence of concurrency, leading to the notion of “object-local” concurrency control.
The notion of correctness guarantees the availability of compensation until the
end of a process. Forward recovery is considered to be the default strategy for
failure handling, although the correctness of a process only addresses backward
recovery based on compensation. Correctness and successful termination is treated
differently by assigning a (symbolic) Sphere of Isolation (SoI) to each property.

7.2 Spheres of Joint Compensation

The spheres of joint compensation approach addresses the fault-tolerant execution
of single processes [Leymann 1995]. This approach considers compensation not only
for single activities but also allows to assign one single compensation activity to
groups of activities. A sphere of joint compensation is such a set of activities of a
process that either all together have to be executed successfully or that all have to
be compensated. Different spheres may intersect or be even contained within each
other. For recovery purposes, either pure backward recovery or partial compensa-
tion combined with the re-invocation of failed activities is possible. Concurrency
control is not addressed by this approach.
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7.3 Open Process Management (OPM)

Open process management (OPM) [Chen and Dayal 1996; 1997] brings together a
nested activity model with a combination of closed nested [Moss 1985; 1987] and
open nested transactions [Weikum and Schek 1992]. Each process consists of single
activities and/or blocks; the latter consist recursively again of activities and blocks.
Activities within a process are open, i.e., they are allowed to commit prior to the
commit of a process although these changes are only visible to activities of the same
process and not to the outside (these activities are called in–process open). That
is, in–process open activities are open nested transactions within the scope of a
closed transaction, the associated process. The goal of these activities is to increase
parallelism compared with closed nested transactions but, at the same time, to avoid
the relaxation of atomicity as given by the open nested transaction model. Recovery
encompasses partial backward recovery and alternative executions within blocks, if
available. When an activity fails, recovery first addresses the affected block only
and it will be checked whether in-block alternative executions exist. Otherwise,
failure handling has to be extended to the block hierarchy. In addition to treating
concurrency control and recovery independently, OPM differs from transactional
processes in that the latter allow for a higher degree of parallelism. Essentially, the
restriction that effects of activities are only visible within the corresponding process
(as it is the case in OPM) does not exist in transactional process management.

8. CONCLUSION

Large-scale applications typically integrate several independent and distributed
components rather than relying on a single centralized database and exploiting
one global data model. Moreover, the development of such applications has to take
into account that the individual computation steps are already in place but have to
be glued together in a coherent way by means of control and data flow dependen-
cies. Process programs allow for this kind of higher level application development.
In this paper, we provide a framework to reason about correct executions of pro-
cess programs, termed processes. To this end, we generalize the traditional notion
of atomicity for single processes (leading to guaranteed termination) by allowing
flexible failure handling and alternative executions being defined within process
programs and by taking into account the different termination properties of single
activities. Most importantly, we treat the problem of atomicity and isolation in
transactional processes simultaneously within the same framework (correct termi-
nation) by extending and generalizing the unified theory of concurrency control
and recovery. Yet, unlike other approaches, we jointly cover both atomicity and
isolation and do concurrency control and recovery at the appropriate level, the
scheduling of processes.

The framework established in this paper covers various applications such as work-
flow management, process support systems, and the provision of appropriate infras-
tructures for electronic commerce [Schuldt et al. 2000], virtual enterprises [Alonso
et al. 1999], and the coordination of subsystems [Schuldt et al. 1998]. In addition
to covering such a large variety of applications, this framework is also completely
transparent to the user. Based on the Wise process support system developed
at ETH Zürich [Hagen 1999; Alonso et al. 1999], we have implemented a trans-
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actional process scheduler based on the process locking protocol presented in this
paper. This work, together with the correctness checking of single processes with
respect to their guaranteed termination property, completes the effort to develop an
infrastructure for supporting processes as applications at a higher level of seman-
tics, i.e., applications on top of independent component systems, and to provide
transactional execution guarantees for these processes.
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