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Abstract. To avoid the cost of multiple and costly examinations, health
care institutions are in need to share information about scientific insights
and patient data more intensively and transparently. The need for seam-
less but still robust and secure collaboration is rising. Based on that
scenario, this paper proposes an architecture for dynamically paralleliz-
ing service requests in a grid environment without the need to change
existing and conscientiously tested functionality. The task of preparing
software for parallel execution is split into an application-specific part
of partitioning requests and re-integrating results and a generic compo-
nent responsible for the actual parallel calls, state management, failure
handling, and robustness.

Introduction

One major goal of grid computing is to establish highly flexible and robust en-
vironments to utilize distributed resources in an efficient and transparent way.
Due to the highly dynamic nature of such environments where computational
nodes may leave or join in, it is essential to bind service invocations to concrete
service instances at run-time. This allows to flexibly react to changes in the envi-
ronment. In a service-oriented world, application logic is encapsulated by means
of services. Standards like SOAP over HTTP can be used for the invocation
of (Web) services, and WSDL for accessing information on the capabilities of
services. When several instances of the same service exist in a grid environment,
then it should be possible to dynamically make use of as many service instances
as possible by parallelizing a (Web) service call and by submitting requests in
parallel to them.

The goal of this parallelization is twofold and depends on the characteristics
of the services which are subject to parallelization. First, we aim to make use
of as many services as possible (and therefore of the data accessible by those),
to increase the quality of the result. This is particularly true for the access to
data sources, encapsulated by dedicated services. Second, having multiple service
instances accessible opens the possibility to speed up the processing of compu-
tationally intensive tasks. Whereas examples for the latter have been presented
in detail in [6, 5] and large scale experiments with more than 2500 worker nodes
have been demonstrated in [1] using MW class library [3], this work focuses on



the goal of enhancing the quality of the request when accessing data sources by
means of services.

The contribution of this work is to introduce an architecture of a service
seeming to be an ordinary, callable service to the outside world, which is able
to adopt its behavior controllable by optional quality of service criteria, and the
resources available on a grid. In short, such dynamic services use meta infor-
mation on the currently available service providers and their capabilities and
partition the original request into a set of simpler requests of the same service
types. These (sub-)requests are then submitted in parallel to as many service
providers as reasonable, and their responses are finally integrated and returned
as the result of the original request. In particular, this parallelization shall be
carried out without the need to modify existing functionality or interfaces, and
transparently to the user and developer. Due to its master/slave nature, it is
especially suitable for grid environments [2].

To better illustrate the benefits of such an approach, the following scenario
describes how these dynamic services can be used in healthcare applications.

A Sample Scenario: Genotype/Phenotype Correlation. Donald, a pa-
tient, consults his family doctor telling him about pain in his chest, shortage of
breath, and drowsiness. Besides these symptoms being an indicator for angina
pectoris, Donald describes that starting a few hours ago, he additionally suffers
from pain in his abdomen and changing paralysis of his right and left leg. Based
on this description, the physician wants to ask for a second opinion and admits
the patient to a hospital for further examination. The specialist who examines
Donald in the hospital recognizes some very specific clinical artifacts which rise
his interest (gigantism, a funnel chest, scoliosis, and acromacria). Due to these
symptoms, Donald has to undergo clinical as well as molecular genetic examina-
tions, since this clinical fingerprint might be caused through a fibrillin-1 (FBN1)
gene mutation. To find out more about Donald’s potential genetic mutation, his
clinical fingerprint is used as an input for a genotype/phenotype correlation. The
quality and statement of such a correlation is highly influenced by the amount
of data that can be processed. Collaboration among various healthcare institu-
tions, where data is made available by genotype/phenotype correlation services,
is therefore of great importance. Luckily, the clinical fingerprint of Donald was
indeed listed in the data set of a partnering hospital, connected to the grid and
dynamically included in the search, and correlates with the Marfan–Syndrome.
An expensive molecular biological examination in which this genetic defect is
confirmed is conducted. Therefore, in addition to the acute vascular operation
he has to undergo because of his clinical symptoms, his family can be invited for
genetic screening to avoid similar costly, high risk operations in the future.

Using the approach described in this work, the correlation service does not
only consider the in-house service of a single hospital. Rather, it is a self-
adaptive, virtual service that dynamically and in parallel calls all available geno-
type/phenotype correlation services in the system, thereby jointly accessing the
data sources of several healthcare institutions. As a benefit of the architecture
proposed, the client application as well as the genotype/phenotype correlation



functionality does not have to be updated or rewritten to participate in or benefit
from such a self adaptive environment.

Although the above example is taken from eHealth digital libraries, the pro-
posed architecture can of course be applied to other domains as well. Whenever it
is appropriate to dynamically replace a single invocation of a service by multiple
invocations, dynamic adaptation and parallelization can be highly beneficial.

The remainder of this extended abstract is organized as follows. We briefly
describe the overall architecture and show the benefits of dynamic paralleliza-
tion for the application scenario introduced above. Finally, a conclusion and an
outlook on future work is given.

Overall Architecture

The goal of the architecture we propose is to improve the usability of a single
(Web) service, as well as to facilitate faster and less error prone development
for grid environments. This approach is based on the observation that, following
the current proliferation of service-oriented architectures, the number of services
and service providers in a grid will significantly increase. Especially services
which are provider independent and are not bound to special resources can be
distributed fast and widely in a grid environment or be deployed numerously
on demand. Although the availability of many congruent services as well as
the computational resources thereby offered seem to be within reach, adapting
functionality for parallel execution is still necessary and tedious.

The task of partitioning request parameters and re-integrating results after-
wards is highly application-specific and, from our perspective, cannot be solved
in a generic way. Although we see the potential to identify classes of applica-
tions according to the mechanism they partition and re-integrate requests which
allows to have pre-built splitter and merger services, an expert in the problem
domain will be necessary to tailor them for the specific need or perform some
additional, application domain specific work. We name a service, enriched with
the capability to partition incoming requests and reintegrate partial results, a
dynamic service.

Apart from that we introduce a Dynamizer component, which can be built
generically and which is responsible for state management, failure handling, and
service discovery. While the latter characteristic is independent concerning the
twofold approach described in the previous section, failure handling and state
management differs. In case of a dynamic service aiming to leverage the result
quality, the unexpected absence of a ’worker’ service already in charge of a
partial task does not hinder in producing a result. If partitioning the request of
a computationally intensive task to gain better performance, the overall results
rely on each sub task and the Dynamizer is responsible for compensating any
failing ’worker’ service.

As shown in Figure 1, the following logical units can be identified for dy-
namic services. The box in the center of the left side, labeled ’Payload Service’,
represents the actual service. It is responsible for providing application seman-
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tics, e.g., a genotype/phenotype correlation on a local database. This is usually
a piece of business logic that has existed beforehand and is now supposed to
be opened to the grid and enabled for parallel execution. To achieve this goal,
it is surrounded by another box, labeled ’Common Interface Wrapper’, which
encapsulates the ’Payload Service’ and enhances it with a common interface.

On top, ’Partition Request’ encapsulates knowledge on how incoming param-
eters for the ’Payload Service’ have to be partitioned, so that the original request
can be decomposed into numerous new sub-requests. Each of these sub-requests
can then be distributed on the grid and be processed by other instances of the
originally targeted service. The box at the bottom (’Merge Results’) integrates
(partial) results returned from the grid to provide the original service requester
with a consolidated result. It can therefore be seen as the counter operation to
the ’Partition Request’ service. The combination of these elements is referred to
as ’Dynamic Service’.

To find instances of the originally targeted service (e.g., services where the
description equals the one of the ’Payload Service’), a registry is used (depicted in
the lower right corner of Figure 1) . This registry provides information on which
services are available, how they can be accessed, and what their properties are
(e.g., CPU load, connection bandwidth, access restrictions, etc).

The ’Dynamizer’, depicted on the right hand side, makes use of the ser-
vices mentioned above. It glues together the previously described services by
making the parallel calls and coordinating incoming results. The ’Dynamizer’
can interact with all services that adhere to a common interface, as ensured by
the ’Common Interface Wrapper’. It can be integrated in environments able to
call and orchestrate services, or it can be packaged and deployed together with
specific services.

To make the best possible use of the ’Dynamizer’, the user can send an op-
tional description of the desired service quality along with the mandatory param-
eters needed to process the request. In this Quality of Service (QoS) policy, the
user can, for example, describe whether the request should be optimized in terms
of speed (select high performance nodes, and partition the input parameters ac-
cordingly), in terms of bandwidth (try to keep network usage low) or if it should
aim for best accuracy (important for iterative approaches or database queries,



where there is an option to use different data sources). Since these specifications
can be contradictory, adding preferences to rank the user’s requirements is of im-
portance. To better illustrate the mechanisms within the ’Dynamizer’ regarding
the user specified QoS policy, we consider the following example: the special-
ist from the previously introduced healthcare scenario specifies that he wants
to use as many genotype/phenotype correlation information as possible and as
affordable within a 300 Euro budget. The ’Dynamizer’ finds 7 services with a
total of 2 gigabytes of searchable data, each charging 60 Euros per query. Alter-
natively, there are 40 services available provided by smaller institutions, having
just searchable amounts of data starting from 4 megabytes up to 30 megabytes
and charging .50 per query. The algorithms on how to reconcile the user speci-
fications, the details of the QoS description language and how to integrate this
best with our existing implementation is currently investigated.

Conclusion and Outlook

In this paper, we have stated the importance and the usefulness of an easy to
use, straightforward to develop and robust architecture to dynamically paral-
lelize (Web) service calls without the need to change existing functionality. In
future work, we plan to implement the assignment of QoS policies to service
requests as well as adding the ability to use semantically equivalent instead of
congruent services. First experimental results will be refined and further empir-
ical studies will be conducted to verify the validity of the approach described.
When dealing with semantically equivalent services, (partial) results are likely
to be heterogeneous, and mechanisms for integrating them have to be developed.
This, additionally to defining appropriate metrics for semantic equivalence in the
context described, is currently under investigation. Along with these changes, the
fault tolerance, robustness, and scalability of the introduced ’Dynamizer’ com-
ponent is improved by integrating it with OSIRIS [4], a distributed workflow
environment.
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