
Enforcing Advance Reservations for E-Science
Workflows in Service Oriented Architectures?

Christoph Langguth and Heiko Schuldt

University of Basel
Department of Computer Science

Database and Information Systems Group
Bernoullistrasse 16

CH-4056 Basel

Abstract. Scientific Workflows have become an important tool to per-
form complex calculations, especially when individual operations are
made available as services in Service Oriented Architectures. At the same
time, Quality-of-Service aspects and Advance Reservation of resources
by means of Service Level Agreements (SLA) are topics that get ever-
increasing attention in order to make best use of available resources in a
predictable manner. The support of such SLAs at the level of workflows
raises two interrelated issues pertaining (i) to the temporal prediction of
reservation start time and duration of individual activities, and (ii) to
the actual enforcement of resource commitments at the provider side.
In this paper, we outline our vision of a distributed workflow engine
with support for SLAs and Advance Reservations. We focus on reser-
vations addressing processing capabilities, i.e., shares of CPU power. In
particular, we present a module of the system that is responsible for
the enforcement of such reservations at the individual service providers’
nodes, which, by means of a Fuzzy Controller adjusting task priorities,
makes sure that the SLAs are met in a fair way.

Key words: Advance Reservation, SOA, Service Grid, Scientific Workflows,
CPU share enforcement

1 Introduction

As Service Oriented Architectures (SOAs) are becoming widely deployed in a
variety of domains, e.g., in e-Commerce or e-Science, the focus is shifting more
and more from mere deployment and integration issues to other, non-functional
aspects like Quality of Service (QoS), for example to reserve storage, network
or computational resources in advance. A SOA separates functions into dis-
tinct units (services), which can be distributed over a network and can be com-
bined and reused to create larger-scale applications (workflows). A widespread

? This work has been partly supported by the Hasler Foundation within the project
COSA (Compiling Optimized Service Architectures)

Proceedings of the 3rd Workshop on Emerging Web Services Technology - WEWST, Dublin, IE, 2008/11

2 C. Langguth and H. Schuldt

Fig. 1. Pulsar astronomy workflow, according to [4]

language used for defining such workflows in WSDL/SOAP-based SOAs is the
Business Process Execution Language (BPEL [2]).

For instance, consider the workflow from the Pulsar Astronomy domain, de-
picted in Figure 1. This workflow, described in detail in [4], is used to discover
and visualize radiation caused by pulsars. For each beam extracted from cap-
tured radiation signals, a number of computation steps – each of which can
be implemented as a web service (WS) – has to be performed, namely several
dedispersion measures, followed by multiple Fast Fourier transforms, and a final
aggregation and visualization step. Note that the presented workflow is currently
not run in a SOA (but in a traditional cluster environment using MPI), however
the authors state that a transition to SOA is envisaged [4].

Another workflow, from the Earth Observation Domain, is described in [6].
These processes feature both attributes that are generally used to distinguish
so-called Scientific Workflows from Business workflows: vast amounts of data,
along with computationally expensive processing steps. While QoS may be a
requirement for some applications, e.g., when results are needed in real-time or
generally “as fast as possible”, any kind of service execution can benefit from
the predictability that such QoS contracts (or Service Level Agreements, SLAs)
can provide. Assuming that the agreement covers, for example, computational
power, i.e., CPU times or shares, service consumers can weigh cost against speed
of execution, based on the individual requirements. Service providers may be able
to achieve an (economically) optimal resource usage by careful negotiation.

Enforcing Advance Reservations for E-Science Workflows in SOAs 3

Suppose that a user wants to run the abovementioned workflow taking ad-
vantage of QoS criteria, where SLAs with the service providers are established by
Advance Reservations (AR). While this task is still relatively easy for individual
service invocations scheduled to start at a given point in time, to use ARs in
a composed service workflow which consists of a partially ordered set of service
invocations, one needs to answer the following two questions:

1. For how long should a reservation for a particular service be made? Since
the service implementation is on the provider side, it is generally the service
provider that has to make this information available. Note that the provider
also has to take measures to enforce this prediction, such as controlling CPU
usage.

2. When should a reservation for a particular service start? In a workflow set-
ting, individual service calls will usually depend on the execution or output
of previous operations – so anticipating the start time in turn resolves to
answering the previous question.

Our objective is to develop and evaluate a system, called DWARFS (Dis-
tributed Workflow engine with Advance Reservation Functionality Support),
that can support QoS at workflow level. In this paper, we address the first ques-
tion above, i.e., enforcing CPU usage levels, which is of fundamental importance
to proceed with our overall vision. We show that, by using a fuzzy controller to
dynamically adjust thread priorities, it is possible to closely confine tasks to the
CPU percentage committed to in the SLA, and that one can obtain relatively
accurate runtime predictions for future reservations by extrapolating from the
runtime and the observations made during the enforcement.

The remainder of this paper is structured as follows: Section 2 shortly intro-
duces the overall DWARFS system. Sections 3 and 4 present our approach to
CPU usage enforcement and runtime prediction, as well as an evaluation of first
results. Section 5 gives an overview of related work. Finally, Section 6 concludes.

2 Overview of the DWARFS system

The vision of the DWARFS system (Distributed Workflow engine with Advance
Reservation Functionality Support) is an advanced BPEL orchestration engine,
particularly tailored to e-Science workflows, that is:

– Fully decentralized. Whereas any workflow execution is by definition de-
centralized in the sense that the operations take place at various independent
providers, our goal is to also distribute the orchestration engine itself, elimi-
nating the need for a central component controlling the workflow execution.
To name just a few assets, a decentralized system helps avoid bottlenecks,
hot-spots and single points of failure that a centralized execution engine
could potentially create. In addition, especially in scientific workflows where
large data volumes are transported during the orchestration, overall perfor-
mance also may benefit from having the execution engines in proximity to

4 C. Langguth and H. Schuldt

the target services, by jointly selecting the providers of the workflow’s activi-
ties and the providers to store instance data in a way that allows to minimize
data transfer during workflow execution.

– WS-Agreement capable. Ultimately, a workflow execution should be sub-
ject to SLAs just like a “normal” WS execution can be. This means that the
workflow engine, from a customer perspective, is a service (and agreement)
provider, while in essence it is acting as a proxy that itself has to take the
customer role for negotiating agreements with the providers of the target
services.

For the distributed execution engine part, we can revert to previous expe-
riences from implementing similar systems based on OSIRIS [7, 18], which will
be enhanced and extended. For the WS-Agreement (WS-A, [3]) part however,
entirely new components have to be developed. This poses a lot of challenging
questions including, but not limited to, the (semantic) evaluation of the agree-
ment terms and matchmaking of the possible providers, re-negotiation strategies
especially for failure handling, possibly redundant reservation strategies for ex-
tremely important processes, etc.

Since we are mostly interested in timing issues (because these are crucial
for the agreement establishment for entire workflows), this leads to a natural
focus on the prediction and therefore control of (wall-clock) runtime. As for
CPU-intensive tasks, the runtime is directly related to CPU usage, we use a
basic model where clients negotiate a reservation for a particular share of the
available CPU with a service provider. The service provider gives an estimation of
the (maximum) expected runtime for the provision of the service, and its degree
of confidence that the estimation will be met. Whereas several implementations
for the negotiation of WS-A exist, to our knowledge currently none exists that
is able to enforce the abovementioned requirements at runtime.

In order to support SLAs at the workflow level, all individual service providers
taking part in the workflow must support the respective SLAs as well. As a
first step, we therefore developed a component which is able to control CPU
usage, restricting it to a given value, and to derive the information needed for
a correct runtime estimation. DWARFS uses a Java-based implementation of
all components, because of the widespread use of Java in the SOA field and
its well-known advantages such as portability and potential for re-use. While
we opted for a Java implementation, the approach is not limited to a Java
environment. In fact, we show that even in an environment where direct access
to the system scheduler is not available, it is possible to accurately control the
CPU consumption of tasks. In other environments, the techniques to control the
CPU usage may be different, but the conclusions drawn regarding the prediction
of future runtimes remain valid – thus, the approach, or a variation of it, can
be extended to legacy implementations found in the eScience domain. The basic
functionality of the components is as independent as possible from concrete
container implementations, thus easing ports of the prototype implementation
targeted at a Globus Toolkit 4 (GT4) container. In addition, this component is
meant to be as non-invasive as possible: while it may require certain adjustments

Enforcing Advance Reservations for E-Science Workflows in SOAs 5

to the container or its configuration, it does not require any changes to the OS,
the JVM, or – most importantly – the actual service implementations.

Figure 2 presents an enactment scenario where the DWARFS components
have been deployed in several of the WS containers providing the target services
for the workflow. While the presence of the Process Execution (PE) module is
not mandatory on all nodes, as service calls can equally well be made remotely,
to deliver the added value of QoS we assume the Advance Reservation (AR)
module (or a substitute providing its functionality) to be present.

3 Enforcing CPU share based SLAs

In this section, we describe the architecture and logic of the AR module of the
DWARFS system. The module is comprised of the three main components de-
picted in Figure 3, namely the Agreement agent, which uses previously gathered
statistical data to negotiate agreements and authorizes WS-A-bound service in-
vocations; the Supervisor, which monitors the execution of operations (called
tasks), enforcing the requested minimum QoS level by accelerating or slowing
down execution of individual tasks; and a Fuzzy Controller [9], used for actual
decision-making based on a set of configurable rules. In what follows, we sum-
marize our basic assumptions and focus on the two latter components.

3.1 Model and Basic Assumptions

First and foremost, the goal of predicting the execution time of an operation is
actually proven to be unachievable in the general case, as it projects to the halt-
ing problem [16]. However, assuming that service operations do deterministically
provide a result, we argue that a prediction is in many cases possible based on
the extrapolation of past results. This leads to the second assumption that such
an extrapolation is possible and reasonable, without considering the actual input

Fig. 2. Sample enactment of a part of the pulsar astronomy workflow using DWARFS

6 C. Langguth and H. Schuldt

Fig. 3. CPU share controller

data. This might be a limiting factor, and overcoming it or dampening its im-
pact is left for future research. Other factors we do not consider (yet) include the
effect of I/O-bound operations (as opposed to the CPU-bound ones we assume),
and effects of synchronization and locking in multi-threading calculations.

From a Java program, interactions with the system scheduling are rather
limited: to retrieve information about CPU usage, one can only query the num-
ber of CPU time all considered threads have used. Similarly, to influence the
scheduler, one can only set thread priorities to one of the 10 Java priorities (or,
in extreme cases, suspend and resume threads). This results in a rather coarse
granularity of possible actions to influence the scheduling.

Our experiments have shown that the actual CPU shares – i.e., the percent-
age of processing power that threads running at different Java priorities get –
are heavily depending on the Operating System scheduler and largely varying
between different OS’s. Figure 4 shows a representative part of these experi-
ments, where three threads were run in parallel, with the priority of the first
thread fixed to 8, and the other two threads taking all possible combinations of
priority values from 1 to 8. The resulting CPU shares are depicted textually and
graphically, where each thread is represented by a different color. The fact that
not all possible requested share combinations can be accomodated by a fixed
combination of Java priorities (thus requiring adjustments at runtime), and the
rather big differences in behavior of the schedulers among different OS’s were the
main motivation for using a fuzzy controller to dynamically adjust the priorities
at runtime.

Enforcing Advance Reservations for E-Science Workflows in SOAs 7

Fig. 4. Mapping of Java thread priorities to effective CPU shares on different OS’s

The way of gathering information about CPU usage in Java has another
implication: to determine the effective CPU percentage of a thread, one has to
sum up all threads’ used CPU times to determine the 100% ratio, and then to
calculate the actual shares.1

Figure 5 depicts this relationship and the overhead introduced by various
other parts of the system. Fig. 5 (a) represents 100% of the physical CPU avail-
able. In Fig. 5 (b), the overhead introduced by the OS, the JVM, and the AR
module itself are depicted. Finally, Fig. 5 (c) shows what the supervisor would
see as 100% if the system was not fully loaded – this is caused by the way the
calculations are performed, as explained above. However, because we only rely
on relative shares, the reasoning is still correct regardless of the actual load on
the system. Note that the figure is not drawn to scale, but purely illustrational
– while we cannot reliably measure the OS and JVM overhead, we expect them
to be rather low, and our measurements have shown that the overhead of the
supervisor, in terms of CPU usage, is negligible.

3.2 Maximum Task Share Calculation

Each operation call will result in one or more threads running, which we define
as constituting a task. With multi-CPU machines, an additional factor has to be
taken into account: On a machine with P processors, the maximum achievable
share of a task t with n threads is stmax = min(1, nP). If the system allowed reser-
vations for more than stmax, the task could not be able to achieve the expected
share, resulting in an erroneous slowdown of other simultaneously running tasks.
For instance, on a dual-CPU machine with two threads running at full speed,
each thread will run on one CPU – a reservation combination of 70%/30% will
1 Shares are represented as real numbers in the range [0, 1] in the model. However, to

ease the understanding, we mostly use the equivalent percentage representation.

8 C. Langguth and H. Schuldt

Fig. 5. CPU shares and overhead

result in the first thread never being able to achieve its envisaged goal, but to
be blocked at (a maximum of) 50%. The second thread, however, is also not
abiding to its 30%, because no matter how low the priority is, the thread will
utilize the otherwise unused CPU and run at 50%. It is therefore crucial to know
stmax for a given operation before accepting a reservation request for streq, so
that these limits can be enforced. This results in the requirement to know the
number of threads a given operation will run – which could be provided by the
service description, or determined empirically from past executions as well.

3.3 Monitoring and Control of CPU Shares

On task startup, the supervisor gets the necessary metadata (requested CPU
share, and number of threads) from the agreement agent. The supervisor, in
conjunction with the fuzzy controller, periodically performs the following calcu-
lations (labeled 3a – 3e in Figure 3) to monitor and control execution for the
set T of currently active tasks:

– Calculating the current expected shares (stcur) of all tasks, and adjusting
them so that ∀t ∈ T : streq ≤ stcur ≤ stmax ∧

∑
t∈T

stcur = 1. Note that this

implies that tasks may get more resources – and thus finish faster – than
requested. The objective of the supervisor is to avoid tasks getting too few
resources.

– Gathering the CPU usage, and computing the actual share stact∀t ∈ T . So,
while stcur represents the currently expected share for a task, stact is the
currently measured share.

– Passing stact and stcur to the fuzzy controller, and possibly adjusting the
thread priority for all of the task’s threads in response to the controller
output.

Enforcing Advance Reservations for E-Science Workflows in SOAs 9

Note that the supervisor does not address a “full-fledged” scheduling problem
(i.e., it neither has to, nor wants to, assign exactly which tasks have to be run
at which moment, which anyway would require to entirely replace the OS or the
JVM scheduler). Instead, it merely modifies the priorities of tasks so that their
overall CPU consumption matches the requested one.

3.4 Fuzzy Controller Details

The controller used in DWARFS is actually a generic fuzzy controller built
for the purpose of, but not limited to usage in, DWARFS. It is completely
(re-)configurable at runtime (i.e., all the logic performed, such as getting or set-
ting the system state, fuzzification of parts of it into fuzzy values, fuzzy rule eval-
uation, and defuzzification, is configured declaratively), and supports detailed
logging of the system state. A UI provides users with the ability to perform the
configuration, as well as to “replay” and single-step through logs for analyzing
them.

In DWARFS, we use 25 rules that evaluate two fuzzy input variables, namely
badness = f(stact, s

t
cur), representing the deviation of the actual vs. the expected

state, and tendency, which reflects the derivation of badness over time. The
rule conclusions modify the output variable action, which corresponds to the
change in thread priorities (−10 to 10) to perform. The following is a textual
representation of one of the rules used: IF badness is overspent high AND
tendency is dropping slowly THEN action is lower little.

3.5 Predicting execution times

After a task has finished, the supervisor aggregates the log information about
the elapsed times and CPU usage for the execution and hands this information
to the agreement agent, which in turn uses it for future predictions for the
operation during agreement negotiation. If task t had run for n intervals with
different expected shares (stcur), its overall execution Et can be represented as a
set of n time slices τi = 〈δτi

, στi
〉, where δτi

∈ N+ is the duration of the ith slice,
and στi

∈ (0, 1] is the corresponding actual CPU usage. The predicted execution

time for t is then calculated as PEt =
1

stmax

n∑
i=1

δτi
στi

. This prediction can be

linearly scaled if shares other than stmax are requested.

4 Evaluation

For evaluation and comparison purposes, we repeatedly (15 times) ran the fol-
lowing configuration: The same CPU-intensive operation (repeatedly calculating
SHA-512 hashes, as a representative of a purely CPU-bound and expensive cal-
culation) is run as 6 different tasks, started at different times and with varying
requested priorities. This setting was chosen since it contains most of the inter-
esting aspects of a real-life setting, i.e., tasks starting at “random” times (also

10 C. Langguth and H. Schuldt

at the same time), high-priority tasks intercepting lower-priority ones, tasks ac-
quiring additional (otherwise idle) CPU resources, etc. All tests were performed
on the same computer, running on Ubuntu 8.04 (64-bit) and Windows XP SP2
(32-bit), in a normal, not otherwise loaded configuration. In all cases, a Sun
JVM 1.6 has been used, and the control loops were effectuated every 500 ms.

Figure 6 depicts the evolution of the system state, as seen from the controller.
For each task t, stcur (should) and stact (is) are depicted. An important point
is that should-values are adjusted as tasks join and leave, defining the slice
boundaries and resulting in a stair-case-like should curve. The controller tries to
keep is as close to should as possible. The oscillations at the boundary start are
caused by the fact that each adjustment of the target values (should, or stcur)
results in the need to take the boundary as the new starting point for share
calculation, thus starting the calculations “from scratch”. Naturally the resulting
coarse granularity of input data, paired with few reference intervals, cause a
greater imprecision in the calculations and therefore peaks in the representation.
In fact, a more intuitive representation of the system state – and more insight into
the effectiveness of the controller – is gained by accounting for the performance
during previous timeslices, which is done by calculating as and ai as the average
of all should (respectively is) values over the complete lifetime of the task. These
aggregated values are depicted in Figure 7.

Table 1 presents the evaluation of our measurements. The uncontrolled exe-
cution time corresponds to the task being run as a standalone application outside
of the controller and serves as a control variable. While we cannot explain the
striking difference in execution times between Windows and Linux (possibly

 0

 10

 20

 30

 40

 50

 0 20000 40000 60000 80000 100000 120000 140000

C
P

U
 s

ha
re

Run time

1 is
1 should

2 is
2 should

3 is
3 should

5 is
5 should

4 is
4 should

6 is
6 should

Fig. 6. System state evolution during CPU share controller run

Enforcing Advance Reservations for E-Science Workflows in SOAs 11

 0

 10

 20

 30

 40

 50

 0 20000 40000 60000 80000 100000 120000 140000

C
P

U
 s

ha
re

Run time

1 aggregated is
1 aggregated should

2 aggregated is
2 aggregated should

3 aggregated is
3 aggregated should

5 aggregated is
5 aggregated should

4 aggregated is
4 aggregated should

6 aggregated is
6 aggregated should

Fig. 7. System state evolution (aggregated shares)

caused by the difference between 32 and 64 bit mode), it is actually helpful for
analyzing the effect of longer task run times.

The most important functional quality criteria are the absolute and relative
errors, which correspond to an inability of the system to enforce the requested
reservations. The results indicate that indeed it is possible to enforce reserva-
tions, with the quality of the enforcement and the predictions improving with
the duration of a task. The price to pay is a performance penalty, as shown by
the predictions. The predictions are generally slower than in the uncontrolled
case, as (mostly low-priority) tasks overspending their assigned shares have to
repeatedly be suspended so that other tasks meet their target shares. For the
sake of reducing this penalty, we tested a configuration that disallowed the sus-
pension of tasks. As shown in the last column, this reduces the overhead, but
results in a substantial decrease in quality: most importantly, tasks with higher

Table 1. Evaluation results

Item (averaged over 15 runs) Windows Linux Linux (no suspend)

Uncontrolled execution time (ms) 216829 41361 41361
Coefficient of variation for uncontrolled ex. (%) 0.99 2.19 2.19
Predicted execution time (ms) 221290 48502 44557
Coefficient of variation for prediction (%) 2.05 5.01 2.74
Factor prediction/uncontrolled 1.02 1.17 1.07
Average absolute deviation |ai− as| (%) 0.63 0.79 3.26

Average relative error |ai−as|
as

(%) 5.41 5.96 30.56

12 C. Langguth and H. Schuldt

priority never achieved their target share, while low priority tasks constantly
overspent CPU time.

5 Related Work

Systems targeting the problem of orchestration of resources, in conjuction with
QoS criteria, are given a lot of attention predominantly in the Grid community,
where the provisioning of resources such as storage or processing capacity is
a key aspect. A detailed survey on such systems is presented in [19]. Notably,
ASKALON [8] provides a tool set that is focused on measuring, analyzing, and
predicting performance aspects of grid applications. The VIOLA project provides
support for co-allocation of resources, such as storage, network, and computa-
tional resources using SLAs, as described in [13]. Within the GRIDCC project
[14], a language for specifying QoS requirements at the level of entire BPEL
workflows has been defined. In the context of QoS for workflows, [11] addresses
the configuration of the entire system environment, including the dynamic se-
lection and deployment of service instances.

As WS-Agreement seems to emerge as the de-facto standard to describe and
negotiate SLAs, some weak points concerning dynamic re-negotiation of agree-
ments (which is particularly relevant for workflows) have been pointed out [1,
17]. [15] proposes modifications to the WS-A specification to support completely
dynamic renegotiation of SLAs.

The actual enforcement of the requested QoS criteria – i.e., the assignment
of shares of processing power to tasks – is a problem closely related to schedul-
ing, a domain targeted extensively by the Real-Time and Embedded Systems
community; an overview of this field is given in [12]. While the DWARFS AR
component may well benefit from having an optimized scheduler available at
the JVM and/or OS level, the approach of using a Fuzzy Controller on top of
the existing scheduler helps us achieve the goal of being both non-invasive (not
requiring changes to the underlying system) and flexible (functioning with any
kind of underlying OS and JVM scheduler).

Concerning the control mechanisms used to measure and predict CPU usage,
the J-RAF framework [5] uses an innovative bytecode instruction counting ap-
proach. Whereas this results in accurate measurements, it requires patching of
all classes to be executed, and the results are not easily projected to actual wall-
clock runtime, which is the target of our work. [10] is targeting the prediction
of memory consumption of operations, a topic that, albeit not covered by our
approach, would present a useful addition to extend the managed QoS criteria.

6 Summary and Future Work

In this paper, we introduced our DWARFS approach to an AR-supporting de-
centralized workflow execution engine. In particular, we have presented one of
its fundamental modules, which enables us to enforce certain computational QoS

Enforcing Advance Reservations for E-Science Workflows in SOAs 13

criteria at the scheduler level. While these first evaluation results are encourag-
ing, there are still challenging open questions that require further research. This
includes the configuration of the fuzzy controller, namely the calculation of the
variables and the rulesets, and possibly the evaluation of alternative strategies
for controlling combinations of tasks, instead of individual tasks only. Further
work will then re-consider the limiting basic assumptions, their practical rele-
vance and possible ways to overcome them or to minimize their impact. At the
same time, the implementation and integration of the system will be carried on,
so that the focus can be shifted to the larger-scale problems of AR strategies at
the level of entire workflows in a distributed setting.

References

1. M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement? An Analysis
and an Extension of WS-Agreement. In ICSOC, pages 424–436, 2005.

2. A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Gúızar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web Ser-
vices Business Process Execution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, April 2007.

3. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement
Specification (WS-Agreement). http://www.ogf.org/pipermail/graap-wg/2006-
July/000457.html, July 2006.

4. J. Brooke, S. Pickles, P. Carr, and M. Kramer. Workflows in Pulsar Astronomy.
In Workflows for e-Science, pages 60–79. Springer London, 2007.

5. A. Camesi, J. Hulaas, and W. Binder. Continuous Bytecode Instruction Count-
ing for CPU Consumption Estimation. In QEST ’06: Proceedings of the 3rd in-
ternational conference on the Quantitative Evaluation of Systems, pages 19–30,
Washington, DC, USA, 2006. IEEE Computer Society.

6. L. Candela, F. Akal, H. Avancini, D. Castelli, L. Fusco, V. Guidetti, C. Langguth,
A. Manzi, P. Pagano, H. Schuldt, M. Simi, M. Springmann, and L. Voicu. DILI-
GENT: integrating digital library and Grid technologies for a new Earth observa-
tion research infrastructure. Int. J. on Digital Libraries, 7(1-2):59–80, 2007.

7. L. Candela, D. Castelli, C. Langguth, P. Pagano, H. Schuldt, M. Simi, and L. Voicu.
On-Demand Service Deployment and Process Support in e-Science DLs: the Dili-
gent Experience. In DLSci06, pages 37–51, 2006.

8. T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr., and H. L. Truong.
ASKALON: a tool set for cluster and Grid computing. Concurrency - Practice
and Experience, 17(2-4):143–169, 2005.

9. B. R. Gaines. Fuzzy reasoning and the logics of uncertainty. In Proceedings of
the sixth international symposium on Multiple-valued logic, pages 179–188, Los
Alamitos, CA, USA, 1976. IEEE Computer Society Press.

10. O. Gheorghioiu. Statically Determining Memory Consumption of Real-Time Java
Threads. Master’s thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 2002.

11. M. Gillmann, G. Weikum, and W. Wonner. Workflow Management with Service
Quality Guarantees. In In Proceedings of the 2002 ACM SIGMOD Int. Conference

14 C. Langguth and H. Schuldt

on Management of Data, pages 228–239, Madison, Wisconsin, June 2002. ACM
Press.

12. J. Leung, L. Kelly, and J. H. Anderson. Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. CRC Press, Inc., Boca Raton, FL, USA, 2004.

13. H. Ludwig, T. Nakata, O. Wäldrich, P. Wieder, and W. Ziegler. Reliable Orches-
tration of Resources using WS-Agreement. In HPCC, pages 753–762, 2006.

14. A. S. McGough, A. Akram, L. Guo, M. Krznaric, L. Dickens, D. Colling, J. Mar-
tyniak, R. Powell, P. Kyberd, and C. Kotsokalis. GRIDCC: real-time workflow
system. In WORKS ’07: Proceedings of the 2nd workshop on Workflows in support
of large-scale science, pages 3–12, New York, NY, USA, 2007. ACM.

15. G. D. Modica, V. Regalbuto, O. Tomarchio, and L. Vita. Dynamic re-negotiations
of SLA in service composition scenarios. In EUROMICRO-SEAA, pages 359–366,
2007.

16. P. P. Puschner and C. Koza. Calculating the Maximum Execution Time of Real-
Time Programs. Real-Time Systems, 1(2):159–176, 1989.

17. R. Sakellariou and V. Yarmolenko. On the Flexibility of WS-Agreement for Job
Submission. In MGC ’05: Proceedings of the 3rd international workshop on Mid-
dleware for grid computing, pages 1–6, New York, NY, USA, 2005. ACM.

18. C. Schuler, C. Türker, H.-J. Schek, R. Weber, and H. Schuldt. Scalable peer-to-
peer process management. Int. J. of Business Process Integration and Management,
1:129–142(14), 8 June 2006.

19. J. Seidel, O. Wäldrich, P. Wieder, R. Yahyapour, and W. Ziegler. Using SLA for
Resource Management and Scheduling - A Survey. In Grid Middleware and Ser-
vices - Challenges and Solutions, CoreGRID Series. Springer, 2008. Also published
as CoreGRID Technical Report TR-0096.

