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Abstract: Recent advances in sensor technologies, wireless communication standards,
powerful mobile devices and wearable computers strongly support novel types of ap-
plications. Especially in healthcare, telemonitoring applications will make use of this
new technology in order to improve the quality of treatment and care for patients and
the elderly. These telemonitoring applications require an infrastructure that is able to
efficiently combine, process, and manage continuous streams of data coming from the
different sensors. In healthcare where applications can be life saving, a particularly
important requirement is that this infrastructure is highly reliable. In this paper, we
introduce OSIRIS-SE, a novel information management infrastructure for data stream
processing based on the hyperdatabase OSIRIS that features a high degree of reliabil-
ity.

1 Introduction

Recent trends in ubiquitous and pervasive computing, together with new sensor technolo-
gies, wireless communication standards, powerful mobile devices and wearable computers
strongly support novel types of applications. Especially in healthcare, telemonitoring ap-
plications will make use of this new technology in order to improve the quality of treatment
and care for patients and the elderly. Chronic ailments such as cardiovascular diseases, hy-
pertension, and diabetes affect a significant number of the western population [AHA01].
In particular, if we consider our aging society, the amount of elderly people suffering from
one or more chronic diseases is increasing. Telemonitoring applications enable healthcare
institutions to take care of their patients while they are out of hospital, which is especially
useful for managing various chronic diseases as well as for measuring the effects of treat-
ments under real-life conditions. A similar but even more comprehensive application is the
support for elderly people living at home. Here, not only physiological sensors and data
are relevant for telemonitoring but also context information, e.g., information on what a
person is currently doing, where she or he is located, etc. The termeInclusionaddresses
the improved embedding of elderly people into the society by means of information tech-
nology to improve their quality of life.

Telemonitoring applications supporting data stream management (DSM) require an infras-
tructure that is able to efficiently combine, process, and manage continuous streams of data
coming from the different sensors. Especially in healthcare and eInclusion, a vital require-
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ment is that this infrastructure is highly reliable, since it can potentially be life-saving.
In this paper, we introduce a novel information management infrastructure that supports
DSM with a high degree of reliability. Concepts of Peer-to-Peer computing, grid com-
puting, process support, and replication management are the foundations of our proposed
infrastructure OSIRIS-SE. This infrastructure is particularly focused to support telemoni-
toring applications in healthcare, but not limited to this domain. Similar requirements that
arise in other areas, e.g., in environmental monitoring or in traffic control systems, can
also be supported.

1.1 A Sample Application of DSM in Healthcare

The following telemonitoring scenario will serve as illustration for the needs of a highly
reliable DSM infrastructure and will be used throughout the course of this paper. Fred,
aged 71, has already been suffering fromcongestive heart failure (CHF)for 1.5 years.
CHF is a disorder causing the heart to lose its ability to pump sufficient blood through
the body. Additionally, Fred has chronically high blood pressure which is related to CHF.
Due to these facts, Fred has a high risk of heart failure. Fred’s treatment includes many
emergency department visits and hospitalizations, which have physical and emotional im-
pact. Even worse, since Fred is living in a rural area, the transportation needed for these
consultations is quite time consuming and causes additional troubles. In this scenario,
disease management can only be improved by reduced time intervals between physician
visits. Even then, critical situations might occur between consultations and are usually not
detected in time.

Given an appropriate sensor technology and a reliable infrastructure for telemonitoring
and data stream processing, i.e., an infrastructure their users can count on, Fred’s caregiver
will immediately decide to equip him with a wearable telemonitoring system consisting
of ECG, blood pressure and oxygen saturation sensors attached to Fred’s body, e.g. sen-
sors in a smart shirt [PMJ02]. A PDA carried by Fred then offers computational power
and wireless communication. In order to interpret Fred’s vital signs, appropriate additional
context information is needed, e.g. ECG signals vary if Fred is running or sleeping. Inbuilt
accelerometers and information captured by Fred’s smart home environment, e.g., an elec-
tronic scale, position sensors, or a medication dispenser, provide this context information.
The caregiver is able to define individual data stream processing for Fred in a graphical
”boxes and arrows” approach by combination of basic building blocks.

1.2 Reliable Telemonitoring Infrastructure

Fred’s vital sensors and context information is processed by a telemonitoring infrastruc-
ture, that will analyze the data accumulated, and that extracts and forwards relevant infor-
mation to the care provider in charge. The increased number of components, devices, and
platforms in this field of application leads to an increased failure probability. Reliability



is of utmost importance in telemonitoring applications. The infrastructure has to provide a
flexible platform for different kinds of monitoring applications and has to guarantee a high
level of reliability. In this paper, we present such a reliable telemonitoring infrastructure
for data stream management we have developed based on the OSIRIS hyperdatabase in-
frastructure. Although DSM receives increasing popularity among researchers, only a few
projects particularly emphasize on reliability aspects of DSM [SHB04, HBR+03]. In this
paper, we introduce new reliability strategies for DSM.

Using this infrastructure, the health status of Fred can be monitored online, as discussed
above. In case of relevant changes of Fred’s health condition, his physician in charge will
be automatically informed, and is able to retrieve all medical important data. Also, the
infrastructure will detect critical events, which require immediate intervention (e.g., heart
attack, fall, or unconsciousness), and will invoke reliable processes for calling the emer-
gency service. As a consequence, the infrastructure must offer near real-time processing,
manage large volumes of continuously produced data, and trigger timely responses of pro-
cessing results in a reliable way. As outcome of this, Fred’s disease will be better managed
with less hospitalization and a higher quality of life.

Outline of this Paper: In section 2, we introduce the basics of our infrastructure for
DSM, calledOSIRIS-SE. Section 3 defines reliability of DSM and introduces classes of
failures in a distributed DSM system. In section 4, we describe the algorithms OSIRIS-SE
implements to achieve a high degree of reliability for data stream management. Section 5
surveys related work in this field and Section 6 concludes.

2 Data Stream Processing with OSIRIS-SE

In this section, we briefly introduce thehyperdatabaseinfrastructure on which our DSM
solution has been built and we introduce basic notions and notations.

2.1 Process Management of the OSIRIS-Hyperdatabase

Since in most domains specialized application systems or components are well in place,
applications are no longer built from scratch but rather by combining services of existing
components into cross-application processes or workflows. These components implement
their own data management and provide application services to the outside. Hence, similar
to supporting access to shared data, current infrastructures need to provide access to shared
services.Hyperdatabases (HDB)[SBG+00, SSSW02, SSW02] offer this infrastructure
that supports the execution of processes on top of distributed components using existing
services. The HDB provides transactional guarantees for processes, sophisticated routing
strategies to dynamically choose among the available components, and allows to balance
the overall load among them. Hence, the HDB provides database-like functionality, but
not at the data level but at the level of access to services.



The OSIRIS(Open Service Infrastructure for Reliable and Integrated process Support)
system [SWSS03] is a prototype implementation of a hyperdatabase infrastructure that has
been developed at ETH Zurich. OSIRIS controls the execution oftraditional processes.
We refer to traditional processes as ordered sets of well defined activities which correspond
to the invocation of (web) services in a request/reply style. Due to the discrete invocations,
these processes are not able to perform data stream processing. Furthermore, OSIRIS
allows for reliable and distributed process execution in a Peer-to-Peer fashion without
centralized control. According to this, a node of the OSIRIS network works off its part of a
process based on locally replicated meta-data about the process definition and then directly
migrates the process instance data to nodes offering a suitable service for one of the next
steps in the process. For this reason, process navigation is decoupled from meta-data
replication. Hence, the infrastructure is able to scale well with the number of processes.
By distributing service requests within the overall system according to the current load
status of providers, process execution can be dynamically adapted (e.g., in case several
semantically equivalent services exist, the provider with the least approximated load is
chosen; this decision is again based on locally replicated load information).

For this reason, the OSIRIS architecture consists of two parts. Firstly, a local software
layer is running on each node, calledHDB-Layer. Secondly, core services offer reposito-
ries for process definitions, available services and provider, load status of services, to name
only the most important. The HDB-Layers can subscribe for parts this global information,
which are locally needed for process execution. By following the concept of transactional
processes [SAS99], the execution of processes can be made reliable, even in case of fail-
ures and concurrent access to shared services. More on the OSIRIS infrastructure, can be
found in [SWSS03, SWSS04].

At UMIT, we have extended the OSIRIS hyperdatabase infrastructure to support data
stream processing. This DSM infrastructre is calledOSIRIS Stream Enabled (OSIRIS-SE).

2.2 Data Streams

A data streamis defined as a continuous transmission of data elements. Each data element
contains several data items as payload information. Data elements have a discrete time,
which is realized by designated data items containingsequence numbers(stream relative).
Sequence numbers allow for the recognition of missing data elements and correct ordering
in a stream. Additional data items for time-stamps have the advantage to allow for time
correlation between data streams.

2.3 Operators

Operatorsperform the processing steps of data stream management. Running instances of
operators are calledoperator instances. In the remainder of the paper, operator is used as
short notation for an operator instance. A node of the OSIRIS-SE network hosting a run-



ning operator is also calledprovider. Providers offer the ability of executing an operator as
a service to the infrastructure.Operator classesimplement different semantics of stream
processing (e.g., operator class A realizes noise reduction on ECG sensor readings.). One
operator class may have multipleoperator types, which all have the same processing se-
mantics, but different device requirements (processor load, memory consumption, power
consumption, network bandwidth, etc.) and also different quality of service parameters
(precision, delay, etc.). Running operator instances process incoming data streams from
upstream operatorsaccording to the operator type and feed the results into outgoing data
streams fordownstream operators. Therefore the infrastructure handles queues for each
input and output data stream of an operator. Also, the infrastructure applies the sequence
numbers to outgoing data elements. The main difference between processing data streams
and service invocations of traditional processes is that data streams have a sequence in
time. This sequence of elements has to be processed in the appropriate time order. The
outgoing data elements again belong to a sequence of elements also called data stream.
Due to this nature of data streams, operators keep and aggregate anoperator stateduring
their life-time of processing. In addition to the task of continuously consuming input and
producing output data stream elements, operators access external systems, e.g., a database
for storage of relevant processing results. The results on external systems are called the
side effectsof an operator.

2.3.1 Sensor/Output Operators

Sensor operators are operators without input data streams. These operators acquire their
input data stream directly from sensors or external systems. Output operators are oper-
ators without output data streams. These operators store or transmit the result of stream
processing to external systems. This interaction with external systems is a side effect of the
operator. Revisiting our initial application scenario with patient Fred, the ”ECG Acquisi-
tion” operator of the process depicted in Fig. 2 is a sensor operator, which acquires Fred’s
ECG signals. The ”Critical Detection” operator in the same figure is an output operator,
which invokes an alarm process in case a critical health status is detected.

2.3.2 Stateful/Stateless Operators

From a processing point of view,stateful operatorsneed to aggregate a processing state in
order to perform their processing.Stateless operatorsdo not need to access state informa-
tion in order to perform their processing. From an infrastructure point of view, both classes
of operators have an attached operator state. The operator state of a stateless operator has
no processing state. Details about the operator state follow in the next section. Revisiting
our initial scenario, the ”ECG Variability” operator of the process in Fig. 2 is an example
of a stateful operator, which calculates the variability of Fred’s ECG signal over a defined
time interval. The time interval is defined by the process user, i.e., Fred’s physician.



Figure 1: OSIRIS-SE Operator

2.3.3 Operator State

Some information about a running operator instance, called operator state, is kept during
the life-time of an operator and is necessary to perform DSM. This operator state handling
is offered by the infrastructure layer of OSIRIS-SE (see Fig. 1). The operator developer
does not need to care about these details. The state of an operator consists of the following
parts:

Time Context: The relative time context of data stream elements is set by attached
sequence numbers. The operator instance shall not process the same data stream
element twice, therefore the infrastructure has to remember the last sequence num-
ber processed for each input stream. Additionally, sequence numbers allow for the
infrastructure to detect if each element has been processed in order to avoid gaps in
stream processing. Also data stream elements produced for outgoing streams have
consecutive sequence numbers whereas the last produced sequence number per each
outgoing stream is part of the operator state.

Processing State:Stateful operators require to aggregate a processing state. For exam-
ple, a windowed average calculation requires to sum all data stream elements within
the time window. After processing a bunch of data stream elements, the running op-
erator instance entrusts the processing state to the infrastructure layer for safekeep-
ing. This is done by offering the operator designer an interface to the HDB-Layer.
If the next bunch of stream elements is ready for processing, the running operator
instance access the aggregated processing state again.

Output Queue: Output queues contain processed data stream elements for downstream
operator and are also part of the operator state. Data stream elements are removed
from the output queue, if no downstream operator relies on them. This queue trim-
ming mechanism is described in Section 4.3.



Figure 2: Stream Process for the Sample Application of 1.1

Routing State: The infrastructure has to know the destination of outgoing data streams,
which is also stored together with the state of the operator.

2.4 Stream Processes

A stream processis a well defined set of logically linked operators continuously processing
the selected input data streams, thereby producing results and having side effects. Optional
outgoing data streams can be used as input streams for other stream processes. Operators
are similar to activities or single service invocations in traditional process management.
Figure 2 illustrates a stream process of Fred, which continuously monitors Fred’s ECG and
blood pressure. Stream processes are designed byprocess developers. In our application
scenario, this can be doctors or application developers with a medical informatics back-
ground in a medical center. In addition,process userswhich deploy and execute stream
processes, are able to customize the stream process before execution according to their
needs. This customization includesquality of service parametersin order to define the ac-
curacy, time-constraints, accepted reliability and priority of the process. Also parameters
of operator processing are customized by the process user. For example, in Fred’s stream
process, thresholds for the critical detection have to be set individually by his physician.

2.5 Stream Process Execution of OSIRIS-SE

Data stream processing of OSIRIS-SE [BSS04] is the continuous execution of stream pro-
cesses as described above. Similarly to the OSIRIS process execution, the execution of
stream processes is based on locally replicated meta-data. Additional information in core



Figure 3: OSIRIS-SE Architecture

repositories is needed for stream processing, like available operators and providers, stream
process definitions, and location of join nodes. The architecture of OSIRIS-SE is shown
in Figure 3. This figure also illustrates the local replication of a stream process definition.

The life-time of a stream process consists of three phases. Firstly, during theactivation
phase, the necessary operator instances of the stream process are activated. This activation
can be seen as a traditional process executing single service invocations, like a request for
operator activation. If the operator has output data streams, this activation request must
contain the routing state in order to know destinations of output streams. The routing of
an operator is done by the HDB-Layer running the upstream operator instance. In case of
multiple upstream operators which exist for a join node, one of the upstream operators is
marked with a routing flag. The HDB-Layer hosting the marked operator is responsible for
routing and its routing decision is propagated to the other upstream operators. Secondly,
during therunning phaseof the stream process all necessary operator instances are active,
process the input streams, generate output streams, and produce side effects. Finally, dur-
ing thedeactivation phase, a shutdown of a stream process is performed, and all running
operator instances of the process are deactivated. More on data stream processing with
OSIRIS can be found in [BSS04].

Revisiting our initial scenario, the stream process of Fred Fig. 2 is activated by his physi-
cian, after applying all necessary body sensors. During the running phase, the stream
process monitors Fred’s ECG and blood pressure signals in order to detect critical situa-
tion and allow for the analysis by the caregiver. After the telemonitoring treatment, the
stream process is deactivated.

Obviously, stream process execution requires sophisticated failure handling. We assume
that failures might happen in all phases of the stream process’s life-time. A detailed dis-
cussion of failure handling in OSIRIS-SE follows in Chapter 4. The next chapter defines
reliability and availability of stream processing and failure classes.



3 Reliability and Failures of Data Stream Processing

In this section, we introduce our understanding of reliability in data stream processing as
well as basic terms in this context. In addition, we discuss relevant failure classes.

3.1 Reliability of Data Stream Processing

In our understanding of reliable data stream processing, stream processes have to be ex-
ecuted in a way that the process specification is met, even in case of failures, i.e., to cor-
rectly execute all operators in proper order. Failing to fulfill this specification and possibly
optional quality of service requirements set by the user indicatesincorrect data stream
processing. Our main focus is driven by reduction of these failure events, which means
to increase the reliability of the system. Reliability is defined based on the probability
in which failures occur. Availability is a different important aspect, where the downtime
of the system is considered. Availability is defined as the ratio of downtime to overall
runtime. Revisiting our medical telemonitoring scenario, we find that short downtimes,
that can be shielded by the queues, are tolerable. If longer downtimes occur, Fred and his
caregiver have to be informed about the situation so that they can act appropriately. This
scenario does not allow low reliability, where incorrect processing results are produced
without knowledge of Fred or his caregiver. The loss of critical processing results may
have serve consequences on Fred’s health status, e.g. critical health conditions are not
detected by his stream process of Fig. 2.

Therefore, reliability of data stream processing is tightly coupled to quality of service pa-
rameters defined by the process user and process designer respectively. Our infrastructure
is designed to meet these requirements even in case of different failures that may occur
and are described further in this chapter. In order to improve reliability, the infrastructure
optimizes the usage of available resources to provide correct stream processing results. In
case correct stream processing is not possible, the infrastructure informs about the situ-
ation. This downtime decreases availability but reliability is maintained. Availability as
another important requirement can be increased by offering more redundant components
within the infrastructure.

3.2 Classification of Failures

3.2.1 Failures of Services

A common failure class is that an existing service, e.g., a running operator, is no longer
available for process execution. This failure may be raised because of the following rea-
sons:

• Network failure: Due to a network disconnection, the service is not reachable. This



failure is common in case of mobile devices with wireless network connection. Sim-
ply leaving the connection range causes such a failure. In this case the local HDB-
Layer on the provider is working but not able to communicate.

• Provider failure: Due to a failure of a service provider, all services running on this
provider are no longer available. This failure is common due to abnormal system
ends of providers. In this case the local HDB-Layer on the provider has also failed.

• Single service failure: One service running on a service provider crashed. In this
case the local HDB-Layer on the provider is working and able to communicate.

3.2.2 Failures of Resources

These failures are triggered if a service provider is not able to fulfill the requested task due
to lack of resources. Load balancing allows to avoid and handle these classes of failures by
smart distribution of processing tasks among the available provider nodes. The following
resources may be subject for load balancing:

• Memory overload: Overflows of operator queues or memory intensive processing
tasks cause this failure. Especially in case of mobile devices with limited memory,
this failure is common.

• Computation overload: This failure is caused by computationally intensive process-
ing tasks. For example, the service provider may be overloaded and is not able to
continue the offer of computation resources. Again, in particular mobile devices are
vulnerable to this failure case.

• Network bandwidth overload: High network load, produced by distributed data
stream processing, can likely exceed the available network bandwidth. If network
bandwidth overload leads to a complete disconnection, this failure class becomes a
network failure.

3.2.3 Duration of Failures

Failures are also classified by the duration the failure exists. This classification is orthog-
onal to the previous failure classifications. According to the duration of a failure, the
infrastructure has to treat the failure differently.

Temporary failuresexist only for a short period of time, e.g., a short network disconnection
or a crashed provider that reboots.Permanent failuresexists for a longer period of time,
e.g., the crashed provider is not able to reboot within the given timeout.

The tolerated timeout for a temporary failure depends on the characteristics of the affected
process (e.g., the frequency of arriving data stream elements or defined quality of service
parameters) but also on available resources for buffering. If the timeout is elapsed, the
temporary failure becomes a permanent failure. Detection and handling of failures by our
infrastructure is discussed in the next chapter.



4 Failure Handling for Data Stream Processing in OSIRIS-SE

Based on the background set in the previous sections, we now present the failure handling
of OSIRIS-SE that allows to achieve a high degree of reliability and availability.

4.1 Failure detection of OSIRIS-SE

Detection of the applicable failure class is inevitable for proper failure handling. This
detection is done by the HDB-Layer on each node of the infrastructure. Consequences of
a failure usually affect more than one node of the infrastructure. Therefore, it is vital for
proper failure handling, that all affected nodes detect the failure or are informed about the
failure and in particular apply a coordinated failure handling strategy. In the following, we
describe how our infrastructure is able to detect the described failure classes.

In order to detect a failure of service, the HDB-Layer on each provider has to observe
other provider’s services. Leveraging the nature of stream processing, combination of
transmission and observation is reasonable. The infrastructure controls the transmission of
data stream elements with an acknowledge protocol as described in [TS01]. Each operator
receives acknowledge messages from downstream neighbors. Receiving no acknowledge
messages is an indication for a failure of a service. Generally, the upstream operator is able
to detect a failure of service but can not distinguish between a network failure, a provider
failure, or a single service failure.

A failure of a resource is detected by the HDB-Layer on the affected provider node, which
keeps track of available resources on its node. The current OSIRIS-SE infrastructure mon-
itors the computation load of each provider and publishes this information via the load
repository. Distinguishing between temporary and permanent failures is achieved by time-
outs. If there is no recovery of the failure within the timeout, the infrastructure classifies
the failure as a permanent failure.

4.2 Failure Handling in OSIRIS-SE

All kinds of temporary failures, e.g., a temporary network disconnection (loss of mes-
sages) or a temporary failure of service provider which recovers within the given time, are
compensated by the output buffers of the upstream provider. After recovery, the upstream
provider resents the data stream elements and receives an acknowledge message.

After exceeding the timeout, a temporary failure becomes a permanent failure. Perma-
nent failures require a more sophisticated failure handling by the infrastructure. Both
permanent failures of services and permanent failures of resources, require to migrate the
operator instance with its aggregated operator state from the affected provider to another
suitable provider. This task is calledoperator migration. In case of a failure of service,
the operator migration is triggered by the HDB-Layer of the upstream provider. Since the



provider that hosted the operator is no longer reachable, the infrastructure needs a backup
of the operator state to allow for correct operator migration. If there are multiple preceding
operators (on different providers) in the process control flow (as for a join operator), the
upstream provider responsible for operator routing is also responsible for operator migra-
tion similar to stream process activation. Other upstream providers are informed about
the routing decision via subscriptions on the join repository. In case of a failure of re-
source, the HDB-Layer of the affected provider detects the failure and is able to perform
the operator migration.

For permanent failures where no operator migration is possible, e.g., there is no suitable
provider available, two additional failure handling mechanism may be applied by the in-
frastructure.

Alternative Processing Branchesare defined to continue data stream processing. For ex-
ample, patient Fred is leaving the connection range with his body sensors connected to
his PDA. In the present case, the infrastructure layer on the PDA, as service provider, is
not able to migrate the operators out of reach. Instead, the infrastructure layer activates
an alternative processing branch starting from the operators running on the PDA. The al-
ternative processing branch offers the use of alternative operators to aggregate and store
data stream processing outcomes with less accuracy on the PDA itself during times of
disconnections.

In cases where operator migration is not applicable and also no alternative processing
branch is defined,invocation of traditional processeshandle the failure. This traditional
processes are defined by the process designer, which describe how to deal with the failure.
The process user, e.g. Fred’s physician, is able to customize this process. In case of Fred
leaving the house, an alarm process can inform him to return in connection range or send
an alarm SMS by using his cellular phone. Fred’s cell phone number is a process parameter
customized by his physician, who is the process user.

Compared to failure handling of traditional processes, stream processes need more sophis-
ticated failure handling strategies. Due to the fact that operators of stream processes are
continuously running, operator instances aggregate an operator state during their execu-
tion. Failure handling requires to migrate this running operator instance to a new provider.
This migration requires to access a recent backup of the operator state for a correct initial-
ization of the newly created operator instance.

4.3 Output Queue Trimming and Operator Backups

Each output stream of an operator has a corresponding output queue. The output queue
contains outgoing data stream elements for one or more downstream neighbors. Our in-
frastructure allows for sending one output stream to multiple downstream neighbors. After
sending, the sent elements still remain in the queue. Two kinds of acknowledge messages
control the work and the trimming of the output queue. Acknowledge messages contain a
timestamp in form of a sequence number to express, that all elements before this point in
time are affected.



Firstly, a downstream neighbor sends areceive-acknowledgemessage, which indicates that
all elements before the given timestamp have reached its input queue. This acknowledge
only affects the transport mechanism, which means that the acknowledge elements are not
send again in the next sending phase, but the downstream neighbor can still rely on this
element and is able to request them again if necessary.

Secondly, the downstream operator sends atrim-acknowledgemessage, which indicates
that all elements before the given timestamp have been processed and are no longer needed.
If elements of the output queue are acknowledged in this way by all downstream operators
the affected elements are removed from the output queue. The downstream neighbors are
no longer able to request these elements again.

The consequences of the second acknowledge mechanism are highly relevant for failure
handling and operator migration. If a running operator instance needs to be migrated to
another provider, a new operator instance is created and initialized with the old operator
state. This state corresponds to a distinct point in time, where certain elements of input
streams have been processed. This processing has produced the restored processing state
and the elements in the restored output queues. A new operator instance initialized with
this operator state expects to process input elements from this distinct timestamp in order
to seamlessly continue the output production. These necessary input elements are retrieved
from the output queues of upstream operators.

If the infrastructure makes a reliable backup of an operator state, all input elements before
this timestamp are no longer needed and acknowledged for trimming. In this case, side
effects of data stream processing before this point of time are not produced again.

4.4 Unsynchronized Operator State Backups

In this section, we discuss how our infrastructure makes internal state backups and why the
synchronization of backups is necessary for reliable data stream processing. In the simplest
case, backups of operator states are not synchronized.Unsynchronized Operator State
Backupsallow for the infrastructure to decide for each operator a backup time without
coordination with backups of other operators. For example, the infrastructure plans the
backup in regular intervals individually for each operator.

For illustration, we consider a simple stream process consisting of a daisy chain of three
operators (A, B, and C) as shown in Figure 4. Each operator backup is done by the in-
frastructure but not synchronized with other backups. If we look a the stream process at
an arbitrary point in time the timestamps (tout

A , tinB , tout
B , tinC ) of the operator state back-

ups are in any order. Generally, a backup is referenced by one timestamp for each input
stream, e.g.,tinB , and each output stream, e.g.,tout

B , where the timestamp references the
last element received or produced.

In case of a single failure, e.g., the provider hosting operator B fails, the provider of oper-
ator A detects the failure and is able to migrate the operator instance. A new operator B
instance is started and preloaded with the operator state backup of timestamp (tin

B , tout
B ).

Since operator A knows that operator B has been migrated, operator A starts feeding op-



Figure 4: Unsynchronized Operator Backup

Figure 5: Times of backup for two consecutive operator migrations

erator B with data stream elements after the acknowledge for trimming timestamp which
equals the backup timestamptinB . The newly instantiated operator will start to produce
data stream elements after the timestamptout

B . Since the failure has occurred some point
in time beforetinB , tout

B , the new operator instance will produce some elements which the
failed operator instance has already produced (all elements betweentout

B and the time of
failure). For this reason, the input queue of operator C receives duplicates of some data
stream elements, which are transparently dropped by the infrastructure. In case of sin-
gle failure, unsynchronized operator state backups are sufficient for reliable data stream
processing.

If two consecutive operators in the process control flow fail, unsynchronized operator
backups perform different. For example, operator B and C will fail. We can define differ-
ent cases dependent of backup times (see Fig. 5).

Firstly, the backup of operator B occurs before the backup of operator C (tout
B < tinC )

as illustrated in Fig. 5a. Operator B will be migrated by the infrastructure and restarts
producing data stream elements at timestamptout

B . Operator C is also migrated and expects
data stream elements aftertinC . In this case, operator C will receive some duplicates of



tuples, which can be safely dropped.

Secondly, if the backups are synchronous (tout
B = tinC ) no duplicates are produced (see

Fig. 5b). Generally, if backup times are ordered as in case a.) and b.), reliability for
multiple failures is achieved, because not data elements are omitted from processing.

Thirdly, the backup of operator B is later than the backup of operator C (tout
B > tinC ), see

Fig. 5c. If so, the new operator B produces elements aftertout
B . But the newly instantiated

operator C expects to receive elements aftertinC , which is later in time. In this case, unsyn-
chronized operator backups are not able to correctly process an incoming stream and thus
to provide reliable DSM. If quality of service definitions allow for limited reliability which
tolerates small gaps in data streams, unsynchronized operator state backups are applicable.

In order to provide full reliability in case of multiple failures, our infrastructure has to
guarantee that backups of preceding operators in the process control flow are always done
later in time or synchronous. For this reason, we propose an algorithm in our infrastructure
to achievesynchronized operator backups.

4.5 Synchronized Operator State Backups

Synchronized operator state backups describe an algorithm that applies to the planning of
operator state backups in order to guarantee that the input backup timestamp of an operator
is equal to the output backup timestamp of the preceding operator. This algorithm is a
protocol between two subsequent operators in the process control flow and controls the
times of operator backups. The protocol consists of two phases and the proceeding is
similar to the two phase commit protocol [Gra78] ensuring global commits in distributed
transactions.

In the first phase (planning phase), an operator backup is scheduled by the infrastructure.
For unsynchronized backups, the infrastructure would make an operator state snapshot for
permanent storage, but in the synchronized case the HDB-Layer stores the backup only
temporarily not overwriting the former operator backup. The backup is planned for per-
manent storage, but the HDB-Layer has to guarantee that backups of subsequent operators
in the process control flow match this backup. For this reason, backup-requests for the
timestamp of the temporary backup are sent to all downstream neighbors. The output
queue part in the operator backup contains only elements after the time of the backup
request.

In the second phase (backup phase), the requests are executed by the HDB-Layer of all
providers hosting downstream operators and appropriate acknowledge messages indicate
the result of the backup request. Only if appropriate acknowledge messages of all down-
stream operators are received, the infrastructure overwrites the old operator backup with
the temporary backup.

Revisiting our daisy chain of three operators again (see Fig. 4), we illustrate this algorithm
according to Figure 6. In this scenario, our infrastructure provides synchronous backups
of the three operators A,B, and C.



Figure 6: Synchronized Operator Backup

In the following, we describe how the infrastructure performs operator backup of A, which
is synchronous to the backup of B. The HDB-Layer of operator A sends a backup request
for timestamptout

A to the HDB-Layer of operator B. If the HDB-Layer of operator B sends
an acknowledge indicating a trim for timestamptinB and tout

A = tinB , the HDB-Layer of
operator A has an acknowledge of all downstream neighbors (operator B) and is allowed
to save the backup of operator A permanently.

This protocol can be cascaded to chains of arbitrary length, because the infrastructure run-
ning the operator which receives the backup request may also start a synchronous backup
by applying this protocol on the downstream neighbors. On the other hand, synchronized
and unsynchronized operator backups can also be combined. For parts of the stream pro-
cess where quality of service definitions require high reliability because even small gaps
in data stream processing are not tolerable, synchronized backups are applied. For less
critical parts of the stream process, unsynchronized backups are sufficient. Also splits in
the process control flow are supported since requests are send to all downstream opera-
tors that follow the split and acknowledges of all downstream neighbors are necessary to
perform the permanent backup. Additionally, network traffic overhead is reduced due to
smaller output queues contained in the backups.

As for many tasks in data stream processing, we have to investigate the performance of
synchronized operator backups on join operators more precisely. Since join operators have
multiple preceding operators in the process control flow, they may receive backup requests
on all inputs. Obeying all backup requests received from the inputs increases the frequency
of backups. In particular, if synchronized backups are cascaded for the outputs, then also
subsequent operators will suffer from this burden. For the reduction of this backup burden
we will combine backup requests from different inputs by extending the existing operator
backup with input elements of the time between the requests. Theseextended synchronized
operator backupsare applied if the backup requests are close in time. Close in time means
that only a limited amount of input elements can be received between the backup requests.
This limit is dynamically set by the infrastructure by comparing the sizes of extended
operator backups with existing operator backups for the affected operator instance. An
extended operator backup increases with the time elapsed since the last operator backup.



Figure 7: Extended Synchronized Operator Backup

Figure 8: Extended Synchronized Operator Backup Sequence Diagram

4.6 Extended Synchronized Operator State Backups

Extended synchronized operator state backups allow for extending operator backups to the
input side. This proceeding is useful if a join operator receives multiple operator requests
that are close in time.

For illustration, we describe a simple stream process consisting of two operators (A and
B) feeding a join operator C (see Fig. 7 and the sequence diagram in Fig. 8). Operator A
sends a synchronous backup request at timetout

A . Operator C receives this backup request
on input a and initiates a backup referenced bytina

C , tinb
C . Shortly later, operator C receives

a backup request on input b fortout
B from operator B. Shortly after means that operator C

has processed some input elements on input b since the last backup (tout
B > tinb

C ). For this
reason, the backup of the subsequent operators C is prior to B. In case B and C fail and
are recovered from their backups, operator C faces a gap in input b. In order to allow for



backup combination while at the same time avoiding the production of gaps, we introduce
a mechanism to extend the existing backup. Revisiting our example scenario, operator C
receives a backup request (tout

B ) on input b shortly after executing a backup referenced
on this input bytinb

C . Operator C extends the existing backup by the elements of input
b betweentinb

C andtout
b . Now, the current backup allows for acknowledgingtout

B and is
referenced bytina

C , t‘inb
C whereast‘inb

C = tout
B . Time references on other inputs or outputs

are not affected by this extension.

The outcome of extended synchronized backups is even more beneficial if we think of cas-
caded synchronized operator updates. In this case, the extension affects only the pending
temporary backup. Backup requests already sent to the downstream neighbors remain still
valid for this backup.

5 Related Work

Data stream management has received an increasing popularity among researchers in the
recent years. In what follows, we briefly introduce main DSM projects, focusing in partic-
ular on aspects of distribution and reliability.

Aurora [B+04] allows for user defined continuous query processing by placing and con-
necting operators in a query plan. Queries are based on a set of well-defined operators.
QoS definitions specify performance requirements. Extensions of Aurora also address
DSM in distributed environments. In particular, inBorealis[B+04], the extension of Au-
rora, the main emphasis is on aspects of distributed DSM. Algorithms for high available
DSM in context of Aurora are discussed in [HBR+03].

TelegraphCQ[C+03] is a DSM project with special focus on adaptive query processing.
Fjords allow for inter-module communication between an extensible set of operators en-
abling static and streaming data sources.Eddiesdescribe adaptive query processing. Sets
of operators are connected to the Eddy, and Eddy routes each tuple individually.Flux
[SHCF03] provides load balancing and fault tolerance by providing adaptive partitioning
of operator execution over multiple network nodes. This is realized by placing Flux be-
tween producer consumer pairs. Work on supporting high availability and fault-tolerance
for Flux can be found in [SHB04].

The StreamGlobe[SK04] project aims at providing distributed DSM in heterogeneous
peer-to-peer network environments. The infrastructure of StreamGlobe is based on the
Grid reference implementationGlobus Toolkitand an additional Peer-to-Peer network
layer. Meta data distribution is based onObjectGlobe[B+01]. An additional aspect of
this work are XML data streams and XQueries on these streams.

Pipes[KS04] offers a variety of basic building blocks for DSM in the Java XXL library.
The library approach of Pipes enables the creation of a tailored DSM system to a spe-
cific application scenario. Pipes integrates a query construction framework and covers
the functionality of the Continuous Query Language (CQL). Additional frameworks for
scheduling, memory management, and query optimization are also provided.



TheP-Grid [A+03] project is not directly related to DSM, but covers interesting issues that
are also relevant to our infrastructure. P-Grid provides an advanced, fully decentralized
peer-to-peer infrastructure. A peer-to-peer lookup system offers access to global available
information replicated among the available peers. Reliability is achieved by redundant
replication. Additionally, P-Grid also covers the problem of updates on these distributed
replicas.

6 Conclusion

In this paper, we have introduced OSIRIS-SE, a stream-enabled hyperdatabase infrastruc-
ture that provides a high degree of reliability. For this reason, OSIRS-SE is particularly
suited to be used in healthcare applications where a high degree of reliability is a vital
requirement. Compared to other approaches in this field, our infrastructure offers some
unique characteristics. Firstly, dynamic peer-to-peer process execution where reliable lo-
cal execution is possible without centralized control. Secondly, the combination of DSM
and process management in a single infrastructure offers new possibilities to process de-
signers, like sophisticated customized failure handling, if recovery or operator migration is
not available (e.g., definitions of alternative stream process branches or invocation of trans-
actional processes for failure handling). Moreover, the OSIRIS-SE infrastructure supports
extensibility, based on the integration of existing building blocks or new complex disease
specific operators, as they can be found in healthcare applications, e.g., specialized pro-
cessing of ECG data with side effects that store critical events in the patient record, or call
an emergency service.

The OSIRIS-SE infrastructure is completed by an extended version of our process de-
sign tool O’Grape [WSN+03] that allows to define and deploy stream processes. Cur-
rently, OSIRIS-SE is used in comprehensive evaluations and experiments. First results
(that can be found on our project-website [OSI]) measure the network traffic overhead of
unsynchronized operator backups. These results indicate the high network traffic overhead
this backup algorithm requires. More advanced evaluations will address the overhead of
synchronized backups. Future work will concentrate on the support of mobile devices,
especially on the dynamic re-routing of stream processes in case these devices will be
disconnected.
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