
On-Demand Service Deployment and Process
Support in e-Science DLs: the Diligent Experience?

Leonardo Candela1, Donatella Castelli1, Christoph Langguth2, Pasquale Pagano1,
Heiko Schuldt2, Manuele Simi1, and Laura Voicu2

1 Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” – CNR
Via G. Moruzzi, 1 – 56124 Pisa – Italy

{candela|castelli|pagano|simi}@isti.cnr.it
2 University of Basel – Department of Computer Science

Bernoullistrasse 16 – 4056 Basel – Switzerland
{christoph.langguth|heiko.schuldt|laura.voicu}@unibas.ch

Abstract. Digital Libraries (DLs) are nowadays conceived as integrated
tools promoting knowledge creation and consumption. They are moving far
from the connotation of the term “library” to become a co-operative envi-
ronment supporting all the actors involved in the whole process of knowledge
creation, management, exchange, etc. Due to the different application con-
texts in which these systems have to be applied and their demanding require-
ments, novel and flexible strategies for developing, creating, and maintaining
DLs are needed. This paper focuses on the Diligent approach where Digital
Libraries are created on-demand by promoting resource sharing and where
complex DL applications can be supported by the on-demand, application-
specific combination of basic services. The paper discusses the technical so-
lution by presenting the system architecture providing details about its key
components and reports on its ongoing exploitation to fulfil the application
scenario arising in the earth observation application context.

1 Introduction

Nowadays research is a cooperative and multidisciplinary effort carried out by groups
belonging to different organisations distributed over the world. Essentially, coopera-
tion is strongly based on digital counterparts of classical documents, like PDF files,
complex (multimedia) objects combining text, images, audio and/or video, sensor
data, structured and semi-structured data, etc., residing in various kinds of infor-
mation sources. Research groups thus have to dynamically aggregate into virtual
research organisations with the aim to share their digital resources for the duration
of their collaboration creating thus new and powerful research environments. In this
collaborative scenario, virtual research organizations increasingly require Digital Li-
braries (DLs) as tools supporting and accelerating the achievements of their research
results. The DLs required by these organizations are far beyond any connotation of
the traditional term “library”. In particular, these new tools must be able to: (i)
manage any type of information deemed as relevant with respect to the research;

? This work is partially funded by the European Commission in the context of the DILI-
GENT project (IST-2003-0042690), under the 2nd call of the FP6 IST priority.

(ii) support the entire information life cycle, from the creation to the exploration,
manipulation and exchange in a collaborative manner; (iii) provide mechanisms for
the controlled and personalised sharing of the research products under policies es-
tablished by their producers; and finally, (iv) evolve on-demand to adapt themselves
to the changes of both the external environment and the community internal needs.

Resource sharing in eScience Digital Libraries is strongly facilitated by the re-
cent advances in Grid computing [6,7,8,9]. The nature of the resources shared can be
highly heterogeneous. They range from computing and storage capacity (computa-
tional and storage Grid, respectively) to services providing enhanced functionality,
like access to expensive instruments and archives containing scientific data, reports,
and any sort of knowledge deemed as relevant with respect to their research (service
Grid).

In the new framework established by these DLs, a community of researchers
working on a same project can decide to set up a DL for supporting their tempo-
rary scientific collaboration by exploiting selected resources to the community. The
researchers can use these DLs both as a source of information for supporting their
research work and a means for publishing and disseminating their research outcomes
to colleagues. By exploiting a DL a researcher, for example, can retrieve information
pertinent to her experimental study and communicate the results of her research
by publishing in the library a composite and living document that contains: (i) the
textual formulation of the thesis statement; (ii) a description of the conditions under
which the experiments have been carried out, given in terms of images and videos,
selected from different DL repositories, illustrating the tools used and the experi-
mental environment; and (iii) a “live graph”, i.e., a graph which is updated each
time the information object is accessed showing the results of her experiments.

Services for the creation, manipulation, sharing, management, etc. of digital ob-
jects are crucial to eScience DLs. In addition to managing these services (some of
them are computationally intensive) and to deploying them on demand in a Grid,
their combination into processes or workflows, e.g., to elaborate data extracted from
several large raw data archives, allows building complex DL applications. Consider
as a sample application the generation of complex reports for earth observation. Af-
ter accessing several raw data archives (by means of appropriate services), data first
needs to be transformed into a common format and possibly also aggregated. Next,
the combination of data from different sources has to be accomplished (e.g., to cre-
ate an overlay image of the observed area). Finally, this derived and combined data
needs to be incorporated into a report document. Each time this report is accessed,
the embedded data is updated by invoking this sequence of services.

The realization of DLs and process-based DL applications serving the new e-
Science scenario illustrated by the example above requires an in depth rethinking of
DL technology. In this paper we focus our attention on the mechanisms that a DL
system must provide in order to support the on-demand deployment of services and
the support for complex workflows in a Grid-based e-Science DL environment. In
terms of processes, their definition, validation and execution needs to be supported,
thereby implementing new (compound) services. In order to avoid bottlenecks and
to guarantee a high degree of scalability, DL applications needs the possibility to
deploy new services on demand. This, in turn, requires the continuous observation
of the state of existing services. Thus, the functionality of a DL is obtained by ap-
propriately aggregating and combining available services. Such DLs must be capable

to easily adapt to and fulfil the evolving requirements of their community, e.g., a
newly available information source should be easily added to the DL if it is deemed
relevant, additional instances of a certain service may be deployed on new host-
ing nodes to respond to a temporary increased workload, or a new service may be
included to provide a new functionality. This paper focuses on the DILIGENT [3] ap-
proach to Grid-enabled Digital Libraries. DILIGENT is an ongoing EU IST project
aiming at providing a test-bed enabling members of e-Science organisations to dy-
namically create the DLs they need by accessing shared knowledge and available
tools and services. This test-bed is implemented by integrating digital libraries with
Grid technologies.

This paper is organised as follows: Section 2 presents the Diligent infrastructure
by providing an overview of its system architecture. Section 3 concentrates on two key
services supporting the operation of the Diligent service-oriented infrastructure.
Section 4 provides details about the pool of services dedicated to services composition
and thus to the mechanisms supporting the deliver of novel functionality. Section 5
presents an exploitation of the DILIGENT infrastructure in fulfilling the concrete
scenario arising in the earth observation community. Finally, Section 6 concludes.

2 DILIGENT: An Infrastructure Supporting e-Science DLs

2.1 DILIGENT Overview

Diligent is an ongoing IST project that aims to combine Grid [6,7,8,9] and Dig-
ital Library [1,10,11,14] technologies in order to provide an advanced test-bed DL
infrastructure allowing members of dynamic virtual e-Science organizations to ac-
cess shared knowledge and to collaborate in a secure, coordinated, dynamic and
cost-effective way. In particular, Diligent builds on top of the Enabling Grid for
E-sciencE (EGEE) [4] framework which is developing the largest Grid Infrastructure
and which, in turn, exploits the EU Research Network GÉANT [12].

From an abstract point of view, the Diligent infrastructure acts as a DL bro-
ker, where the clients of the broker are DL resource providers and consumers. The
providers are the individuals and the organisations that decide to make available,
under the supervision of the infrastructure, their resources according to certain ac-
cess and use policies. The consumers are the user communities that want to build
their own DLs. The resources managed by this broker are of different types: col-
lections (i.e., set of information objects searchable and accessible through a single
“access point”), services (i.e., software tools implementing a specific functionality
and whose descriptions, interfaces and bindings are defined and publicly available),
hosting nodes (i.e., networked entities that offer computing and storage capabilities
and supply an environment for hosting collections and services), and EGEE resources
(i.e., computing elements and storage elements).

In order to support the controlled sharing of resources among providers and
consumers, the Diligent infrastructure relies on the virtual organizations (VOs)
mechanism that has been introduced in the Grid research area [9]. This mechanism
models sets of users and resources aggregated together by highly controlled sharing
rules, usually based on an authentication framework. VOs have a limited lifetime
and are dynamically created to satisfy specific needs by allocating and providing
resources on-demand.

By exploiting appropriate mechanisms provided by the infrastructure, providers
register their resources by supplying a description of them. According to the type of
resources provided, the infrastructure also automatically extracts other properties
that are used to enrich the explicit description. The infrastructure takes care of the
management of the registered resources by supporting their discovery, monitoring,
reservation, and by implementing the functionality needed to support the required
controlled sharing and quality of service (see Section 3).

A user community can create one or more DLs by specifying a set of require-
ments and by appropriately combining the available resources. These requirements
specify conditions on the information space (e.g., the set of collections, subject of the
content, documents type), on the services for supporting the work of the users (e.g.,
type of search), on the quality of service (e.g., availability, performance, security)
and on many other aspects, like the maximum cost, lifetime, etc. The DL broker
satisfies the given requirements by selecting, and in many cases also deploying, a
number of resources among those accessible to the community, gluing them appro-
priately and, finally, making the new DL application accessible through a portal.
The composition of a DL is dynamic since the infrastructure continuously monitors
the status of the DL resources and, if necessary, changes them in order to offer the
best quality of service. Therefore, DLs (possibly serving different communities) can
be created and modified on-the-fly, without considerable investments and changes
in the organisations that set them up.

2.2 The DILIGENT Architecture

The Diligent infrastructure (depicted in Figure 1) is currently being constructed
by implementing a service-oriented architecture in a Grid framework. The ovals in
the figure represent functional areas while the boxes model the services of each area.
These services rely on an application framework that is mainly constituted by (i)
the gLite Grid middleware [5] which supports access to the EGEE resources, and
(ii) the WSRF specification [2] implementation released by the Globus project [13].
By relying on such software framework, the Diligent (DL and non-DL) services
are entitled to act as Grid Services and thus have access to shared resources in the
Grid. In this framework, resources are either the computing elements and storage
elements provided by the EGEE project or the Grid Services provided by Diligent.

The Mediation area includes a number of wrapper services. They are in charge
of accessing external information sources in order to transform the external objects
into Diligent information objects organised in collections.

The Information Space Management area first contains the Content Manage-
ment services that encompass Replication Management and Storage Management.
They represent the Diligent information objects repository. Second, the Metadata
Management services that exploit the capabilities provided by the Content Manage-
ment for the storage and management of the metadata manifestations. Third, the
Annotation service which provides the functionality for the management of anno-
tations attached to information objects. Finally, the Content Security service that
takes care of applying watermark and encryption techniques in order to protect the
DL information objects from unauthorised accesses. The latter aspect is particularly
relevant since the Storage Management relies on the Grid storage facilities and thus

Fig. 1. The Logical Architecture of DILIGENT

stores physical files on third party devices that are not under the direct control of
the Diligent infrastructure.

The Access area includes the Search service that exploits the capabilities provided
by (i) Index Management which encompasses the component in charge of building
and maintaining indexes of various types on the information domain, e.g., full-text
and forward indexes; (ii) Feature Extraction that collects a number of features ex-
traction components specialized for different media types; (iii) Content Source De-
scription and Selection, i.e., the component supporting the discovery of the collec-
tions to be searched; (iv) Data Fusion, i.e., the component in charge of merging the
result sets coming from different collections; and (v) Personalization which is a ser-
vice in charge of customising the search results according to the user’s preferences.
All these services are designed to co-operate by relying on the Process Management
facilities (more details are given in Section 4). In short, the timely reply to a query
requires that a search service produces an execution plan involving all the needed
services modeled by means of a workflow which will be executed in a Peer-to-Peer
fashion by the Process Execution service.

The User and Resource Space Management area includes the Dynamic Virtual
Organization Support service. Actually this is the “meta-service” in charge of sup-
porting the implementation of the Virtual Organization which creates the trusted
environment needed for ensuring a controlled sharing of the Diligent resources.
In order to perform its task, the service provides and relies on a series of services:
the Notification service which informs users about certain topics, e.g., availability
of a new resource; the User and Group Management service which supports user
registration and management tasks and provides mechanisms for their organization
in groups; and Resource Registration Support services which allows adding new re-
sources to the Diligent infrastructure.

The Presentation area is strongly user-oriented. It supports the automatic gen-
eration of user-community specific portals, thus providing personalised access to the
DLs. In particular, it has been designed to support the plug and play of user com-
munities specific visualization tools. From a technological point of view, Diligent
uses an open-source portlet-hosting engine (GridSphere) that by relying on JSR1683,
JavaServer Faces4 and WSRP5 standards is capable of hosting the user interfaces
that are integral parts of the Diligent services.

Finally, the services of the Enabling framework are in charge of providing func-
tionality for (i) monitoring and discovering of all the available DILIGENT resources
– Information Service; (ii) implementing a global strategy offering the optimal use
of the hosting node resources supplied by the Diligent infrastructure – Broker &
Matchmaker Service; (iii) orchestrating the pool of resources that populate the var-
ious virtual DLs and ensuring certain levels of fault tolerance and QoS – Keeper
Service; (iv) supporting the design and verification of workflows, as well as services
ensuring their reliable execution and optimization – Process Management Service.

In the remainder of this paper, we focus on the technical details of the latter
aspects, namely support for on-demand deployment of services, automatic adapta-
tion of the DL to changing environments and/or load characteristics, and complex,
process-based applications.

3 Service Management

In a distributed infrastructure where the applications are provided by aggregation
and composition of services, a set of facilities dedicated to their discovery and, in
general, to their management are needed. In Diligent where the presence of the
Grid promotes a dynamic development process – thus the dynamic deployment of
novel resources – this need is even more urgent. In this section we introduce the
Diligent services dedicated to provide such support.

3.1 The Information Service

The Information Service (IS) is the service in charge of supporting the discovery and
continuous monitoring of distributed resources forming the infrastructure with the
appropriate level of freshness. Hence, the infrastructure is able to adapt the usage
of resources in a flexible way by dynamically balancing their load. The IS gathers
and supplies information following an approach inspired by the well-known Grid
Monitoring Architecture (GMA) [18] proposed by GGF6 that models an informa-
tion infrastructure as composed by a set of producers (that provide information),
consumers (that request for information) and registries or collectors (that mediate
the communication between producers and consumers).

In this scenario, depicted in Figure 2, producers and consumers are supported in
interacting with the IS via a lightweight component distributed on each hosting node
of the infrastructure, called IS-Client. This component provides three main kinds of
3 www.jcp.org/en/jsr/detail?id=168
4 java.sun.com/javaee/javaserverfaces/
5 www.oasis-open.org/committees/download.php/10539/wsrp-primer-1.0.html
6 Global Grid Forum, www.ggf.org

IS-IC

IS-IC

Asynchronous
notification

Retrieval

Producers ConsumersCollectors

IS-
Registry

Publish

IS-
Cache

IS-IP

IS-C

IS-Client
Host Node

...

Service

Service

Service

Host Node

...

Service

Service

Service

Monitor

IS-
Cache

IS-IP

IS-C

IS-Client

IS-IC IS-IC

IS-ICIS-IC

Fig. 2. The Logical Architecture of the Information Service

functionality. First, publication of the information (IS-IP library). Second, infor-
mation access and discovery via query and subscription/notification mechanisms
(IS-C). Third, local storage and maintenance of useful and constantly updated in-
formation (IS-Cache). The IS-Client implements an efficient access to and the publi-
cation of the information in the distributed infrastructure while hiding any detail of
the routing process that identifies the appropriate collectors where such information
is to be published in/retrieved from. The collector aggregates the produced informa-
tion. It is composed of two components, namely the IS-Registry and the IS-IC. The
former component acts as a classical registry and it is in charge of maintaining the
list of available services and their static information while the latter maintains all
the dynamic information and it is based on a highly distributed architecture. From
an operational point of view, it is important to note that each time a service of the
federation is deployed, it is registered on the IS-Registry and then it starts produc-
ing its dynamic information via the local IS-IP. In parallel, the IS-Cache takes care
of maintaining the set of minimal information needed to the locally hosted services
both for publishing and for querying. The IS-Registry is in charge of maintaining the
“picture” of the whole infrastructure in line with the actual status by continuously
monitoring the service instances.

From a technical point of view this services rely on the WS-* standards and
specifications, namely the WSRF framework, WS-Addressing, WS-Security, and WS-
Notification.

3.2 The Keeper Service

In the Diligent context where a DL is built by appropriately aggregating resources,
the Keeper is the real manager. It is the service in charge of creating resources. In
addition, via the creation of an appropriate virtual organisation, the Keeper is able
to properly authorize the users of these services. In order to provide this facility, the
Keeper relies on the concepts of hosting node and software package. The former is
a Diligent resource capable of hosting services. The latter is a bunch of software
that, once deployed by the Keeper, provides the functionality of a service.

The logical architecture of the Keeper is depicted in Fig. 3. It is composed of the
DL Management, the Hosting Node Manager (HNM), and the Packages Repository.

Virtual Digital Library

IS-Client

Host Node

...

Service

Host Node

...

Service

Packages
Repository

HNM

IS-Client

HNMDL
Management

Monitor

IS-Client

Deploy Deploy

Monitor

Service

Service

Fig. 3. The Keeper Service Logical Architecture

The task of DL Management is to identify the set of software packages needed
to implement the DL and the set of hosting nodes where these software components
will be deployed. By interacting with the HNM of these nodes, the DL Management
directs the deployment. In addition, it coordinates and disseminates the operational
context that transforms this set of distributed resources into a single application.
In the Diligent terminology, this context is named DL Map and specifies the DL
resource locations and their configurations. Any other dynamic information about a
resource (e.g., its status) is maintained and disseminated by the IS.

Once the DL is up and running, the Keeper is also in charge of guaranteeing
the quality of the overall set of DL functionality at any time by dynamically reallo-
cating resources/archives and checking periodically their status. In order to support
this functionality it accesses and investigates the state of services and resources
and destroys and/or relocates them in an appropriate way using the information
disseminated by the Information Service.

The HNM is the minimal mandatory software that must be installed on a hosting
node to support the dynamic deployment. It is the manager of the node which
hosts it. The tasks of node management are fourfold. First, it collaborates with
the DL Management to deploy new services. Second, it publishes the hosting node
configuration and status in the Information Service. Third, it exchanges data with
the DL Management of the DL and fourth, it maintains and exposes the hosting
node configuration to the hosted services.

Finally, the Packages Repository is in charge of storing the software packages
and making them accessible to the HNMs when they need to deploy one of them.

From a technical point of view the resources we are discussing here are Web/Grid
Service instances and related software components. All the software that we want to
dynamically instantiate must be registered in the Diligent infrastructure and must
be compliant with the package model specification. If a “piece of software” respects
the rules of this specification, it can be (i) uploaded in the Packages Repository,
(ii) handled – i.e., deployed and undeployed – by the HNM, and (iii) dynamically
discovered and used by other services. Moreover, since Diligent follows the SOA
paradigm, it is clearly composed of services that must be accessible via a network
interface. A hosting environment is needed in order to allow services to operate. In

Diligent the hosting environment is the Java WS Core, developed by the Globus
Project. This service container provides a complete implementation of the WSRF [2]
and WS-Notification specifications plus WS-Addressing and WS-Security support
based on the Axis Web Services engine developed by the Apache Foundation. Java
WS Core provides also a framework that supports both authentication and autho-
rization mechanisms. In particular, the authorisation features can be extended by
each service in order to provide a customized level of authorisation policies.

4 Service Composition

Service composition allows for the (recursive) definition of complex services out
of existing ones. This is often also referred to as programming in the large. For an
eScience DL, service composition is particularly important in order to specify and run
processes for the definition, analysis, and processing of data in several subsequent,
individual steps.

A sophisticated solution for service composition on top of a Grid environment
needs (i) advanced support for the design and analysis of compound services, (ii)
their decentralized execution in a reliable way, and (iii) sophisticated support for
service management as it is provided by the IS and the Keeper. In terms of design
and verification, it is important to easily combine services by specifying control and
data flow and to verify whether proper failure handling is considered. In terms of
execution, the functionality of the process engine should be distributed in the Grid.
Despite of the lack of a centralized process engine which would quickly become a
bottleneck when the number of processes increases, sophisticated failure handling
strategies have to be applied and enforced.

4.1 Compound Services: Design and Validation

Technologies and standards like XML, SOAP7, and WSDL8 provide a simple means
to describe services and to make them accessible to a large community in a dis-
tributed environment such as a virtual organization cooperating in an eScience DL.
Yet, the full potential of web services becomes only apparent if several service invo-
cations can be combined to establish even more powerful composite services (pro-
cesses). A process defines the logical dependencies between independent services by
specifying an invocation order (control flow) as well as rules for the transfer of data
items between different invocations (data flow). In addition, it is possible to define
the transactional behavior and execution guarantees to ensure a correct execution
of processes even in case of concurrency and failures. An infrastructure for transac-
tional processes has to support all these runtime semantics. Furthermore, a graphical
process modeling tool should support DL users in specifying their applications.

The modeling tool implemented for Diligent for the purpose of Process Design
and Verification is meant to help users seamlessly build processes. It allows for the
easy composition of services into process definitions in a controlled manner. This
tool is implemented in Java and runs as an applet, which will be integrated into a
portlet running on the Diligent portal host.
7 Simple Object Access Protocol, www.w3.org/TR/soap/
8 Web Service Description Language, http://www.w3.org/TR/wsdl

Fig. 4. A Screen Shot of the DILIGENT Modelling Tool for Compound Services

Figure 4 shows a screen shot of it. The modelling tool offers process design in
a graphical boxes and arrows approach for the control flow. The rounded boxes in
Figure 4 indicate the activities of the process. Each activity corresponds to an in-
vocation of a service. This can either be a basic (web) service or again a process.
Furthermore, the data flow of a process is designed by the concept of a process white-
board, the in-process variable area. At the end of the process design task, the tool
outputs the process description and new/modified versions of a process can be reg-
istered and uploaded in the Diligent Information Service. On the set of activities,
two different orders are defined. The partial precedence order specifies the regular
order in which services associated with process activities are invoked. An activity
can only be executed when all its pre-ordered activities have successfully finished
and when the conditions on its execution are fulfilled. Since the precedence order
is a partial order, intra-process parallelization can be realized by parallel branches
(fork/join). In addition to the precedence order, the preference order specifies alter-
native executions that can be chosen when an execution path fails. Each activity
is described by a set of properties like execution costs, compensation, retriability,
and failure probabilities. Given a transactional process description, the tool is able to
check correctness of the description based on formal criteria at design time according
to the model of transactional processes [15].

In Diligent, we are using the BPEL9 standard as a starting point for the pro-
cess specification. The DILIGENT modelling tool is generating a BPEL-compliant
process definition, which we have enriched with transactional properties.

The Process Design and Verification service is responsible for providing a user
interface for viewing, editing, and managing process definitions and for validating

9 Business Process Execution Language for Web Services, www.ibm.com/developerworks/
library/specification/ws-bpel/

process definitions defined by a user or generated by another Diligent service. The
process validation is necessary if the process will be saved in the Diligent IS and
involves syntactical and semantical correctness checks. The result of the validation
process is a “validation signature” confirming that the process is correctly defined.
This is required since processes without the validation’s signature or whose signature
is corrupted will be rejected by the runtime engine.

4.2 Compound Services: Execution

After a process has been designed and stored in the Diligent IS, users or other
services within the Diligent infrastructure may start its execution by sending
a Start CS message to (any running instance of) the service responsible for the
execution of compound services. The process is then executed in a decentralized
manner as described below.

Consider the process shown in Figure 5 which corresponds to the sample pro-
cess from Section 1 (retrieve and combine data from different sources in the earth
observation domain). The shapes represent different types of services available in
the Diligent infrastructure. It should be stressed that the activities specified in
the compound service specification refer only to the type of the service, not to ac-
tual running instances identified by concrete endpoint references. The actual nodes
where the process is executed are determined at runtime using information about
the deployment of the different services and the current status of the available nodes.

The orchestration and coordination of the execution of a process must be handled
by some process execution engine; however, in order to provide true decentralization
for the execution, the orchestration of the process execution should not be done by
a single instance of such an engine – which would create a single point of failure
and a potential hot spot –, but should rather be distributed as well, making use
of the available resources and ideally closely following the path that the process
execution takes. This implies that the nodes hosting the services to be executed
are equipped with the execution engine, so that each activity invoked in a workflow
can be handled by the local engine.10 Therefore, on each node in the Diligent
infrastructure, a copy of the process execution engine is deployed.

The functionality for coordinating compound service execution is provided by
a WSRF service named CSEngine. The CSEngine is built on top of the existing
distributed process execution engine OSIRIS [16,17], which has been modified and
enhanced to support WSRF service calls and to use the Information Service provided
by the Diligent infrastructure. The actual execution of a process is a chain of
interaction between the CSEngine services on the involved nodes; each CSEngine
in turn invokes the target services locally. Figure 6 gives an overview of the most
important components of the CSEngine service and the interactions taking place
during the execution of a process (in this case, the execution of activity 3 of the
process depicted in Figure 5).

The main functionality of the WSRF Service Interface is to provide the SOAP
interface to the CSEngine, i.e., it provides web service operations which forward the
received data to the OSIRIS core engine. It also contains methods for invoking these

10 It is not absolutely required that each node have the execution engine installed, since
web service calls can of course be done remotely; however it is advisable.

Fig. 5. Sample Process Fig. 6. Architecture of the CSEngine Service

operations on other CSEngine nodes, i.e., for forwarding process execution messages.
Finally, this component also maintains the process state, as a WS-Resource, for each
compound service execution the node has been involved in.

The OSIRIS Core component handles the orchestration of the execution of ac-
tivities. Given a message, as received by the WSRF service interface, and the process
definition (replicated from the Diligent IS), it determines which step of which pro-
cess this message corresponds to. It enriches the message with all additional required
information and forwards the message to the relevant component (the CSActivity
component in Diligent). On return, the process definition is checked for the succes-
sor activities of the current node, the corresponding OSIRIS messages are generated
and ultimately forwarded to the Matchmaker.

CSActivity is the component which actually executes the given compound service
activity. At the moment, two types of activities are implemented, which correspond
to the BPEL <invoke> and <assign> activities; the former invokes a target web
service (typically residing on the same node as the CSEngine), the latter is used for
evaluating and performing process variable assignments. In the future, additional
activity types will be added, in order to support more BPEL constructs (e.g., loops,
switches etc.)

Finally, the Matchmaker receives an OSIRIS message containing, among others,
information about the next activity to be executed in the compound service. Given
this message (in particular the type of activity and the type of the target web
service), the matchmaker is in charge of determining the best node for handling this
message, as described below. The resulting target node is added to the message, and
the message is handed back to the WSRF Service Interface for forwarding to the
CSEngine on the target node.

The most important aspect of process execution in Diligent is its distribution:
even orchestration of the process execution is distributed among multiple instances
of the CSEngine service. At runtime, ideally the only remote service calls take place

between the involved CSEngine instances, while the invocations of the actual target
services for a process activity are handled locally at the respective target node.

The decision where the next activity of a process is to be executed is made
dynamically at runtime by the Matchmaker using information from the Diligent
IS. On startup, the component gathers a list of all services running on the local node.
It then queries the IS for process specifications containing invocations of either of
these services, because the CSEngine may become involved in the execution of these
processes. Finally, a list of potential successor services (i.e., the next activities in
the respective processes). The IS is then queried for deployment information about
these services, and for QoS-related information about the corresponding nodes – a
prominent example would be the current load of the node. With all this information
available, the routing decision can be made using local knowledge only. However, the
requested information may change over time (e.g., new process specifications may be
added, service instances may be deployed or undeployed, the state of the nodes will
change, etc.). Therefore, corresponding subscriptions to notifications about status
changes are set up. This allows for timely updates of the state information, while
avoiding the overhead which would be introduced by constant polling.

5 Exploitation: the ImpECt Scenario

The Diligent infrastructure is evaluated in different application domains which
cover the full spectrum from rather traditional Digital Libraries in cultural heritage
applications to complex and dynamic e-Science DLs.

In particular, the ImpECt (Implementation of Environmental Conventions) sce-
nario which includes leading actors from the environmental sector and which is
represented in the Diligent consortium by the European Space Agency (ESA)
comes along with challenging requirements for applications from the earth observa-
tion domain. These include dynamic and on demand deployment of services as well
as process definition, verification, and execution. In this framework, traditional DLs
are not suitable anymore to satisfy emerging activities like, for example, assessments
and planning responses to environmental accidents. International and regional con-
ventions related to marine pollution and the UNESCO World Heritage Programme
represent the framework for formulating international environmental agreements. To
face such situations DLs must provide facilities for storing, managing and accessing
multi-type information, for making community specific applications available, and
for responding to proper on-demand person-centric aggregation and interoperability
of data and services within user-defined processes. These above mentioned conven-
tions are continuously evolving and thematic areas are specialising. Yet, informa-
tion sources are dispersed among environmental agencies and a Diligent-based DL
could be the most appropriate tool for enabling this community to more effectively
coordinate actions.

The Earth Observation tasks of ESA are mainly centered on the combination and
correlation, the evaluation and the visualization of many different data stemming
from different sources. In order to facilitate the integration, the data as well as
the operations for working with the data are made available through web services.
The involvement of the European Space Agency (ESA) as a user community in the
Diligent project strives to make use of the DL infrastructure for complex search

and data processing tasks. The latter demand for the flexible and dynamic utilization
of services in the Grid and their combination in order to support the complex data
production and dissemination chain. At the same time, users have to be provided
with an easy-to-use interface.

Consider the following example: to answer questions about the correlation be-
tween the air pollution and the proliferation of algae in the Mediterranean sea over
the last two years, one might wish to automatically generate a report which retrieves
and combines the relevant satellite images and measurement data, and finally gener-
ates a document containing the combined images and corresponding derived meta-
data in chronological order. Clearly, this task corresponds to a composite service,
consisting at least of the following basic services: (i) evaluating the request, (ii)
searching for relevant documents and images according to the filter criteria, (iii)
retrieving the data, (iv) possibly transforming the data into a unified format, (v)
combining the data (e.g., to create an overlay image, (vi) generating derived data,
and finally (vii) integrating the data into a document.

The process management components of the DILIGENT testbed will be used
for the definition and execution of the corresponding processes. These, in turn, rely
on the Information Service and the Keeper for managing and deploying the earth
observation services on demand.

6 Conclusion

Current IT infrastructures have to take into account that research is more and more
becoming a cooperative and multidisciplinary effort. Supporting virtual research or-
ganisations requires the possibility to create powerful environments for collaboration,
cooperation and for sharing and exploitation of data by dynamically making use of
existing resources. For Digital Libraries, this means that they are no longer static
systems providing access to well-defined collections. Rather, e-Science DLs have to
be dynamically tailored to particular applications needs. This includes the provi-
sion of access to several information sources, the support of complex information
production cycles comprising the creation, annotation, exploration, dissemination,
and exchange of data. Therefore, two requirements are vital for e-Science DLs. First,
the support for the on-demand adaptation to changes in the DL applications but
also to changes in the underlying environment . Second, the support for complex
applications that require the combination of different resources which are usually
made available by means of services. A key to meeting this requirements is the use
of Grid infrastructures as the basis for advanced e-Science DLs.

In this paper, we have presented the Diligent approach to providing on-demand
adaptation and workflow support in e-Science DLs. These two aspects are part of
a comprehensive infrastructure for powerful, dynamic DLs on top of a Grid envi-
ronment. In addition, current activities in Diligent also exploit the underlying
Grid infrastructure for storage purposes (of individual information objects, their
associated metadata, and collections), and for sophisticated search (e.g., by mak-
ing use of the Grid for the parallelization of complex feature extraction). Another
main line of activities in Diligent is the evaluation of the infrastructure in concrete
application scenarios. For the dynamic adaptation and process support, the most
challenging one is the ImpECt scenario driven by the ESA since they have many

complex processes to support for data analysis and a large number of (computa-
tionally intensive) services available. However, since Diligent is designed to be an
application-independent infrastructure, evaluation will consider other scenarios from
different application domains as well.

References

1. W. Y. Arms. Digital Libraries. The MIT Press, September 2001.
2. T. Banks. Web Services Resource Framework (WSRF) - Primer. Committee draft

01, OASIS, December 2005. http://docs.oasis-open.org/wsrf/wsrf-primer-1.

2-primer-cd-01.pdf.
3. DILIGENT. A DIgital Library Infrastructure on Grid ENabled Technology. http:

//www.diligentproject.org/. IST-2003-004260.
4. EGEE. Enabling Grids for E-sciencE. http://public.eu-egee.org/. INFSO 508833.
5. EGEE. gLite: Lightweight Middleware for Grid Computing. http://glite.web.cern.

ch/glite/.
6. I. Foster. What is the Grid? A Three Point Checklist. GRIDtoday, 1(6), 2002.
7. I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing Infrastructure.

Morgan-Kaufmann, 2004.
8. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002.

9. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organization. The International Journal of High Performance Computing
Applications, 15(3):200–222, 2001.

10. E. A. Fox, R. M. Akscyn, R. Furuta, and J. J. Leggett. Digital Libraries. Communi-
cations of the ACM, 38(4):23–28, April 1995.

11. E. A. Fox and G. Marchionini. Toward a Worldwide Digital Library. Communications
of the ACM, 41(4):29–32, April 1998.

12. GÉANT Team. GÉANT Web Site. http://www.geant.net.
13. Globus Alliance. The Globus Alliance Website. http://www.globus.org/.
14. Y. Ioannidis. Digital libraries at a crossroads. International Journal on Digital Li-

braries, 5(4):255–265, August 2005.
15. H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Isolation for Trans-

actional Processes. ACM Transactions on Database Systems (TODS), 27(1):63–116,
Mar. 2002.

16. C. Schuler, H. Schuldt, C. Türker, R. Weber, and H.-J. Schek. Peer-to-Peer Execution
of (Transactional) Processes. International Journal of Cooperative Information Systems
(IJCIS), 14(4):377–405, 2005.

17. C. Schuler, C. Türker, H.-J. Schek, R. Weber, and H. Schuldt. Scalable Peer-to-Peer
Process Management. International Journal of Business Process Integration and Man-
agement (IJBPIM), 1(2):129–142, 2006.

18. B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski. A
Grid Monitoring Architecture. Technical Report GFD.6, Global Grid Forum Document
Series, 2002.

