
Toward Replication in Grids for Digital Libraries
with Freshness and Correctness Guarantees?

Fuat Akal, Heiko Schuldt, and Hans-Jörg Schek

University of Basel, Department of Computer Science
Bernoullistr. 16, 4056 Basel, Switzerland
{fuat.akal,heiko.schuldt}@unibas.ch

schek@inf.ethz.ch

Abstract. Building Digital Libraries (DL) on top of data Grids while
facilitating data access and minimizing access overheads is challenging. To
achieve this, replication in a Grid has to provide dedicated features which
are only partly supported by existing Grid environments. First, it must
provide transparent and consistent access to distributed data. Second, it
must dynamically control the creation and maintenance of replicas. Third,
it should allow higher replication granularities, i.e., beyond individual
files. Fourth, users should be able to specify their freshness demands.
Finally, all these tasks must be performed efficiently. This paper presents
an on-going work with the ultimate goal of building a fully integrated and
self-managing replication subsystem for data Grids which will provide all
above features. Our approach is to start with an accepted replication
protocol for database clusters and to adapt it to the Grid.

1 Introduction

Digital Libraries (DLs) have significantly evolved during the last years. They are
no longer seen as just the digital counterparts of traditional libraries but are
rather considered to be the main platforms for managing and sharing data and
knowledge within communities. This poses new requirements on DL systems. In
particular, DLs have to deal with a rich variety of data ranging from traditional
documents to complex multimedia objects which combine text and audio-visual
content, or even sensor data streams. In parallel, also the requirements in terms
of access to data and documents in a DL have become more challenging, lead-
ing from simple Boolean queries based on structured metadata (e.g., date and
location where a certain photo has been taken) to sophisticated multi-object
multi-feature similarity queries based on automatically extracted object features
(e.g, image and audio features of a video sequence). This leads to an increased use
of DLs and the expansion to new user communities like eScience and eHealth [11,
12]. These new communities demand efficient and consistent access to DL content
and increased availability of data and metadata managed in DLs.

? The work presented in this paper has been partly supported by the EU in the 6th

framework programme within the project DILIGENT (contract No. IST-2003-004260).

Proceedings of 3rd VLDB Workshop on Data Management in Grids (DMG 2007), Vienna, Austria, 2007/9

2 Fuat Akal, Heiko Schuldt, and Hans-Jörg Schek

Diligent (a DIgital Library Infrastructure on Grid ENabled Technology) [4]
is an ongoing EU-funded project that combines Grid and DL technologies. The
Diligent system exploits the gLite [7] middleware provided by the EGEE (En-
abling Grid for E-sciencE) Project [5]. One of the application domains addressed
in Diligent is Earth Observation (EO). A typical activity in EO, as it is per-
formed by the European Space Agency (ESA), is to generate periodical envi-
ronmental reports. These reports are generated by using a complex information
object model provided by the Diligent system. This model allows, for instance,
to associate satellite images with several types of metadata, e.g., spatio-temporal
metadata, image features, etc. Such reports should be kept as up-to-date as pos-
sible and require seamless access to different heterogeneous resources as well as
processing huge amounts of data. While the gLite middleware provides basic
data Grid functionality, the support for replication is rather limited. Basically,
replication on gLite consists of the manual creation of replicas for files, i.e., for
raw content only. Neither freshness characteristics of replicas (i.e., when has the
replica been updated) nor consistent access to different replicas (i.e., guarantee
that different objects have the same freshness level) is provided.

This paper presents ongoing activities within the context of the Diligent
project that aim at combining data Grids with sophisticated replication pro-
tocols which have been developed in the context of distributed databases and
database clusters. The objective is to build an advanced data Grid infrastruc-
ture that first is able to dynamically self-determine where and when to create
(and also delete) replicas. Second, efficient and transparent access to replicas
is provided. This includes the selection of the best replica of a file based on a
cost metrics that considers network and storage latencies. Third, the replication
system should support higher granularities, e.g., collections or sub-collections,
which in turn will improve the efficiency and the manageability of the replica
management. Fourth, users should be allowed to specify their freshness require-
ments while accessing data. Freshness measures up-to-dateness of data. Several
freshness metrics can be found in literature [16]. The freshness level demanded
by an application can be thought of a quality of service parameter. Depending on
the user’s freshness requirements, e.g., ”give me at most thirty minutes old data”,
finding the best replica may not need to suffer from synchronization of replicas.
Involving freshness level of data in the replica selection process provides a flex-
ibility with the user to make his choice. Finally, maintenance of replicas must
be performed efficiently even with high freshness and consistency requirements.
Since synchronous replication is very expensive to afford in a Grid environment, a
mix of replication mechanisms which comes with consistency and efficiency guar-
antees of synchronous and asynchronous replication models must be provided for
efficient maintenance of replicas.

The remainder of this paper is organized as follows: Sections 2 and 3 give
an overview on replication management in Grid environments and in database
clusters, respectively, together with related work. Section 4 presents the transition
from database clusters to data Grids. Section 5 details our envisioned replication
architecture. Section 6 concludes.

Replication in Grids with Freshness and Correctness Guarantees 3

2 Replication in the Grid

Typical replication solutions for the Grid have the tendency of using a sim-
ple user-initiated replication model. In this model, typically a central (also dis-
tributed) file catalog exists where all replicas of a file are registered. This model
pursues an upload-replicate-download cycle. The European DataGrid (EDG) [6]
and the Enabling Grids for E-sciencE projects [5] are the known examples of this
model. EDG provides a Grid middleware which contains a set of integrated data
management services. It provides the Replica Location Service (RLS) which is a
joint design between the Globus Alliance [8] and the EDG Project. It is used to
maintain and provide access to information about the physical locations of the
replicas. The RLS can be setup in a distributed manner by using as many com-
ponents as desired, which may lead inconsistencies. EDG Replica Management
Service provides a set of command line programs, e.g., edg-create-replica com-
mand, to manage replication. It also provide the Replica Optimization Service
(ROS) whose objective is to monitor network and storage elements to facilitate
the selection of the best replica by taking into account the network and stor-
age latencies. Although the ROS is a big step to provide dynamic replication
schemes, this component is not mature enough to enable making complex deci-
sions as mentioned in Section 5. Besides, the EDG project is completed and the
activities on EDG Replica Management are stopped.

This model suffers from two shortcomings. Firstly, creating a replica of a file
is the choice of a user. The user decides on which node the replica is to be created.
Another decision taken by the user is the number of the replicas. The user can
create as many replicas as he desires. Although there is no theoretical limits on
the number of the replicas to be created, keeping this number uncontrolled is not
practical. Secondly, accessing a specific file (or one of its replicas) within a grid
job is a static information given by the user. The user simply specifies which copy
of the file to use, and he gives its physical address to the grid job for fetching the
file.

Globus extends this model. It provides two types of solutions. These are i)
core services, e.g., Replica Location Service (RLS) [3] which is a distributed
mechanism for keeping track of the locations of replicated data on a Grid, and ii)
higher-level services which are built atop the core services, e.g., Data Replication
Service (DRS). The DRS was built on top of the Globus Replica Location Service
and the Reliable File Transfer Service [9]. The ultimate goal of Globus is to pro-
vide more general, configurable and higher-level data management services which
contain integrated replica management functionality. However, building higher-
level replication mechanisms is a responsibility of the application developers.

For most of the available solutions, the replication is based on single files. Only
few solutions provide replication on more abstract granules, e.g., replication based
on user-defined collections of Grid files. The Storage Resource Broker (SRB)
proposed by the San Diego Supercomputer Center is one of the most popular
and comprehensive Data Grid Management systems [15]. SRB is a client-server
middleware that provides applications with a uniform interface to access various
distributed storage resources. SRB provides several features regarding replication

4 Fuat Akal, Heiko Schuldt, and Hans-Jörg Schek

including physical aggregation in containers which corresponds to replication at
higher granularity. However, it does not provide a dynamic replica management
functionality as described at the beginning of this section.

Last but not least, a general opinion is that a Grid application does not have
to care much about the consistency and the freshness of data. This opinion holds
true for some scientific fields. For instance, consistency and currency of data may
not be important for a physicist, for whom the first Grid solutions were developed.
On the other hand, freshness of data may be crucial for a researcher, for instance,
from the EO community. An example application in the EO domain may be a
monitoring of the environmental changes in the Mediterranean Sea. Freshness
of data to be processed by the application may be crucial for identifying oil
spills rapidly and for taking necessary precautions before the damage to nature
becomes disastrous.

3 Replication in a Database Cluster

Replication management in database clusters has come of age today. There are
several well-established protocols in the database literature. Basically, there are
two approaches to database replication management: eager and lazy [10]. Eager
replication synchronizes all copies of an object within the same database transac-
tion. Lazy replication management, on the other hand, maintains the replicas by
using decoupled propagation transactions which are invoked after the “original”
transaction has committed. Previous work on lazy replication focuses only on per-
formance and correctness. In our previous work, we proposed the Pdbrep proto-
col for database clusters which also considers freshness issues which is a property
that is not necessarily satisfied by conventional lazy replication techniques [1]. It
combines the performance benefits of lazy protocols with the up-to-dateness of
eager approaches.

An overview of the Pdbrep architecture is illustrated in Figure 1. Pdbrep
assumes a coordination middleware built atop a database cluster. All access to the
cluster is done through this middleware which divides the nodes into two classes:
(1) read-only and (2) update. Update nodes hold the primary (updateable) copies
of the data objects while the secondary copies (read-only replicas) reside on the
read-only nodes. Updates of a data object first occur at its primary copy, then
they are propagated to secondary copies [2].

The changes of update transactions that occur at update nodes are serialized
[2] and logged in a global log. We assume that the serialization order of the updates
is equal to their commit orders. These changes are continuously broadcasted to
all read-only nodes in the system and are enqueued in the local update queues.
The broadcast is assumed to be reliable and preserves the global FIFO order.

Queries read data objects only from read-only nodes. Pdbrep allows dis-
tributed executions of the read-only transactions. Moreover, it allows for arbi-
trary physical data organizations at the read-only nodes. This allows further
classification of the read-only nodes as node groups which are customized for
certain query types. The coordination middleware routes an incoming query to

Replication in Grids with Freshness and Correctness Guarantees 5

a customized node group where it can be executed faster. As another important
property of the Pdbrep protocol, queries may specify the freshness of data they
want to read. Figure 1 shows a query Q that wants to read data objects a and b
with a minimum freshness requirement of fr. Some users may survive with stale
data, e.g. ”fr:I am fine with 2 minutes old data” while others may demand the
freshest data, e.g. ”fr:I want fresh data”.

When a query requests a younger version of a data object than the version
actually stored at a read-only node, a refresh transaction is invoked in order to
bring the node to the freshness requirement specified by the query. Figure 1 shows
two refresh transactions invoked by Q on-demand on the node group NG1. A
refresh transaction first checks the local update queue to see whether all changes
up to the required freshness level are already there. If yes, it fetches these changes
from the local update queue and applies them to the database in a single bulk
transaction. Otherwise, it retrieves all available changes in the local update queue
and goes to the global log for the remaining part to create the bulk refresh
transaction. After completing the refresh, the query is executed.

In order to improve the freshness of nodes, Pdbrep uses another mecha-
nism called propagation transactions. Propagation Transactions are used during
the idle time of a node for propagating the changes accumulated in the local
update queues to the secondary copies. Therefore, propagation transactions are
continuously scheduled as long as the node is idle. Figure 1 illustrates propa-
gation transactions scheduled in NG2. The rationale behind this is to keep the
secondary copies at the read-only nodes as up-to-date as possible such that the
work of refresh transactions (whenever needed) is reduced and thus the perfor-
mance of the overall system is increased. All updates are applied at the read-only
nodes in the commit order of the global log.

We introduced a new locking scheme called freshness locking to guarantee
correct executions of queries together with refresh and propagation transactions.
Freshness locking allows to keep the data objects accessed by a query at a certain
freshness level during the execution of that query. Further information regarding
how the freshness locking is performed and the details of the Pdbrep protocol
can be found in [1].

4 Transition from a Database Cluster to the Grid

The Grid provides a powerful storage infrastructure. Our aim is to equip this
infrastructure with a powerful replication management mechanism which was
proven for database clusters. For this purpose, we propose a Grid replica man-
agement architecture that combines existing Grid data management components
with Pdbrep. In order to adapt the Pdbrep protocol for the Grid environment,
some of its basic assumptions have to be revisited.
Increased Number of Update Nodes: Pdbrep assumes the existence of a
global log component in which all update operations at the update nodes are
somehow serialized. By nature, the Grid may contain several update nodes. In
order to ensure consistent executions of distributed queries, all update operations

6 Fuat Akal, Heiko Schuldt, and Hans-Jörg Schek

Update Node(s)

U: update(a) Q: query(a, b, fr)

a,ca,b,c,d

U Q

Coordination MiddlewareCoordination Middleware

Continuous
Update

Broadcast

Read-only Nodes (organized as Node Groups (NG))

Continuous Update Propagation
Transactions (only, when the node is idle)

Local
Update
Queue

Global
Log

db,d b,c

w(a) r(b)r(a)

NG1 NG2

PDBREP Overview

distributed query
execution

fr : freshness requirement, e.g. „I am fine with
2 minutes old data“, „I want fresh data“ etc.

Refresh Transactions (on-demand)

++

Fig. 1. Overview of Pdbrep

must be serialized and be reflected on the replicas according to the serialization
order. The solution proposed in [2] can be adapted. Note that, no Grid solution
supports many update nodes with serialization guarantees yet.
Replacing Broadcasting by a Publish/Subscribe Model: Since the nodes
of a database cluster are connected with either a LAN or high performance inter-
connects, Pdbrep uses reliable broadcasting of updates that occur at the update
nodes to the replicas. The Grid, on the other hand, consists of nodes which are
potentially distributed worldwide, which may make use of broadcasting imprac-
tical. Therefore, the broadcasting mechanism of Pdbrep must be modified to
carry updates to the replicas in the wide-area network. A suitable mechanism
is a publish/subscribe model where a replica node subscribes for changes on its
originating update node. This approach can reduce the network traffic and allows
forwarding of changes only to the related replicas by enabling filtering.
Flexible Data Allocation Schemes: Pdbrep supports arbitrary physical lay-
outs of data. This property becomes crucial for data Grids if the replication
granularity is wanted to be moved beyond single files. For instance, a collection
of documents can be divided into partitions (sub-collections) and those partitions
can be replicated separately.
Bulk Operations: Pdbrep heavily uses bulk operations to improve the overall
performance. Bulk operations can also be used when moving relatively small files
around the Grid. Typically there is some bookkeeping performed by file transfer
utilities before the transfer starts. This bookkeeping results in longer response
times. Therefore, a natural way to transfer many small files is to package them
as a bulk and transfer it at once.
Implementation: Since Web services provide a standard and language inde-
pendent way to access services, WSRF seems to be a well-suited choice to access
heterogeneous data held in data Grids. Therefore, the implementation of the
new protocol will be compliant with the Service-Oriented Architecture (SOA)
paradigm. In addition, available components will be exploited as black-box Grid
components wherever it is possible.

Replication in Grids with Freshness and Correctness Guarantees 7

5 Overview of the Diligent Replication Architecture

An important challenge Diligent aims at facing is that a DL requires high per-
formance especially while searching and browsing content. Therefore, Diligent
builds further functionality on top of the underlying gLite middleware. For in-
stance, it distinguishes content, interrelates content in multiple ways, and allows
content to be described with various application specific properties. Such addi-
tional functionality requires content management facilities which are capable of
dealing with generic information objects, i.e., units of information that can be
stored or fetched independently of what they actually represent, e.g. collection,
content, metadata, etc. This allows Diligent to be flexible in terms of docu-
ments it can handle. That is, by using an information objet linking mechanism,
complex document types can be supported to store in a DL.

In order to achieve this, Diligent provides a data management architecture
consisting of three layers as sketched in Figure 2. The Content Management Layer
provides the highest level of abstraction and the appropriate interfaces for the
tasks of storing, retrieving, and organising information. The Storage Management
Layer provides functionality to store the information objects, e.g., documents.
The Base Layer encapsulates the low level details of implementing physical stor-
age and file transfer. The Replication Service sits in the core of the Base Layer
and orchestrates storage nodes scattered in the Grid.

A storage node is a Grid node which hosts data sets (replicas) and required
components to manage data replication. A data set is a unit of replication and
can be as small as a single file or a collection of files. Using data sets allows
logically grouping of files and more flexible replication granules. Each storage
node is equipped with four components. The serialization order of the updates
is enforced on the replicas by using update queues. Replica Management Service
(RMS) allows to manage replicas, e.g., create, delete, list replicas etc. Replica
Selection Service (RSS) finds the appropriate replica, e.g., bestReplica via its
cost estimation module and maintains access history for dynamic replication
decisions (e.g., replicating data which is frequently accessed). The File Transfer
Service based on the GridFTP protocol is used for moving data around the Grid.

A typical replication activity in Diligent can be illustrated as in Figure 2.
When a change request to a document is received (1) at the Content Management
Layer, it is passed to the Base Layer (2). This request is routed to a proper
storage node which holds the updateable copy of the document (3). The request
is then executed by the storage node (4). To ensure consistency, any change in the
data must be propagated to all replicas (5). Furthermore, the Diligent system
detects any changes on the content via a notification mechanism. Whenever a
change occurs, a notification for it is generated (6). This notification is then
consumed by external services (7). In this way, changes are propagated actively
and the derived data is kept as up-to-date as possible which is an added value of
Diligent unlike the conventional approaches where refreshing of derived data
may take longer.

Figure 3 shows further details of the Diligent replication architecture. Pri-
mary (updateable) copies of the data sets are shown within a dotted circle in

8 Fuat Akal, Heiko Schuldt, and Hans-Jörg Schek

Base LayerBase Layer

Replication
Service

Replication
Service

Diligent Data Management Architecture

Storage Management LayerStorage Management Layer

Content Management LayerContent Management Layer
External Service

e.g., Index Management

External Service
e.g., Index Management

Storage
Node

Storage
Node

storagestorage

Storage
Node

Storage
Node

storagestorage

Storage
Node

Storage
Node

storagestorage…

1

2

3

4

7

5

6

Storage NodeStorage Node

Replica
Management

Service (RMS)

Replica
Selection

Service (RSS)

Update
Queue

File Transfer
Service

Fig. 2. Overview of Data Management in Diligent

which the serialization of the updates into the update queue occurs. In order to
avoid clutter, update nodes are depicted close to each other. But an update node
can be anywhere in the Grid. A typical log of an update operation can be mod-
elled as a triple of TS, writeOPs and DS, which correspond to the timestamp
of the update, performed operations and the data set to be changed respectively.

Information regarding content of the storage nodes is available through the
replica catalog which is used to locate the required data set. In order to read a
certain file, the client has to go to the storage node where the data set which holds
that specific file exists. For instance, the replica catalog in the figure indicates
that data set DS2 is available on both storage nodes 2 and 3.

Storage nodes subscribe for changes on the data set they hold. Continuous
propagation of updates occurs only to the subscribing storage nodes for the sub-
scribed data set. The scheduling of the propagation transactions as well as the
refresh transactions remain the same as presented in Section 3. However, we can
introduce additional components to facilitate scheduling of read-only transactions
in the Grid:

i) freshness repository: It can be used to periodically collect freshness levels
of the data sets lying around the Grid. In the figure, the last known (collected)
freshness level of data set DS3 on storage node SN5 is equal to 0.6. These ap-
proximate freshness levels are used to select the data sets from which the required
file will be read.

ii) load repository: It is used to determine an approximate load information
regarding each storage nodes. This information can then be used to balance the
load while routing read-only transactions to the storage nodes. Various metrics
can be exploited to measure the load of a storage node. A simple metric is the
CPU load as presented in Figure 3 where the load of the storage node SN3 is
60%.

Introducing such components is indeed not a new invention. They rather can
be found in the Peer-to-Peer process management literature already [14]. Similar
to our idea of applying a technology that was originally devised for databases
to the Grid, using peer-to-peer techniques to improve replication and read-only
transaction scheduling perfectly fits into a Grid environment where the general-
ized Pdbrep is applied.

Replication in Grids with Freshness and Correctness Guarantees 9

sn 5

storage node 4

sn 2 sn 3

sn 1

DS1 DS2

DS3

DS4

DS1

DS2 DS2

DS3

DS1 : 1
DS2 : 2,3
DS3 : 5
DS4 : 4
Replica Catalog

DS1 : 1
DS2 : 2,3
DS3 : 5
DS4 : 4
Replica Catalog

DS1 : <1, 0.7>
DS2 : <2, 0.6>,<3, 0.7>
DS3 : <5, 0.6>
DS4 : <4, 0.6>
Freshness Repository

DS1 : <1, 0.7>
DS2 : <2, 0.6>,<3, 0.7>
DS3 : <5, 0.6>
DS4 : <4, 0.6>
Freshness Repository

(1) Read(DS2(x), DS4(y), 0.6)

(2) Locate bestReplicas and
Put freshness locks

Client

(3) Read Data

continuous
propagation

Queue

....

....
TSx, writeOPs, DSy

DS4

Update Queue

subscription

Envisioned Data Grid Architecture

SN1 : 50%
SN2 : 25%
SN3 : 60%
SN4 : 30%
SN5 : 50%
Load Repository

SN1 : 50%
SN2 : 25%
SN3 : 60%
SN4 : 30%
SN5 : 50%
Load Repository

(2)

(2)

RMSRMS
RSSRSS

FTSFTS

Access
History

Access
History (4) Log

(3)

Fig. 3. Diligent Replication Architecture

Similarly, existing Grid monitoring tools can also be used to play the role the
additional components. For instance, R-GMA can be used to collect information
regarding storage devices in the Grid [13]. After all, the whole idea in Diligent
is not only to invent new monitoring components like freshness repository but
also use the available ones as black boxes to build a management architecture.

When a user requests a copy of a file which resides in the Grid, the replication
system should return the best replica to the user. The selection of the best replica
can be based on one or a combination of many factors. For instance, a typical best
replica selection for the available replication solutions is based on the closeness
of a replica to the requesting user’s location in terms of network transfer cost.
However, this may not necessarily result in the most efficient access to the replica
of that file since the combination of selection factors may change the decision.
Such an implementation of replica selection based on more complex calculations
may improve the access performance. For instance, picking up the least loaded
storage node to fetch a file among two storage nodes which hold the replicas
of that file and are at the same distance from the user’s location will definitely
lead to faster access. For instance, the client in Figure 3 wants to read the files
x and y in the data sets DS2 and DS4 respectively. It specifies its freshness
requirement as 0.6, which means the freshness of data to be read can be 0.6 at
least (1). According to their freshness levels and loads, the storage nodes 2 and
4 are chosen and freshness locks are put on those nodes (2). Then, the data is
accessed and transferred to the client’s side (3). All accesses are logged in order
to be used for future decisions on managing replicas (4).

6 Conclusions

In this paper, we presented the first steps of our on-going work whose ultimate
goal is to come up with a fully integrated and self-managing replication subsystem

10 Fuat Akal, Heiko Schuldt, and Hans-Jörg Schek

for the Grid. In order to achieve this goal, we want to combine existing powerful
replication mechanisms from database clusters with the almost unlimited stor-
age capacities that can be found in data Grids. In particular, we integrate the
Pdbrep protocol with the gLite Grid middleware. Firstly, a large part of the
functionality of Pdbrep is already inline with what a possible Grid replication
system should support as we sketched in section 1. Secondly, the infrastructure
related assumptions of Pdbrep can be modified easily. Third, additional compo-
nents presented in the envisioned architecture to facilitate scheduling of read-only
transactions can be included in the Pdbrep without requiring major changes.

In future work, we aim at further extending the Grid-enabled replication man-
agement with support for the dynamic parallelization of complex activities that
make use of the presence of several replicas and advanced resource reservation in
the Grid.

References

1. F. Akal, C. Türker, H.-J. Schek, Y. Breitbart, T. Grabs, and L. Veen. Fine-Grained
Replication and Scheduling with Freshness and Correctness Guarantees. In VLDB,
pages 565–576, 2005.

2. Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update
Propagation Protocols For Replicated Databases. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, Philadelphia, Pennsylvania, USA, 1999.

3. A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and R. Schwartzkopf.
Performance and Scalability of a Replica Location Service. In HPDC, pages 182–
191, 2004.

4. DILIGENT: A DIgital Library Infrastructure on Grid ENabled Technology. http:

//www.diligentproject.org/. IST-2003-004260
5. The Enabling Grids for E-sciencE Project (EGEE). http: // www. eu-egee. org/ .
6. The European DataGrid Project. http: // eu-datagrid. web. cern. ch/ .
7. gLite: Lightweight Middleware for Grid Computing. http: // glite. web. cern. ch .
8. The Globus Alliance. http: // www. globus. org/ .
9. The Globus Alliance, Reliable File Transfer Service (RFT). http: // www. globus.

org/ toolkit/ docs/ 4. 0/ data/ rft/ .
10. J. Gray, P. Helland, P. O’Neill, and D. Shasha. The Dangers of Replication and

a Solution. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data,
Montreal, Quebec, Canada, 1996.

11. Ioannidis, Y. Digital libraries at a crossroads. International Journal on Digital
Libraries 5(4), pages 255–265, 2005.

12. Moore, R.W., Marciano, R. Building preservation environments. In Proc. of the
5th ACM/IEEE-CS joint conference on Digital libraries (JCDL), 2005.

13. Relational Grid Monitoring Architecture (R-GMA). http: // www. r-gma. org/ .
14. Schuler C., Türker C., Schek H.-J., Weber R. and Schuldt H. Scalable Peer-to-Peer

Process Management. In International Journal of Business Process Integration and
Management (IJBPIM) 1(2) : 129-142, 2006.

15. The Storage Resource Broker. http: // www. sdsc. edu/ srb/ .
16. H. Yu and A. Vahdat. Design and Evaluation of a Continuous Consistency Model

for Replicated Services. In Proc. of the 4th Symposium on Operating System Design
and Implementation (OSDI), 2000.

