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Abstract. Digital libraries in healthcare are hosting an inherently large and con-
tinually growing collection of digital information. Especially in medical digital
libraries, this information needs to be analyzed and processed in a timely manner.
Sensor data streams, for instance, providing continuous information on patients
have to be processed on-line in order to detect critical situations. This is done
by combining existing services and operators into streaming processes. Since
the individual processing steps are quite complex, it is important to efficiently
make use of the resources in a distributed system by dynamically parallelizing
operators and services. The Grid vision already considers the efficient routing
and distribution of service requests. In this paper, we present a novel informa-
tion management infrastructure based on a hyperdatabase system that combines
the process-based composition of services and operators needed for sensor data
stream processing with advanced grid features.

1 Introduction

Digital libraries in healthcare are increasingly hosting an inherently large and heteroge-
neous collection of digital information, like electronic journals, images, audios, videos,
biosignals, three dimensional models, gene sequences, protein sequences, and even
health records which consist of such digital artefacts. Medical digital libraries there-
fore have to organize repositories managing this medical information [1] and to provide
effective and efficient access to it. In addition, a central aspect is the collection, aggre-
gation, and analysis of relevant information.

Due to the proliferation of sensor technology, the amount of continuously produced
information (e.g., biosignals or videos) in medical digital libraries will significantly
grow. These data streams need sophisticated processing support in order to guarantee
that medically relevant information can be extracted and derived for further storage,
but also for the on-line detection of critical situations. Biosignals, like ECG recordings,
contain relevant information derived from the evaluation of characteristic parameters,
e.g., the heart rate, and their deviation from average. In some cases, even the combi-
nation of different biosignals is needed for the extraction of relevant information, such
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as a comparison of heart rate and blood pressure. Data stream management (DSM) ad-
dresses the continuous processing of streaming data in real-time. Hyperdatabases [2],
in turn, provide a flexible and reliable infrastructure for data stream management [3].
Therefore, because of the streaming origin of parts of the information stored in medical
digital libraries, the latter will significantly benefit from hyperdatabase infrastructures
incorporating DSM.

Due the service-orientation and the distributed nature of digital libraries (i.e., infor-
mation is made available by means of services), grid infrastructures are very well suited
as basis for digital library applications. The composition of services and DSM opera-
tions can be realized by means of processes. The grid then has to support the efficient
routing of service requests among different service providers. Considering the heteroge-
nous and ever-changing nature of such environments, the need for dynamic binding of
services during runtime is essential to achieve efficient resource usage [4]. Focusing on
efficient routing and usage of available resources, it appears appealing to have services
available that are able to split incoming requests and parallelize them according to the
current status of the grid. In this paper, we introduce an approach to enable existing
services to do so, without even changing existing and thoroughly tested functionality.
By attaching two additional services, a ’Split Request’ and a ’Merge Result’ service,
and by using an infrastructure component termed ’Dynamizer’, a behavior as described
can be realized.

A very challenging aspect in process-based service composition on top of a grid
environment is that processes itself can be seen as services and therefore can be used
within other processes again. This, in a way, adds recursive nature to processes and
implements the well known composite pattern [5] for processes on the grid. Moreover,
also the runtime support for process execution can be considered as a special, inherently
distributed grid service.

In this paper, we introduce an integrated hyperdatabase and grid infrastructure that
supports the processing of continuous data streams and that is able to distribute the
processing of computationally expensive services within a grid. By this, the require-
ments of efficiently processing continuous data that can be found in digital medical
library applications can be seamlessly supported.

The paper is structured as follows. Section 2 introduces a sample telemonitoring
application to show the need for a joint hyperdatabase and grid environment. Section 3
gives a brief overview on the hyperdatabase and grid infrastructure. In Section 4, we
present a process-based approach to data stream management. The dynamic process
parallelization by using grid concepts is introduced in Section 5. Section 6 discusses
related work and Section 7 concludes.

2 A Sample Application in a Digital Healthcare Library

In this section, we introduce a sample healthcare application to motivate the need for a
flexible and reliable information management infrastructure that supports process man-
agement, data stream processing and management, and that provides grid computing
capabilities.
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Fig. 1. Data Stream and Process Management in a Medical Digital Library

The left hand side of Figure 1 illustrates a telemonitoring system which takes care of
elderly patients suffering from chronic diseases (e.g., diabetes, heart diseases, or other
age related problems like Alzheimer). This telemonitoring system is one of the infor-
mation providers of the underlying medical digital libraries. Patients are equipped with
an array of sensors, as for example the LifeShirt-System [6], that continuously measure
the patient’s body signals (e.g., ECG). Additionally, sensors integrated in the patient’s
home are detecting context information that describes what the patient is currently do-
ing (e.g., if the patient is sleeping). This information is important to evaluate the medical
meaning of vital signs — for example, the ECG signal has to be interpreted differently
when a person is sleeping, compared to the case where he is active. In addition to med-
ical monitoring, context information is also used to integrate a patient support system
in this scenario. Patients can be remembered to turn off the oven or take their pills. In
order to make use of the vast amount of sensor information, the incoming sensory data
has to be processed in real-time. Medically relevant results may be stored in a digital
library containing the patient’s health record. Results with unknown characteristics are
stored in repositories to support medical research. Critical results may request imme-
diate intervention by the caregiver. In this case, appropriate processes (e.g., calling the
emergency service or contacting a physician) have to be triggered.

Access to the contents of a medical digital library is supported by special services
and user-defined processes that combine several of these services (illustrated on the
right hand side of Figure 1). As described above, processes for contacting the caregiver
(e.g., by sending a SMS to a mobile device of a physician), or even for triggering some
rescue activities in case of critical situations have to be invoked if necessary. If the
physician needs more detailed information or wants to request data on previous treat-
ments or prescriptions, she has to be served with the data in a timely fashion. For all
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these purposes, appropriate processes have to be available (or have to be defined) and
to be executed efficiently by the underlying infrastructure.

3 Architecture of our Hyperdatabase and Grid Digital Library
Infrastructure

Our infrastructure for telemonitoring applications is based on a combination of a hy-
perdatabase system [7] and a service grid environment [8] as illustrated in Fig. 2. From
hyperdatabases, we take the support for the definition and execution of processes on top
of (web) services but also the possibility to implement continuously running processes
for analyzing, processing, and managing data streams in real-time. Since processing
data streams for evaluating the patient’s health state requires the invocation of com-
putationally intensive services, grid concepts are exploited to support the distributed
computation on top of heterogenous resources. Therefore, the different data streams
coming from the various sensors of a patient are dynamically distributed within the
grid for parallel processing. Finally, the streams have to be joined in order to combine
different sensor signals for rating medical relevance. The combination of process man-
agement and grid concepts allows for the composition of existing services and for the
efficient distribution of single service invocations within the grid.

In the following, Chapter 4 introduces Data Stream Management within our hy-
perdatabase infrastructure OSIRIS-SE whereas Chapter 5 discusses how grid standards
and dynamic service composition are incorporated into our integrated hyperdatabase
and grid infrastructure.

4 Data Stream Management for Medical Digital Libraries

In this section, we introduce an extended hyperdatabase system for the support and
management of continuous data streams.
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4.1 Challenges in Data Stream Management

The main challenges in data stream management (DSM) are imposed by the large num-
ber of sensors, components, devices, information systems, and platforms connected by
different network technologies, and by the vast amount of continuously generated data.
For processing this data, existing systems and components are well in place and need
to be incorporated into digital libraries. Reliability and provable correctness are new
challenges that are of utmost importance particularly in healthcare applications, where
failures may have perilous consequences. As described in Section 2, DSM has to inter-
act with traditional process management in order to react to certain results (e.g., calling
the ambulance) or to offer the user appropriate processes for the evaluation of DSM
results. These challenges necessitate an infrastructure that combines the processing of
data streams and process management, i.e., the possibility to combine services (con-
ventional services as offered by digital libraries and services operating on data streams
produced by sensors) and to execute composite services in a reliable way. Therefore, we
propose an integrated information management infrastructure supporting user-defined
processes, both conventional and processes performing DSM. Hyperdatabase (HDB)
systems already provide an infrastructure for reliable process execution, which we have
extended to enable DSM processes.

4.2 Peer-to-Peer Process Execution in the Hyperdatabase OSIRIS

A hyperdatabase (HDB) [2] is an infrastructure that supports the definition and reli-
able execution of user-defined processes on top of distributed components using exist-
ing services. Characteristic features of HDB’s are the possibility to i.) support reliable
peer-to-peer execution of processes without global control, thereby supporting a high
degree of availability and scalability, ii.) add transactional guarantees to the execution
of processes [9], and iii.) apply decentralized process execution in areas of intermitted
connectivity.

OSIRIS (Open Service Infrastructure for Reliable and Integrated process Support) [7]
is a prototype of a hyperdatabase, that has been developed at ETH Zurich and that is
used as a starting point of our joint HDB and grid infrastructure. OSIRIS follows a
novel architecture for distributed and decentralized process management. OSIRIS sup-
ports process execution in a peer-to-peer style based on locally replicated metadata,
without contacting any central instance (Peer-to-Peer Execution of Processes, P2PEP).
With P2PEP, a component works off its part of a process and then directly migrates the
instance data to nodes offering a suitable service for the next step(s) of the process ac-
cording to its control flow specification. This is achieved by implementing two layers:
the HDB-layer, a small software layer that is installed on each component providing a
service and a set of global HDB repositories. These HDB repositories collect metadata
on the processes to be executed, on the available components, and on their load. This
meta information is smoothly distributed to the individual HDB layers – only metadata
needed locally is actually replicated (e.g., only information on services and providers
which might be invoked in some process are required at the local HDB layer of a com-
ponent). More information on hyperdatabases and OSIRIS can be found in [2, 10, 7].
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4.3 OSIRIS-SE Infrastructure

HDB’s have to be extended in order to enrich their benefits with the capabilities for
DSM [3, 11]. This extended infrastructure is called OSIRIS-SE (OSIRIS Stream En-
abled). We consider stream-processes, which perform continuous processing of data
streams. The requirements for the execution of these stream processes are similar to
those of conventional processes with respect to important aspects like distributed exe-
cution, load balancing, meta information distribution, or fault tolerance. Figure 3 illus-
trates a stream-process, which continuously processes patient’s ECG and blood pres-
sure. Sensor signals are recorded and preprocessed by patient’s PDA, which is wire-
lessly connected to patient’s PC. The PC does further processing and detects critical
health conditions. Processed sensor information is continuously forwarded to the care-
giver for further analysis.

Operators are the processing units of DSM. Operators perform stream operations
on incoming data streams and produce outgoing data streams. For this reason, opera-
tors have input and output ports for data streams. Sensors are the primary sources of
data streams and can be considered as operators without incoming data streams. DSM
is done by combining operators, similar to the combination of activities (service invo-
cations) in traditional process management. A stream-process is such a well defined set
of logically linked operators continuously processing the selected input data streams,
thereby producing results and having side effects. Side effects are effects on external
systems imposed by processing results (e.g., feeding a digital library with medical rele-
vant information gained by the stream process). Stream-processes are defined by users
with graphical design tools based on tools used in traditional process management. Our
process design tool O’GRAPE (OSIRIS GRAphical Process Editor) [12] is extended
to design also stream-processes. Additionally to the process activation flow, which de-
scribes the links between activity execution needed for controlling stream-processes,
stream-processes have a second flow, called data flow. Whereas the process activation
flow of a stream process describes how the operators are activated, the data flow de-
scribes how the data stream ports of the operators are interconnected. The extended
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Fig. 4. Stream-Process Design with O’Grape

O’GRAPE tool for stream processes can also explicitly graphically model this data
flow, which does not necessarily comply with the process activation flow. In contrast to
the process activation flow, the data flow combines ports of operators and not process
activities. Figure 4 shows the stream-process of Figure 3 in O’GRAPE. Ports of oper-
ators are modeled as circles attached to the process activities. The solid edges indicate
the process activation flow and the dashed edges indicate the data flow between ports.

Based on the OSIRIS approach to fault-tolerant distributed peer-to-peer process
execution, we need to distribute necessary meta information on stream processes for
DSM in the same way this is done also for process management.

Figure 5 illustrates the architecture of OSIRIS-SE. The process repository keeps
definitions of stream processes and traditional processes. Locally needed pieces of the
global process definition are published for replication on each corresponding node. Ad-
ditionally, the service repository offers a list of available stream operators of compo-
nents, which are also subject for smooth distribution among the suitable components
offering the corresponding stream operators. A stream process is set up by sending an
activation message to the HDB-layer of the component hosting a source operator (e.g.,
the component is attached to a sensor or has a data stream input). By making use of
locally available metadata, the local HDB-Layer knows the subsequent stream operator
and components in the process activation flow, which offer these operators and is able
to make the routing decision. Then, the component sends an activation message to the
selected subsequent component(s) and provides them with needed data streams.

Special treatment is needed for join operators, which have more than one preced-
ing operation (e.g., the analysis operator of Figure 3 which combines ECG variability
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with blood pressure variability of the patient). Due to the fact that preceding operations
may run on different components, the infrastructure has to agree on one distinguished
preceding operator. The component hosting the distinguished operator has unique re-
sponsibility for process routing, as needed for activation, load balancing, and failure
handling. The routing decision is published as metadata via the join repository to non-
distinguished components that are used in parallel.

OSIRIS-SE also allows for load balancing during the execution of stream processes.
Therefore, the distribution of metadata on the load of components that are able to host
stream operators needs to be published. This load information is used to choose the
best component during the stream-process activation. In case of high load, the over-
loaded component is able to transfer a running stream operator instance to a component
with less load. This is called operator-migration. When stream operations are affected
that accumulate an internal state during their execution, this state has to be managed
and transferred to the new host. Therefore, components make a backup of internal state
of running stream-operators at a regular coordinated basis controlled by OSIRIS-SE.
Information about the backup location address is metadata, which is also smoothly dis-
tributed via the operator backup repository.

The previous techniques are also responsible to allow for sophisticated failure han-
dling. In case a component hosting a stream operator fails, components hosting preced-
ing parts of the same stream process will recognize the failure because the transmission
of their outgoing streams is no longer acknowledged. The infrastructure distinguishes
between four failure cases:

1. The failed component recovers within a certain timeout (temporary failure). Then,
processing is continued in the state before the failure. This is possible since output
queues of preceding components are used to buffer the data streams until they are
acknowledged.
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2. The failed component does not recover within the timeout period (permanent fail-
ure). In this case, the preceding component is in a similar situation as during the
setup phase of the process. The component has to find suitable components that are
able to perform subsequent stream operators. In addition to normal activation, op-
erator migration is needed to initialize the newly generated operator instance with
the existing operator backup. Due to local metadata, the new component is able to
find the backup location and to load the old internal state for the continuation of
stream processing. If the failed component recovers after the timeout, it has to be
informed that its workload moved and that it is no longer in charge.

3. The failed component does not recover and there is no other suitable component.
In this case, the stream process may have an alternative processing branch (defined
in the streaming process), which is now activated by the preceding component.

4. There is no recovery and no possibility to continue stream processing. If so, a con-
ventional process can be invoked to handle the failure situation (e.g., calling an
administrator to fix the problem).

More on reliability of DSM with OSIRIS-SE can be found in [11]. OSIRIS-SE
is capable of supporting telemonitoring applications by providing reliable integrated
process and data stream management in peer-to-peer style. Furthermore, it allows to
seamlessly cooperate with digital libraries, e.g., by making use of the services that are
provided to access information.

5 Digital Libraries on the Grid

An important challenge when dealing with service composition, especially with com-
putationally complex services, is the efficient routing of service requests among a set
of providers. OGSA (Open Grid Services Architecture) [13] compliant grid systems
are rapidly emerging and are widely accepted. These grid systems provide support for
the efficient invocation and usage of individual services in the grid in a request/reply
style. However, they do neither support service composition nor process execution. In
contrast, the focus of state-of-the-art process support systems is not at all or only mar-
ginally oriented towards a tight integration into a grid environment. In what follows, we
introduce an approach that combines (data stream) processes and (service) grid envi-
ronments.

5.1 Bringing Service Composition to the Grid

Although OSIRIS, the starting point of our integrated DSM and grid infrastructure, is
quite powerful in doing distributed process management, it does not yet follow OGSA
or WS-RF [14], the de facto standard for grid environments. It does also not make use
of the enhanced features offered in the globus toolkit [8] (the reference implementation
of OGSA) like, for example, resource management and security. In our current work,
we aim to bring support for service composition to the grid, which is done by extracting
some of the ideas that can be found in OSIRIS, and integrate those with current stan-
dards and services which have recently emerged in the grid community. This will result
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in a set of new OGSA compliant services enhancing current grid infrastructures with
the ability of recursive process composition.

There are several possibilities to decompose an application into smaller parts that
can then be executed in parallel. The most important ones are master/slave type of
applications, as well as the divide and conquer or branch and bound paradigms. The
applicability of these paradigms of course strongly depends on the semantics of the
application to be parallelized. Especially the master/slave paradigm is very suitable
to grid-enable applications [15], and is therefore widely used. In case of master/slave
parallelization, the main prerequisites are:

– few or no communication among the sub parts
– work is dividable among identical sub parts
– work can be dis- and reassembled in a central point
– work can be parameterized and parallelized and does not need serial iterative process-

ing.

Since the potential for master/slave parallelization can be found in several appli-
cations, we have started to apply this paradigm to enhance the efficiency, the creation,
and the ease-of-use of services in the grid. Using the master/slave paradigm, applica-
tion developers can focus on the implementation of the problem-specific subparts of the
service as well as on the split into and merge of parallel subparts, but they do not need
to take care about the distribution of subparts. This is particularly important since the
latter requires dynamic information on the currently available resources which is not
available at build-time, when the services are defined, as well as the way calls to these
services are dynamically split and merged.

5.2 The Frameworks Architecture and Use

To ease the creation of services for tomorrow’s grid infrastructures, we developed a
generic framework to handle master/slave applications where a single master process,
labeled ’Dynamizer’ in Figure 6, controls the distribution of work to a set of identically
operating slave processes. This framework is designed to accept ordinary web/grid ser-
vices as destinations for calls, as well as composite services. The framework enables



A Combined Hyperdatabase and Grid Infrastructure for Digital Libraries 11

application developers to port new master/slave type of applications to the grid by en-
hancing a pre-existing web service with two additional services, one to split/partition
an incoming request into parts for parallel execution, and one to merge and reintegrate
sub-results to meet the original request. The service enhanced in such a kind is then
named a ’Dynamic Service’.

The overall architecture can be seen in Figure 6 and described as follows: The box
in the center of the left hand side, labeled ’Payload Service’, represents the actual ser-
vice. It is responsible for providing application semantics, e.g., a complex computation
or a database lookup. This is usually a piece of business logic that has existed before-
hand, which is now supposed to be opened to the grid and enabled for parallel execu-
tion. To achieve this goal, it is surrounded by another box, labeled ’Common Interface
Wrapper’, which encapsulates the ’Payload Service’ and enhances it with a common
interface.

On top, ’Partition Request’ encapsulates knowledge on how incoming parameters
for the ’Payload Service’ have to be partitioned, so that the original request can be
decomposed into numerous new sub-requests. Each of these sub-requests can than be
distributed on the grid, and be processed by other instances of the originally targeted
service. The box at the bottom (’Merge Results’) integrates (partial) results returned
from the grid to provide the original service requester with a consolidated result. It
can therefore be seen as the reverse operation to the ’Partition Request’ service. The
combination of these elements is referred to as ’Dynamic Service’.

To find the instances of the originally targeted service (e.g., services where the func-
tional description equals the one of the ’Payload Service’), a registry is used (depicted
in the lower right corner of Figure 6) . This registry provides information on which ser-
vices are available, how they can be accessed, and what their properties are (in terms of
CPU load, connection bandwidth, access restrictions, etc).

The ’Dynamizer’, depicted on the right hand side, makes use of the services men-
tioned above. It glues together the previously described services by making the parallel
calls and by coordinating incoming results. It has also to provide appropriate failure
handling. It is, in contrast to ’Partition Request’ and ’Merge Results’, application in-
dependent and generally usable. The ’Dynamizer’ can interact with all services that
adhere to a common interface, as ensured by the ’Common Interface Wrapper’. It can
be integrated in environments able to call and orchestrate services, or it can be packaged
and deployed together with specific services.

To make the best possible use of the ’Dynamizer’, the user can send a description
of the desired service quality along with the mandatory parameters needed to process
the request. In this QoS (Quality of Service) policy, the user can, for example, describe
whether the request should be optimized in terms of speed (select high performance
nodes, and partition the input parameters accordingly), in terms of bandwidth (try to
keep network usage low) or if it should aim for best accuracy (important for iterative
approaches or database queries, where there is an option to use different data sources).
Since these specifications can be contradictory, adding preferences to rank the users
requirements is important.

To better illustrate the functionality of the ’Dynamizer’ regarding the user specified
QoS policy, we reconsider the scenario from Section 2: A physician wants to use the
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digital library provided to gain some additional data on the patient she got sensor data
from. In the QoS policy file, she specifies that she only wants to have data that can be
viewed on her mobile device, a smart-phone, and as a second preference to have her call
optimized in terms of speed since treatment for this patient is urgent. The ’Dynamizer’
has only three services at hand, which are able to deliver data preprocessed for viewing
it on mobile devices, all of them on not very fast computers, or alternatively access to
5 computationally powerful main frames in the hospitals the patient was treated before,
but without the capability to render their output for mobile devices. The algorithms
needed to reconcile the user specifications, the details of the QoS description language
and how to integrate this best with our existing implementation is currently under in-
vestigation.

The framework developed is based on web services. The core part consists of a
set of classes building the ’Dynamizer’ and the implementations of application specific
slave services. These can be evolved to be OGSA-compliant grid services [13] bundled
with corresponding stubs and some supporting classes for specialized exceptions and
encapsulating the input and output parameters passed around. The work left to the ap-
plication programmer is to implement the services ’Partition Request’, ’Merge Results’
and the ’Common Interface Wrapper’ which are responsible for the application specific
part. In addition, a Web Service deployment descriptor (WSDD) has to be written, as
specified by the Axis framework [16], which GT3 is partly based on. At run-time, the
framework determines which slaves to use, out of the set of all slaves registered to pro-
vide the appropriate service. This is done by accessing a global ’Registry’ available in
the grid. The request is then forwarded to all the slaves, after being divided into sub-
tasks. This is shown in the upper right corner of Figure 7 where the service depicted as
cross is provided by a set of slave services executing in parallel.

The current implementation can easily be adopted to more sophisticated distribution
mechanisms based on the Service Data Elements (SDE’s) [8] provided by each grid
service. There might be more specialized implementations that distribute to slaves based
on current workload, cost, or other metrics available. After having distributed the work,
the ’Dynamizer’ registers for notifications from the slaves and waits for results. After all
slaves have returned, the ’Dynamizer’ generates the final result by merging the results of
the subparts and returns the completed result to the requestor. An important aspect here
is to provide sophisticated failure handling that allows the ’Dynamizer’ to re-distribute
requests when slaves have failed during the execution of their subpart. On the slaves
side, in addition to the implementation of the actual application logic, a deployment
descriptor is needed that specifies where to register this particular slave service.

In the scenario described in Section 2, there is one dynamic service (bundled with
a ’Dynamizer’) which accepts streamed data from the patients life vest and ECG. This
service acts, from the point of view of the process management system, as an ordinary
step in the process chain. However, in the background, it re-directs the data stream to
the slaves available in the system and checks the data against local replicas of dig-
ital libraries holding characteristic pathological and non-pathological data. The time
intensive comparison of the stream data with entries in the digital library is done in a
distributed way on the grid. The slaves report the result of their search back to the ’Dy-
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Fig. 7. Process containing a dynamically acting Grid Node

namizer’ who is then able to store the data for further usage and to trigger subsequent
services or processes when needed (e.g., in critical situations).

5.3 From Master/Slave to Process Execution

A dynamic service can generally be seen as a grid service that controls the execution
and dataflow among a set of services whose availability, number, and distribution is
only known at runtime and subject to frequent changes. Since, from the point of view
of the OSIRIS process execution engine, it acts just as any other operator or service, the
dynamics of request distribution as well as the distribution pattern itself are transparent
to the process execution engine. Figure 7 illustrates a process schema as executed by
OSIRIS including a dynamically acting grid node. One step in this process, shown as a
cross, is dispatching the request to various nodes in the grid and awaits their feedback.
The process execution engine is not aware of this dispatching behind the scenes. This
leads to the more general idea that the ’Dynamizer’ can be seen as a process execution
service itself, calling arbitrary grid services — either in parallel, sequentially, or in any
other pattern available to the system.

These process execution services can be deployed to the grid as highly dynamic
components. The distribution pattern of an algorithm can be determined at runtime
based on some QoS information provided through the caller or can be hard-wired to a
special distribution pattern. Preliminary results on performance and usage can be found
in [4].

In order to avoid a centralized process execution service that could lead to a single
source of failure, we are currently integrating the distributed process execution engine
described in OSIRIS. In OSIRIS, the execution plan for a process (determined by the
control flow) is, prior to its invocation, split up into several execution steps. Each step
consists of a service invocation, and information of all its successors. This allows to
move the control from a centralized component to the responsibility of each node par-
ticipating in the process. Therefore, this approach is much more robust to the failure of
single nodes than centralized solutions.
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6 Related Work

6.1 Data Stream Management

DSM aspects are addressed by various projects like NiagaraCQ [17], STREAM [18],
and COUGAR [19]. The main focus of these projects is on query optimization and ap-
proximate query results and data provided by sensor networks. Aurora [20] allows for
user-defined query processing by placing and connecting operators in a query plan. Au-
rora is a single node architecture, where a centralized scheduler determines which oper-
ator to run. Extensions like Aurora* and Medusa [21] also address DSM in distributed
environments. TelegraphCQ [22] is a DSM project with special focus on adaptive query
processing. Fjords allow for inter-module communication between an extensible set of
operators enabling static and streaming data sources. Flux [23] provides load balancing
and fault tolerance. PeerCQ [24] is a system that offers a decentralized peer-to-peer
approach supporting continual queries running in a network of peers. The DFuse [25]
framework supports distributed data fusion. Compared to other projects in this field,
our integrated hyperdatabase and grid infrastructure offers two unique characteristics.
Firstly, dynamic peer-to-peer process execution where local execution is possible with-
out centralized control. Secondly, the combination of DSM and transactional process
management enables sophisticated failure handling.

6.2 Grid Infrastructure

The master/slave paradigm is commonly agreed as valuable asset for the development
of grid applications [15]. The master-worker tool [26] provides the possibility to inte-
grate applications in the grid by implementing a small number of user-defined functions
concentrating on the applications main purpose. It is applied to complex problems from
the field of numerical optimization [27]. While it is tightly integrated into a former grid
environment, the Globus Toolkit 2, our approach uses more recently emerged technolo-
gies and focuses on evolving into a more generally useable distributed process execution
engine.

A similar approach is taken in AppLeS Master-Worker Application Template (AMWAT)
[28] where the main emphasis is on scheduling issues and a workflow model to select
the best locations for the master and worker services. Other Approaches focusing on
other task-parallel models can be found in [29, 30] for the divide-and-conquer distribu-
tion pattern, and [31] for branch-and-bound.

In [32], BPEL4WS, the Business Process Execution Language for Web Services
[33] is evaluated for the use within transactional business processes on the grid. The
authors point out that the usage of single, non-orchestrated web services is limited, and
that there is a need for reliable and coordinated process execution on the grid.

7 Conclusion and Outlook

The proliferation of ubiquitous computing and the huge amount of existing information
sources is leading towards a world where sophisticated information management is be-
coming a crucial requirement. A digital library for medical applications not only has
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to manage discrete data, it has also to support the acquisition, processing, and storage
of streaming information that is continuously produced by sensors. Essentially, both
streaming and non-streaming processes and applications have to be supported. More-
over, due to the complex processing operators that are used within stream processes,
the distribution of work is a major requirement to efficiently process continuous data
streams. By exploiting the features of a grid infrastructure, subparts can be executed in
parallel by making use of the resources that are available at run-time. As a paradigm
for the distribution of work within the grid, we have integrated a master/slave type of
interaction into a stream-enabled HDB system.

Due to the distributed nature of this architecture, a special focus has to be set on
failure handling. There are numerous possibilities for the overall process to fail, not at
last because of the missing control over the participating nodes within a grid infrastruc-
ture: single nodes can be disconnected without prior notification, wide area connec-
tions can be interrupted or significantly slowed down. Although some well thought out
transaction models are already present within OSIRIS [9] we continue to investigate
mechanisms which even better suite the special nature of grid infrastructures.

Based on this extended HDB system, we are currently building a comprehensive
infrastructure that jointly addresses process-based service composition and streaming
processes, and that is enriched by features from an existing grid infrastructure. In terms
of the distribution paradigms supported, we are currently extending the master/slave
type of distribution to allow for arbitrary execution plans. The goal is to define a generic,
distributed and OGSA compliant process execution engine. This engine has to support
different control flow specifications for composite services that are controlled by the
grid-enabled process execution services so that it can be exploited for process-based
applications on top of medical digital libraries.
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