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ABSTRACT
Business processes executing in peer-to-peer environments usually
invoke Web services on different, independent peers. Although
peer-to-peer environments inherently lack global control, some busi-
ness processes nevertheless require global transactional guarantees,
i.e., atomicity and isolation applied at the level of processes. This
paper introduces a new decentralized serialization graph testing
protocol to ensure concurrency control and recovery in peer-to-peer
environments. The uniqueness of the proposed protocol is that it
ensures global correctness without relying on a global serializa-
tion graph. Essentially, each transactional process is equipped with
partial knowledge that allows the transactional processes to coor-
dinate. Globally correct execution is achieved by communication
among dependent transactional processes and the peers they have
accessed. In case of failures, a combination of partial backward and
forward recovery is applied. Experimental results exhibit a signif-
icant performance gain over traditional distributed locking-based
protocols with respect to the execution of transactions encompass-
ing Web service requests.

Categories and Subject Descriptors
H.2.4 [Systems]: Concurrency, Transaction processing

General Terms
Measurement, Performance, Reliability

Keywords
DSGT, Decentralized Coordination, Global Correctness, Peer-to-
Peer Communication, Transactional Processes, Partial Rollback.

1. INTRODUCTION
With the proliferation of e-business technologies, service-oriented
computing is becoming increasingly popular. Access to data and
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documents is provided byserviceswhich can range from simple
read/ write operations on data items to complex business functions
like booking a trip. An important challenge is to combine service
invocations into a coherent whole by means ofprocesses[13, 3].
Workflow and process technologies support this kind of service
composition, usually provided by sophisticated system infrastruc-
tures like IBM’s WebSphere [6]. However, such systems require
a global coordinator (or a set of such coordinators replicated for
performance reasons). While this can be easily enforced for well-
established business interactions, it is no longer true when interac-
tions rather follow an ad-hoc style.

In peer-to-peer (P2P) environments, each peer provides a set of
services that can be composed to processes. These processes might
run over several peers. An important task in such environments is
to ensure a globally correct execution of these processes, i.e., to
provide atomicity and isolation applied at the level of processes.
This demands for a concurrency control and recovery technique
that respects the P2P style of communication between the system
components and that is able to scale to large networks of peers.

Conventionally, isolation and atomicity are enforced using a lock-
ing protocol like the strict two-phase locking (2PL) in combination
with a global commit protocol like the two-phase commit (2PC)
[1, 11]. Such protocols are usually applied to short living transac-
tions and are state-of-the art in application domains which allow
centralized approaches. However, for P2P environments concepts
from distributed transaction processing are required, i.e., S2PL is
combined with a distributed deadlock detection protocol like [10,
12, 7]. Other options are optimistic protocols or timestamp order-
ing protocols, respectively. Optimistic protocols, such as proposed
in [8], can be applied in P2P environments without modifications.
They execute transactions completely and check directly before the
commit whether the transaction is allowed to commit. Thus, op-
timistic approaches come along with a high number of rollbacks
when the duration of transaction execution is high. Timestamp or-
dering protocols are often used in distributed environments since
they do not require coordination of different resources [1]. Instead,
each transaction is associated with a timestamp reflecting its en-
trance into the system. The ordering of executed service invoca-
tions of different transactions on each peer must reflect this order.
Thus, a high number of transactions are unnecessarily aborted. In
distributed environments, the additional problem of global time and
clock synchronization arises.

In this paper, we present a new protocol for ensuring concur-
rency control and recovery especially in P2P environments. Es-
sentially, the protocol ensures globally correct executions without
involving a global coordinator. The main idea of the protocol is that
dependencies between transactions are managed by the transactions
themselves. A core aspect is that globally correct executions can be
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Figure 1: System Model

achieved even in case of incomplete knowledge by communication
among dependent transactions and the peers they have accessed.
The protocol relies on a decentralized serialization graph, where
each peer logs local conflicts and each transaction maintains a local
serialization graph. While the local conflict information of a peer
reflects the dependencies among the transactions that invoked ser-
vices on that peer, the serialization graph of a transaction includes
the dependencies in which the transaction is involved.

Since synchronous updates are not appropriate for any kind of
distributed environment due to performance reasons [4], the update
of the local serialization graphs is performed in a lazy manner. In
consequence, the serialization graphs will not necessarily be up-
to-date. If at commit time a transaction is able to deduce out of
its local serialization graph that does not depend on another active
transaction, it is allowed to commit. Conversely, if a transaction
detects a cycle in the serialization graph, the cycle has to be re-
solved by rolling back one or more transactions involved in this
cycle. Here, combining partial backward and forward recovery al-
lows to significantly reduce the amount of work needed to recover
from such a failure.

The paper is organized as follows: Section 2 introduces our de-
centralized serialization graph (DSGT) protocol for ensuring con-
currency control and recovery in P2P environments. Section 3
presents results we achieved from experiments with our protocol.
Section 4 reviews related work and Section 5 concludes.

2. THE DSGT PROTOCOL

2.1 System Model
As illustrated in Figure 1, we assume a P2P network where each

peerPi offers a set of servicesOPi = {sPi
1 , sPi

2 , . . . sPi
ni
}. The ser-

vices of a peer can be invoked within transactionsTk = (OTk , <Tk )
using the service interface of that peer. In the following,OTk de-
notes the set of services to be invoked by transactionTk and<Tk

the partial order defined overOTk .
A transaction may fail due to several reasons. To ensure atomic

executions, the effects of the transaction’s service invocations must
be compensated. This compensation is done by invoking compen-
sation services in reverse order (cf. [13]). Following usual prac-
tice in semantic concurrency control, we also assume that the peers
provide for each servicesj they offer an inverse services−1

j that
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Figure 2: States and Transitions in the DSGT Protocol

semantically undoes the effect of the invocation ofsj . Note that
the effects of an inverse service strongly depend on the semantics
of the original service. It might also be an “empty service”.

For correctness, we rely on the criterionconflict preserving se-
rializability [1]. Following [15], a schedule (the services invoked
by the transactions of the system and the order between them) is
correct, if and only if the serialization graph of the schedule is
acyclic. In this case, the schedule is calledserializable. A seri-
alization graph contains a dependency between two transactions, if
there is at least a pair of service invocations of both transactions
that is in conflict, i.e., changing the order of these service invo-
cations results in a different final system state or different system
outputs (a formal definition for conflicts between semantically rich
operations can be found in [15]).

Enabling the peers to detect conflicts between service invoca-
tions performed by them requires to equip each peer with its local
conflict matrix. This matrix contains information which services of
that peer pairwise conflict (and under which conditions). To con-
centrate on the main aspects of DSGT, we assume here that service
invocations on different peers are not in conflict. However, results
presented in [14] are applicable to remove this restriction. In ad-
dition, each peer has to store in its local log which service invoca-
tions of which transactions it has executed. Using this information
together with the local conflict matrix, a peer detects conflicts be-
tween local service invocations of different transactions. Note that
the peers do not maintain serialization graphs but only local logs.

In contrast, each transaction owns a local serialization graph
which comprises the conflicts in which the transaction is involved.
Essentially, the graph contains at least all conflicts that cause the
transaction to be dependent on other transactions. This partial knowl-
edge is sufficient for transactions to decide whether they are al-
lowed to commit. Note that a transaction can only commit after all
transactions on which it depends have committed.

But reasoning whether a transaction is allowed to commit is not
sufficient. Additionally, the system must be able to recover from
failures. In what follows, we use the notion ofrecoverability[1] as
criterion for correct failure handling. It is important to note that our
system model does not require a component that maintains a global
serialization graph.

2.2 Idea and Overview of DSGT
The decentralized serialization graph test (DSGT) protocol relies

on the following observations:

• Dependencies between transactions can be managed by the
transactions themselves.



Algorithm 1: Peer Protocol
while true do

wait for next message m;
switch message type of m do

case Tinvoking invokes service si

execute service si;
set T ?

conflicting := ∅;
foreach e ∈ Log do

if e.T 6= Tinvoking ∧ (e.service, si) ∈ CON then
T ?

conflicting := T ?
conflicting ∪ Tinvoking ;

end
end
add (si, Tinvoking) to Log;
return T ?

conflicting ;

case Tc commits
// collect all dependent transactions
T ?

post := ∅;
foreach e ∈ Log with e.T = Tc do

foreach e′ ∈ Log with e′ > e do
if e′.T 6= Tc ∧ (e.service, e′.service) ∈ CON then

T ?
post := T ?

post ∪ {e′.T}
end

end
end
// remove all log information of committing transaction Tc

foreach e ∈ Log do
if e.T = Tc then

remove e from Log;
end

end
end

end

• Globally correct execution can be achieved even in case of
incomplete knowledge and in the absence of a global coordi-
nator by communication among dependent transactions and
the peers on which these transactions have performed service
invocations.

Following these observations, DSGT guarantees that a transaction
only commits after all its pre-ordered transactions have committed.
A transaction receives the information about its pre-ordered trans-
actions from the peers where it has invoked services. Essentially,
each peer attaches a list of conflicting services and their associated
transactions to the results of each service invocation. The trans-
action maintains these dependencies in its local serialization graph
and is then able to decide autonomously whether or not it is allowed
to commit. If at commit time a transaction detects that there is an
active transaction on which it depends, it waits until it receives in-
formation about the commit of the other transaction. Thus, it is part
of the protocol that each transaction informs all its post-ordered
transactions about its commit. The transaction receives the infor-
mation about its post-ordered transactions at commit time from the
peers on which it has invoked services.

It is important to stress that DSGT is an optimistic variant of
a distributed serialization graph testing protocol. Services are ex-
ecuted without checking for conflicts, i.e., conflicts are detected
afterwards and – in contrast to the pessimistic centralized serializa-
tion graph testing – (cascading) rollbacks may be needed to resolve
cyclic dependencies. To reduce the recovery costs, DSGT applies
partial rollback by executing compensation services until the point
where the cyclic dependencies disappear. Then, DSGT continues
the forward execution of the services from that point on.

Figure 2 illustrates the states of the DSGT protocol with a special
focus on the part running on the transaction side.

The part of the protocol that runs on each peer reacts on requests

Algorithm 2: Transaction Protocol
ST := [s1, . . . , sn]; // services to be invoked by T
PT := {}; // peers on which T invoked services
SGT := {}; // local serialization graph of T

Main Execution Thread:
// 1. invoke services and update serialization graph
foreach si ∈ ST do

invoke si at an appropriate peer p and add p to PT ;
wait for reply from p;
update SGT based on reply information;
propagate changes to pre-ordered transactions Ts (if SGT is
changed);

end
// 2. wait until all pre-ordered transactions have committed
wait until there is no incoming edge to node T in SGT ;
// 3. inform all peers such that they can clean up their logs
foreach p ∈ PT do

send ’commit’ to peer p;
update SGT based on reply information;

end
mark T as ’committed’ in SGT ;
propagate updated SGT to post-ordered transactions;
terminate ;

Event Handling Thread:
while true do

if new graph message SGnew arrived then
let SGred

T the reduced version of SGT ∪ SGnew ;
propagate SGred

T to pre-ordered transactions (if SGred
T

changed);
end
if SGT changed ∧ SGT cyclic ∧ T is victim then

abort;
end

end

from transactions. Each peer awaits requests from transactions:

• In case of a service invocation, the peer logs the service in-
vocation, executes the service, and determines all conflicts
(if any) using the local log file and the local conflict matrix.
Finally, it sends back to the invoking transaction the result of
the service invocation together with a complete list of con-
flicts that have occurred. This list of conflicts contains all
service invocations of other transactions at this peer that are
in conflict with the current invocation.

• If compensation of a service invocation is requested, the peer
executes the corresponding compensation service or informs
the transaction that other transactions have to compensate
service invocations cascadingly. Note that a peer does not
distinguish between regular services and compensation ser-
vices. From the point of view of a peer, both are just services.

• If a transactionTm wants to commit, it informs all peers on
which it has invoked services. These return the list of post-
ordered transactions on this peer. This information is needed
to inform the dependent transactions about the commit (these
dependent transactions might already wait for the commit of
Tm in order to commit themselves).

Algorithm 2.2 defines the part of the protocol that runs on each
peer.

The part of the protocol that runs on each transaction consists of
two threads. The proactive execution thread is always in one of the
following states:

Forward Execution: The transaction invokes services according
to its specification.
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Figure 3: Service Invocation Procedure

Backward Execution: The transaction rolls back partially by in-
voking compensation services in the corresponding inverse
order.

Validation: The transaction waits until the corresponding node in
the local serialization graph has no more incoming edges.
Only in this case the transaction is allowed to commit.

Inform Peers: The transaction informs all peers on which it has
invoked services about its commit. Thereby, the transaction
not only gets the information from these peers about its post-
ordered transactions, it additionally prevents that in future
any peers will return a conflict where this transaction is in-
volved in.

Inform Txs: Finally, the transaction informs all its post-ordered
transactions about its commit.

The following state transitions can take place:

Forward Execution → Validation: If the transaction has executed
successfully all specified services, it changes to the valida-
tion state.

Validation → Backward Execution: If the transaction detects that
it is involved in a cycle and that it is the victim for rollback,
it changes to the backward execution state.

Forward Execution → Backward Execution: This transition hap-
pens when the transaction must rollback due to the rollback
of a pre-ordered transaction or when the local serialization
graph contains a cycle and the transaction is the victim.

Backward Execution→ Forward Execution: As soon as all re-
quired service invocations are compensated, the transaction
changes to forward execution again.

Validation → Inform Peers: This transition occurs when the val-
idation yields that the local serialization graph contains an
incoming edge from an active transaction.

Inform Peers→ Inform Txs: This transition happens as soon as
all corresponding peers have responded to the transaction.

Algorithm 2 describes the part of the protocol that runs on the
transactions to detect cycles in the local serialization graph.

In the following subsection, we show how DSGT ensures global
correctness.

2.3 Ensuring Global Correctness
The main execution thread of the transaction protocol consists of

three phases. Phase 1 is the execution phase. In this phase, a trans-
action invokes services in an optimistic manner without requesting
any locks (cf.t = 1 andt = 4 in Figure 3). Then, the peers exe-
cute the services according to Algorithm 2.2. The peers determine
the emerging conflicts (t = 2 resp. t = 5) and return them to the
transaction (t = 3 resp. t = 6). As soon as the transaction has
executed all services, the main execution thread enters the valida-
tion phase. The transaction now has to wait until it does not (or
no longer) depend on any other active transaction. As soon as this
condition is fulfilled, the main execution thread enters the commit
phase, in which the peers are informed about its commit. Addition-
ally, the transaction informs its post-ordered transactions about its
commit. This is necessary since these transactions might wait for
this commit in order to commit as well. The serialization graph up-
date thread of the other transactions receives this information and
changes the corresponding local serialization graph accordingly.

To sum up, transactions invoke services without determining on
the spot the corresponding effects on the serialization graph. Nev-
ertheless, at least prior to the commit, a validation is performed
that checks whether the transaction has been executed correctly
and whether it is therefore allowed to commit. This is closely re-
lated to well-established optimistic concurrency control protocols
like backward-oriented concurrency control [8] and to serialization
graph testing protocols [16]. As in all other cases, transactions are
allowed to commit in DSGT only if they do not depend on an active
transaction. Transactions get this information from the peers they
invoke services on. We thus can state, thatno transaction commits
before all its pre-ordered transactions have committed, which guar-
antees a serializable schedule (formal proofs are presented in [5]).

Secondly, an important aspect of the commit phase is thattrans-
actions willing to commit eventually succeed when all pre-ordered
transactions have committed(the proof can also be found in [5]).
Consider again Figure 3.T1 does not know about the conflict with
T2. However, in order to be able to commit,T2 must be informed
whenT1 commits. Therefore, since the dependency withT1 is not
known toT2, we cannot require the latter to queryT1 for its state.
Rather,T1 has to actively notify all peers it has accessed during its
execution about its commit (t = tc). Each peer checks for rele-
vant conflicts (t = tc + 1) and returns this information to the issu-
ing transaction (T1) before removing the entries of the committing
transaction from the log (at timetc = t + 2).

2.4 Cycle Detection
A transaction involved in a cycle must detect this. To detect a

cycle, a transaction must have the relevant conflict information.
Therefore, transactions have to exchange their local knowledge on
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conflicts. Since synchronous updates of local serialization graphs
are not appropriate for any kind of distributed environment due to
performance reasons [4], the update has to be performed in a lazy
manner. In consequence, the serialization graphs will not necessar-
ily be always up-to-date.

A cycle in the serialization graph implies the following:

1. None of the involved transactions can commit due to cyclic
dependencies.

2. The cycle will not disappear without any intervention.

3. Cycles might be caused by conflicts of more than two trans-
actions executed on different peers. So neither a peer nor a
transaction is able to detect cycles based on their local knowl-
edge alone.

The implementation of the information exchange for detecting cy-
cles covers three aspects: i.) If a transaction causes a new conflict,
it updates its local graph and propagates the graph to its pre-ordered
transactions. ii.) A transaction uses a graph received from another
transaction to update its local serialization graph. If this leads to
changes, it propagates its updated graph to its pre-ordered transac-
tions (Certainly, other approaches work theoretically as well, e.g.,
distributing conflict information to all other transactions in the sys-
tem or to all other ones of the same partition of the serialization
graph. The other extreme – no communication at all between trans-
actions – would correspond to a timeout heuristic: A transaction not
being able to commit assumes after some time to be involved in a
cycle and rolls back. However, due to lack of space, we concentrate
in this paper on the path-pushing approach which turned out to be
the most efficient one in our experiments). iii.) If the transaction
detects a cycle and the victim selection strategy selects itself as the
victim, it aborts.

This approach is heavily inspired by distributed deadlock detec-
tion algorithms, especially by path pushing approaches such as pre-
sented in [10]. Of course, the semantics of serialization graphs and
wait-for-graphs are different. Figure 4 illustrates the graph propa-
gation mechanism of DSGT. The figure shows the local graphs of
the transactionsT1 andT3. At time t = 1, T1 invokes a service
on the peer, which causes a conflict withT3. The peer returns this
information att = 2. T1 updates its local serialization graph with
this information (t = 3). Then,T1 propagates its graph to the pre-
ordered transactionsT2 andT3. At t = 4, T2 receives this message.
It updates its local graph. After updating its graph,T3 propagates
the changes toT4.

2.5 Partial Rollback
DSGT uses partial rollback to reduce the costs of rollbacks. Ba-

sically, a transaction does not roll back completely, but only to the
point at which the (isolation) failure is resolved, i.e., where the

cyclic dependencies have disappeared. This concept is applicable
for all kinds of protocols, but it is especially useful for reducing
the effect of cascading aborts which may appear in DSGT. Figure 5
illustrates this. There are five transactions whose service invoca-
tions lead to a cycle in the serialization graph. Assume thatT1

is chosen as victim. Using complete rollback implies that undo-
ing sT1

a requires to undo also transactionT2 because of the conflict
(sT1

a , sT2
a ). But then, not onlysT2

d , alsosT2
b andsT2

e have to be
compensated requiring to undo alsoT5 andT3. ChoosingT2 or T3

instead ofT1 as victim would lead to the same result. So, obviously,
a cycle in case of serialization graph testing implies to rollback all
transactions forming the cycle plus all post-ordered transactions.

Partial rollback may reduce this drawback: ChoosingT1 as the
victim to be rolled back completely implies thatT2 compensates
sT2

a because of the conflict. This requiresT2 to compensate also
sT2

d because it has been executed aftersT2
a . However, additional

compensations are not necessary and especiallysT2
b remains un-

touched, so thatT3 andT5 do not have to rollback. Thus, this ex-
ample shows how the avalanche of cascading aborts can be stopped
by using partial rollback.

To express in a schedule how far a transaction has to be compen-
sated, we introduce the partial rollback operatorrTv,sb . It denotes
that service invocations should be rolled back until (and including)
servicesb of Tv.

Following the ideas of the unified theory of concurrency control
and recovery [15], an abort is replaced by a sequence of compen-
sation service invocations of the associated forward execution in
reverse order. This is calledexpansion. In here, we assume perfect
commutativity behavior [15]. The expanded scheduleS′ comprises
(1) the “old” service invocations, (2) the service invocations of the
victim transactions which have to be undone, and (3) all cascading
compensation service invocations.

Partial rollback can be used for recovering a schedule from an
isolation failure. The followingrule states how and where to insert
the partial abort operator in the schedule1 (in what follows, we de-
note the service invocations ofT1 ass11 . . . sn1 .): LetS = (O, <)
be the schedule, in which the transactionsT1 . . . Tn form a cycle.
Let Tv be the victim transaction selected out ofT1 . . . Tn. Then
the resulting scheduleS′ = (O′, <′) is constructed as following:

O′ = O ∪ {rTv,s11
} and <′= < ∪{snv < rTv,s11

}

A schedule containing a partial rollback operator is correct, if the
expansion of this schedule can bereducedto a serial one using an
arbitrary sequence of the following transformation steps:

1. Commutativity Transformation: Two service invocations of

1This includes the orthogonal problem of victim selection. How-
ever, our experiments show that choosing the youngest transaction
is usually the best approach.
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different transactions might be exchanged, if and only if there
is no other service invocation between them establishing a
transitive order between the two.

2. Undo Reduction Transformation: Two service invocations
can be removed together, if and only if (i) the second one is
the inverse of the first and (ii) there is no transitive ordering
established between them by a third service invocation.

We conclude this section with highlighting an important property
of our operator placement strategy. If a set of transactions forms
a cycle in the serialization graph, the rollback operation placement
leads to an acyclic serialization graph after the expansion and re-
duction of the schedule (proof see [5]).

3. EXPERIMENTAL EVALUATION
We have evaluated DSGT in an application server environment.

The experimental setup consists of client hosts, on which trans-
actions run, and one application server representing a peer.2 The
application server follows a three-tier architecture. The upper layer
is the Web Container which constitutes a full-fledged HTTP server.
The Web Container hosts Web service servlets handling SOAP ser-
vice calls on the client hosts. Every time a SOAP request arrives,
the Web service servlet in the Web container invokes a stateless
session bean in the EJB container. The EJB container forms the
middle layer of the application server. Besides the session beans,
this layer also manages persistently stored entity beans. The en-
tity beans are mapped onto a relational database (we have used
IBM Cloudscape), which forms the lowest level of the application
server. The EJB-based three tier architecture is the most common
approach to support a service-oriented environment. Therefore, we
have chosen this architecture for the evaluation of DSGT.

On the client side, the transactions run in Java 2 (Standard Edi-
tion) Virtual Machines following DSGT and S2PL, respectively
(S2PL has been chosen since it is the most commonly used pro-
tocol). To have a fair comparison, we implemented S2PL as good
as possible (note that the common transaction processing standards
like JTS include two-phase-commit but do not address locking of
resources at service level). We even realized the deadlock detection
in an optimal way by implementing a centralized deadlock detec-
tion component. This component checks immediately for cycles as
soon as new dependencies emerge in the system. The communica-
tion between transactions for graph exchange (serialization graph
testing protocol) as well as between transactions and the central-
ized deadlock detection component (S2PL) is based on Java RMI.

In the experimental evaluation, we varied thenumber of services
between 2000 and 10000 to parameterize the conflict probability.
The higher the number of services, the less is the conflict probabil-
ity. On each of the five client hosts we used, there are always 20
2Note that our protocol relies on communication between transac-
tions butnot on communication between peers. Thus, we can eval-
uate our P2P-approach with only one application server, but with
many client servers.
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Figure 6: Absolute Throughput

active transactions making a total of 100active transactions. The
length of the transactionsis 8 to 12 service invocations. This value
is uniformly distributed.

To simulate complex services, we introduce adelay on the appli-
cation server side. The application server defers the return message
sent to the transactions after the service has been executed for two
seconds. Thedelay on the client sidewhen receiving a return mes-
sage from the application server is also set to two seconds to simu-
late user interaction. Theobject sizeof the entity beans is 16 MB.
In other words: Invoking a service implies that the session bean
will call one entity bean such that 16 MB data is read and written
back. In case of a deadlock or of a cycle in the serialization graph,
the youngest involved transaction is chosen asvictim and has to
compensate completely. Afterwards, to prevent running into the
same failure situation repeatedly, a transaction defers the first ser-
vice invocation by 0 to 20s (uniformly distributed) after changing
from backward execution again to forward execution.

The configuration of the client hosts and the application server
host has been chosen as follows:

Processor:Dual Intel Xeon 3.2GHz with Hyperthreading
RAM: 2GB
Network: 1 Gigabit Fiber
Operating System:Microsoft Windows 2003 Server
Client JVM: J2SE 1.3.1, IBM Classic VM with JITC
Application Server: IBM WebSphere Application Server 5.1.1

Our first experiment investigates the impact of the conflict prob-
ability on the throughput of DSGT and S2PL, respectively. To vary
the conflict probability, we have modified the number of services in
the system. Figure 6 shows the results of the experiment including
measurements for a conflict-free environment. Measurements for
S2PL were impossible for 2000 services (high conflict probability)
due to many messages which the Java RMI-based Infrastructure
was not able to handle.

Since more services imply a lower conflict probability, one would
expect that the throughput increases with the number of services.
However, the throughput falls in the conflict-free environment dra-
matically. The explanation for this is that the increasing number of
services leads to an increasing number of entity beans. The man-
agement of the entity beans bounds the resources of the WebSphere
server and thus lowers the response times. To eliminate this effect
from the results, Figure 7 shows the throughput of DSGT and S2PL
relative to the throughput of the conflict-free environment.

Here, we see that the throughput of S2PL decreases dramatically
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for going down to less than 7000 services, whereas DSGT with
partial rollback remains on a high level also down to 5000 or 4000
services, although the decrease then is much higher compared to
that of S2PL and will drop down to 0 for a high conflict probability.
Thus, the experiment shows the superiority of DSGT formedium
conflict probabilities.

To understand these results better, we have also examined the
execution times for transactions in both cases, S2PL and DSGT,
for 4.000 services as well as for 10.000 services. The results in
Figure 8 show two aspects:

1. The peak of the experiments with 4.000 services is achieved
much earlier than in the experiments with 10.000. This proves
again the negative impact of a high number of beans on the
application server throughput.

2. There is one peak for 4.000 services and S2PL for more than
420s execution time. This states that more than 30% of the
transactions need more than 420s to execute (though there is
also one peak at 40-60s). This implies that many transactions
are blocked by others in case of S2PL. This explains the bad
performance of S2PL compared to DSGT.

One might assume that the results might be improved – especially
for S2PL – by rolling back a victim transaction not completely but
only as far as required, for instance to resolve the cycle. How-
ever, we know how much work a transaction has to redo in average
(summarized in Table 1).
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Figure 8: Transaction Execution Time

Services 3000 5000 10000
DSGT 11.18% 0.62% 0.14%
S2PL 6.40% 1.65% 0.09%

Table 1: Percentage of Redo Operations in DSGT and S2PL

Certainly, this value must be doubled to achieve the influence
on the overall throughput, because the services have to be com-
pensated before they are invoked again. Thus, for medium conflict
probability, this will not change much. It is only relevant for high
conflict probabilities. But in this case S2PL is preferred anyway.

Moreover, we investigated the impact of the transaction length
on the throughput. We have run experiments where we have cho-
sen the transaction length out of the intervals [4;8], [6;10], and
[8;12] (equally distributed). Figure 9 shows the results normal-
ized by the average transaction length for the measurement point.
Thus, we have considered that the absolute throughput values are
not meaningful, because the longer the transactions are, the more
time a single transaction needs even without conflicts. The nor-
malized results show that the throughput of both protocols is more
or less equal for short transactions consisting of 4 to 8 service in-
vocations. However, increasing the average transaction length by
choosing transaction lengths out of the interval of [6;10] or even
[8;12] leads to a tremendous decrease in the throughput of both
DSGT and S2PL. Nevertheless, DSGT performs much better than
S2PL. For instance, in case of the interval [8;12] the throughput of
DSGT is more than 100% higher than of S2PL.

The explanation is simple: Transactions being blocked because
they cannot get a lock might itself block subsequent service invoca-
tions of other transactions. The DSGT protocol, in contrast, allows
the transactions in the same situation to optimistically continue the
execution of subsequent service invocations.

Finally, we have compared the partial and the complete rollback
case for both DSGT and S2PL. The results in Figure 10 show the
impact on partial rollback for cascading aborts.

In case of complete rollbacks, DSGT is only working for very
low conflict probabilities: For 6000 services, the throughput is
quite low, but it is important to understand that the result marked
with (2) appeared. After some time, the throughput falls down to
zero making further experiments impossible. In case of 4000 ser-
vices, the Java RMI problem appeared again (marked with (1)).
Thus, this experiment proves that partial rollback is helpful when
serialization graph testing is not only used for low but also for
medium conflict probabilities.
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4. RELATED WORK
In principle, protocols developed for distributed and federated

database systems are applicable to P2P systems, but all have (some
even severe) drawbacks. Optimistic protocols execute transactions
without any validation [8]. Therefore, they potentially come along
with a large number of rollbacks when the duration of transactions
and thus the number of conflicts increases. Distributed variants of
optimistic protocols (e.g., [9]) however, stick to a global coordina-
tor, which makes them of limited use for P2P environments.

Our approach fundamentally differs from known distributed seri-
alization graph approaches as presented in [2, 16]. In the latter, the
behaviour is distributed, but nevertheless a global graph is main-
tained. In contrast, in DSGT transactions only maintain parts of
the graph knowledge and nevertheless ensure isolation. Due to cy-
cle checking, the complexity of DSGT is linear in the number of
transactions in this graph. Compared to a locking protocol like
S2PL, this is too expensive for traditional application scenarios.
Therefore, serialization graph testing was used in the past only as
a formal method to explain serializability theory. Interestingly, our
experiments have shown that cycle checking is only then a problem
if it is expensive compared to the execution cost / execution time
of operations. This might be the case for short living transactions,
but not in the context of long-running processes in distributed and
especially P2P networks that we consider in our approach.

5. SUMMARY AND OUTLOOK
In this paper, we presented the DSGT protocol (Decentralized

Serialization Graph Testing), which is designed for decentralized
transaction processing in peer-to-peer environments where no cen-
tral components can be assumed. The protocol distributes the task
of coordinating transactions to the set of transactions in the system.
In cooperation with the peers they access for executing services,
they ensure globally correct executions. Each transaction maintains
relevant conflicts in a local serialization graph. Although these
graphs usually do not contain full global knowledge, DSGT guar-
antees serializable schedules. Cyclic dependencies are detected
by propagating conflicts along the edges of the local serialization
graph like distributed deadlock detection protocols do. These cy-
cles are resolved using a partial rollback approach without losing
too much work done by cascading aborts. The experimental eval-
uation has shown that DSGT significantly outperforms S2PL for
medium conflict probabilities and longer transactions composed of
expensive services. In case of low conflict probabilities, however,
the protocols do not show significant differences. For high conflict
probabilities, S2PL is the better choice. Hence, besides the DSGT
protocol and the concept of partial rollback for handling isolation

failures, this paper has shown that serialization graph testing is well
appropriate in service-oriented architectures following a peer-to-
peer style of interaction.

In future work, we plan to examine how DSGT can trade fresh-
ness of the serialization graph for the quantity of messages. The
latter implies to collect changes of the graph and send them in one
message instead of immediately propagating each single change.
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