
How Replicated Data Management in the Cloud can benefit
from a Data Grid Protocol — the Re:GRIDiT Approach ∗

Laura Cristiana Voicu
Database and Information Systems Group

University of Basel, Switzerland
laura.voicu@unibas.ch

Heiko Schuldt
Database and Information Systems Group

University of Basel, Switzerland
heiko.schuldt@unibas.ch

ABSTRACT
Cloud computing has recently received considerable atten-
tion both in industry and academia. Due to the great suc-
cess of the first generation of Cloud-based services, providers
have to deal with larger and larger volumes of data. Qual-
ity of service agreements with customers require data to be
replicated across data centers in order to guarantee a high
degree of availability. In this context, Cloud Data Man-
agement has to address several challenges, especially when
replicated data are concurrently updated at different sites or
when the system workload and the resources requested by
clients change dynamically. Mostly independent from recent
developments in Cloud Data Management, Data Grids have
undergone a transition from pure file management with read-
only access to more powerful systems. In our recent work,
we have developed the Re:GRIDiT protocol for managing
data in the Grid which provides concurrent access to repli-
cated data at different sites without any global component
and supports the dynamic deployment of replicas. Since it is
independent from the underlying Grid middleware, it can be
seamlessly transferred to other environments like the Cloud.
In this paper, we compare Data Management in the Grid
and the Cloud, briefly introduce the Re:GRIDiT protocol
and show its applicability for Cloud Data Management.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed databases; H.3.4 [Systems

and Software]: Distributed systems

General Terms
Algorithms

Keywords
Cloud Data Management, Data Grid, Replication.

∗Partly supported by the Hasler Foundation (project COSA)
and the 7th Framework Programme of the EU (D4Science).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudDB’09, November 2, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-802-5/09/11 ...$10.00.

1. INTRODUCTION
Cloud computing has recently received considerable at-

tention both in industry and academia [3]. Basically, Cloud-
based computing allows customers to rent hardware and/or
software resources, thus being freed from significant invest-
ments in building up and maintaining computing centers
in-house by outsourcing their complete ICT infrastructure.
Resources are made available according to Quality-of-service
(QoS) guarantees which are negotiated between provider
and customer. Depending on the type of resources which
are made available to customers and the services which have
been negotiated, there is a distinction between Infrastruc-
ture as a Service (IaaS) [2], Platform as a Service (PaaS),
and Software as a Service (SaaS). Providers of Cloud-based
services usually maintain different distributed data centers.
This allows to dynamically adapt the resources provided for
a particular customer based on their current needs (within
the QoS agreement that has been negotiated).

A core challenge in the context of Cloud computing is the
management of very large volumes of data. This is com-
pletely independent of the type of resource which is shared
in the Cloud – databases are either directly visible and acces-
sible to customers as part of the infrastructure/platform, or
are hidden behind service interfaces. In terms of data man-
agement, QoS guarantees mainly encompass a high degree of
availability. For providers of Cloud services, this means that
data need to be partitioned and replicated across different
data centers. Although traditional high throughput OLTP
applications are most likely not to become the predominant
applications hosted in a Cloud environment [1], replicated
data management nevertheless needs to take into account
updates which are performed on replicated data (either di-
rectly or via service calls). Replicated data management in
the context of concurrent updates to different replicas can be
addressed either by using well-established protocols such as
Strict Two-Phase Locking (2PL) in combination with Two-
Phase Commit (2PC) [10], or by relaxing ACID properties
to increase the overall performance and throughput of the
system. The latter is applied in several of today’s Cloud
environments (e.g., PNUTS [7]).

During the last few years, mainly motivated by the need
of applications in eScience where vast amounts of data are
generated by specialized instruments and need to be collabo-
ratively accessed, processed and analyzed by a large number
of scientists around the world, Grid computing has become
increasingly popular [9]. The Grid started as a vision to
share potentially unlimited computing power over the In-
ternet to solve complex problems in a distributed way – a

Cloud Data Management Data Grids

Distribution Few data centers Many Grid nodes (presumably much larger
than the number of data centers in the Cloud)

Environment Homogeneous resources in data centers Heterogeneous Grid nodes
Operations for Usually SQL-based access to Distinction between mutable and immutable data,
Data Access (object-)relational databases materialized in different sets of access services
Replication Needed as a consequence of QoS guarantees Needed in order to guarantee a high degree of availability;

(availability); must be transparent to customers must be transparent to Grid users and developers
Replication Fine-grained replication (individual tuples Course-grained replication sufficient
Granularity of database tables), due to multi-tenancy (files, relations or partitions of relations)
Updates No traditional OLTP workloads, but (concurrent) First generations focused on read-only data; novel eScience

updates to replicated data need to be supported applications also demand updates to replicated data
Global Control Most solutions have some global component Most Data Grids consider global replica catalogs;

which might lead to a single point of failure yet novel approaches like Re:GRIDiT avoid any
or performance bottleneck global component in the system

Global Correctness Relaxation of ACID properties Most Data Grids do not support concurrent updates;
Re:GRIDiT provides provable correct (serializable)
executions without global component

Dynamic Changes Horizontal scaling and support for unpredictable Most current approaches consider only static replicas;
workloads necessitate support for the dynamic however, support for dynamic deployment is required by
generation of replicas novel eScience applications to move data close to its users

Table 1: Cloud Data Management vs. Data Grids: a Comparison

first generation of Grids, so-called computational Grids, fo-
cused on CPU cycles as resources to be shared. Recent ad-
vances in Grid computing aim at virtualizing different types
of resources (data, instruments, computing nodes, tools) and
making them transparently available. Motivated by the suc-
cess of computational Grids, a second generation of Grids,
namely Data Grids, has emerged as a solution for distributed
data management in data-intensive applications. The size of
data required by these applications may be upto petabytes.
In the earth observation community, for instance, data are
acquired from satellites, sensors and other data acquisition
instruments, archived along with metadata, catalogued and
validated. According to [12], by the year 2010 the earth
observation data archives around the world will grow to
around 9.000 Tbytes and by the year 2014 to around 14.000
Tbytes. In many applications, Data Grids not only maintain
raw data produced by instruments, but need to take into ac-
count also reports derived out of these raw data and image
interpretations that are periodically generated and poten-
tially concurrently updated by scientists at several sites [5].
Similar to Cloud-based systems, a high degree of availability
of data can only be achieved by means of replication across
different nodes in the Grid. In the presence of concurrent
updates to replicas, consistency needs to be guaranteed.

In terms of replication management, most Data Grids suf-
fer from several shortcomings as they merely deal with files
as the replication granularity, do not allow replicated data to
be updated, and/or require the manual placement of files [8,
13]. Recently, we have developed the Re:GRIDiT system
that provides advanced data and replication management in
the Grid [16, 17]. Re:GRIDiT follows a truly distributed ap-
proach to replication management in the Grid by bringing
together replication management, originally developed for
database clusters [15, 4], and distributed transaction man-
agement that does not rely on a global coordinator [11]. In
particular, it has been designed to be independent from any
underlying Grid middleware. Thus, Re:GRIDiT can also be
seamlessly deployed in other environments like the Cloud.

In this paper, we compare requirements and state of the
art in the Data Grid and in Cloud Data Management (Sec-

tion 2). Then, we briefly introduce the Re:GRIDiT protocol,
show its applicability for Cloud Data Management, and pro-
vide performance results of the evaluation of the protocol at
Cloud-scale (Section 3). Section 4 concludes.

2. DISTRIBUTED DATA MANAGEMENT:
CLOUD VS. GRID

Data Grids and Cloud Data Management share similar
objectives. However, the development of the Grid and of
the Cloud have only been loosely coupled for several rea-
sons. First, they both focused on specific user communi-
ties: scientific communities (eScience) in case of the Grid
vs. the outsourcing of ICT services for commercial customers
in case of the Cloud. Second, both environments have dif-
ferent origins: the main driver for the Grid has been the
High Energy Physics community (other eScience communi-
ties have adopted the Grid rather recently), while the prolif-
eration of the Cloud has been dominated by large providers
of IT services that already had the necessary computing re-
sources (data centers) in place and were heading towards
a more optimal utilization of their capacities. Third, the
initial requirements which have been addressed were dif-
ferent. In the Data Grid, first solutions have focused on
the controlled sharing of files within Virtual Organizations
(VOs). Data management at a granularity finer than files,
replication management and updates have only very recently
been put on the list of requirements due to novel eScience
applications (e.g., earth observation, healthcare, etc.). For
Cloud-based environments, analytical data management has
been identified as the predominant application [1]. However,
in the presence of QoS constraints that need to be met by
Cloud service providers, data need to be replicated across
data centers. Although the percentage of updates will be
rather low compared to traditional OLTP settings, Cloud
Data Management nevertheless needs to provide correct and
consistent data management in the presence of conflicting
updates. Therefore, despite the initial separation between
Data Grids and Cloud Data Management, the requirements
both environments need to address more and more converge.

Figure 1: Re:GRIDiT Implementation

According to [6], the Cloud needs to meet the following
requirements:

Multi-tenancy: A Cloud service must support multiple,
organizationally distant customers. Multi-tenancy is also an
important requirement in the Data Grid. However, support
for VOs and thus for different users/customers within the
same distributed infrastructure is already integral part of
most Grid middleware systems.

Elasticity & Resource Sharing: Tenants should be able
to negotiate and receive resources on-demand. Spare Cloud
resources should be transparently applied when a tenant’s ne-
gotiated QoS is insufficient [14]. Similarly, the resources
made available to a VO in a Grid should be dynamically
adapted to its current needs. Therefore, QoS-based resource
negotiation and allocation has recently become an important
topic also in the Grid community.

Horizontal Scaling & Security: It should be possible to
add Cloud capacity in small increments, transparent to the
tenants. A Cloud service should be secure in that tenants
are not made vulnerable because of loopholes in the Cloud.
Similar requirements can also be found in the Grid.

Metering: A Cloud service must support accounting that
reasonably ascribes operational and capital expenditures to
each of the tenants of the service. As Data Grids have their
origin in scientific communities and operate on resources
which are contributed by the member institutions of VOs
on a voluntary basis, this aspect has not yet been in the
main focus of Grid environments.

Availability: A Cloud service should be highly available.
This requirement case also be found in the Grid. In addition,
as services need the (local) presence of the data they access,
availability should be extended also to the underlying data
sources by means of replication.

Operability: A Cloud service should be easy to operate.
In general, this requirement also holds for the Grid. How-
ever, due to the heterogeneous environment in which Grids
can be deployed, some current Grid middleware solutions
are rather limited in that regard. But with the proliferation
of Service Grids, this limitation more and more diminishes.

Table 1 summarizes the relationship between Cloud Data
Management and Data Grids. The table shows that differ-
ences between both fields still exist. However, Re:GRIDiT
which follows a novel approach to data management in the
Grid by making use of and extending protocols that have
originally been devised for database clusters, can be consid-
ered a major contribution to the convergence of both areas.

3. RE:GRIDIT
Re:GRIDiT has been developed to address the needs of

novel data-intensive eScience applications in the Grid [16].
In short, Re:GRIDiT can be characterized as follows:

Replication management : Grid sites are classified as up-
date sites (where data can be updated or read) or read-only
sites (where only read access is allowed). Eager replication is
applied among update sites. In addition, replication mecha-
nisms between update and read-only sites are adopted that
take into account different levels of freshness (cf. [15]).

Distributed concurrency control : user operations can span
several sites, i.e., require support for distributed transaction
management (when data which is read or updated in a single
transaction is distributed across several sites).

No global coordinator : Re:GRIDiT enforces global cor-
rectness and consistency by means of globally serializable
schedules in a completely distributed way without relying on
a central coordinator with complete global knowledge [17].

Mutable and immutable data objects: Immutable data ob-
jects are created only once and kept until deleted. Mutable
data objects can be subject to updates. The latter will be
the predominant type of data objects in Cloud applications.

Dynamic replica deployment and management : Data ob-
jects are dynamically distributed across several replica sites
to raise throughput by moving frequently used/heavy ac-
cessed data objects to relatively inactive replica sites (where
they do not compete against each other for resources) so that
requests can be handled faster [18].

In order to show the potential of Re:GRIDiT for Cloud
Data Management, we have evaluated the system in real-
istic Cloud settings. Since Cloud-based environments typi-
cally contain less but more powerful resources than a Grid
(e.g., several data centers of a Cloud service provider rather
than a large machines with free capacities within an eScience
community), we have run experiments with up to 12 sites.
All sites have been equipped with a Dual IntelR© CPU 3.20
GHz processor, 5 GB RAM and running Ubuntu Linux 8.0.4
as operating system. All hosts are equipped with a local
Derby database and Java WS-Core. The setup is schemati-
cally presented in Figure 1.

3.1 Synchronization of Updates
We conducted several experiments with varying conflict

rates (1%, 5%, 10%, 20%) and have compared Re:GRIDiT
to 2PC/S2PL. Figure 2 shows the throughput of the pro-
tocol when the transaction length is kept constant at 5 op-
erations per transaction and for a fixed number of replica
sites. In this setup, the measurement have consisted of runs
of 500 transactions. Even for a high conflict rate of 20%
Re:GRIDiT proves to perform better, although the differ-
ence in throughput is smaller than for a conflict rate of 1%.
Hence, Re:GRIDiT is highly appropriate for managing repli-
cated data in typical Cloud applications (i.e., conflicts ex-
ist but are rather infrequent compared to traditional OLTP
workloads). More detailed evaluation results of Re:GRIDiT
at Grid-scale with up to 48 update sites can be found in [17].

3.2 Static vs. Dynamic Replica Deployment
We have compared Re:GRIDiT with a static approach to

replica management. In the dynamic approach, the initial
setup considers 12 sites while the static protocol has been
configured with 12 and 6 sites. With the given workload,
the dynamic replication protocol has stabilized the number

Figure 2: Replica Updates:

Throughput Re:GRIDiT vs. 2PC

Figure 3: Replica Deployment:

Throughput Static vs. Dynamic

Figure 4: Dyn. Replica Deploy-

ment: Load Variation in Time

of update sites at a minimum of 6. As it can be seen from
Figure 3, the throughput in the dynamic setting is higher
than in the static setting. For 12 updates sites, the static
Re:GRIDiT requires more time to synchronize the update to
a higher (and constant) number of update sites. It can also
be observed that initially the throughput in the dynamic
setting is smaller than in the case of the static case with 6
update sites, due to the extra load imposed by the release
of the unnecessary update sites. With a lower number of
sites, the throughput of the dynamic setting is increasing
and finally exceeds the one of the static setting with 6 update
sites due to the dynamic selection of the least loaded sites
to host replicas.

Finally, we have evaluated the load variation in the pres-
ence of additional read transactions at the sites. For this,
we have recorded the mean local load variations, the mean
system loads and the evolution of the number of replicas in
time (dynamic setting). Figure 4 shows that for an initial
number of 48 update sites, the average number of replicas
converges to 6 while the impact on the sites’ load is moderate
as soon as the number of replicas has stabilized. More de-
tails on the comparison of dynamic replica deployment and
undeployment with a static approach can be found in [18].

4. CONCLUSIONS AND OUTLOOK
Although having started as specialized solutions for dif-

ferent communities and with different sets of requirements,
Cloud Data Management and Data Grids are more and more
converging. In this paper, we have analyzed the common-
alities between both areas and the differences that still ex-
ist. We have shown that Re:GRIDiT, a protocol that has
originally been devised for replicated data management in
the Grid, is very well suitable also for Cloud Data Manage-
ment. In our future work, we plan to integrate support for
more fine-grained replication into Re:GRIDiT for supporting
multi-tenant applications in the Cloud.

5. REFERENCES
[1] Daniel Abadi. Data Management in the Cloud:

Limitations and Opportunities. In IEEE DE Bulletin,
32(1):3–12, 2009.

[2] A. Aboulnaga, K. Salem, et al. Deploying Database
Appliances in the Cloud. In IEEE DE Bulletin,
32(1):3–12, 2009.

[3] R. Agrawal et al. The Claremont Report on Database
Research. In Comm. ACM 2009, pages 56-65. Vol. 52.

[4] F. Akal, C. Türker, H.-J. Schek, Y. Breitbart,
T. Grabs, and L. Veen. Fine-Grained Replication and
Scheduling with Freshness and Correctness
Guarantees. In VLDB, pages 565–576, 2005.

[5] L. Candela, F. Akal, et al. DILIGENT: integrating
digital library and Grid technologies for a new Earth
observation research infrastructure. Int. J. Digit.
Libr., 7(1):59–80, 2007.

[6] B. Cooper, E. Baldeschwieler et al. Building a Cloud
for Yahoo!. In IEEE DE Bulletin, 32(1):3–12, 2009.

[7] B. Cooper, R. Ramakrishnan et al. PNUTS: Yahoo!’s
Hosted Data Serving Platform. In PVLDB,
1(2):1277–1288, 2008.

[8] EDG: The European DataGrid Project.
http://eu-datagrid.web.cern.ch/eu-datagrid/.

[9] I. Foster and C. Kesselman The Grid 2: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
2nd Edition, 2003.

[10] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann 1993.

[11] K. Haller, H. Schuldt, and C. Türker. Decentralized
coordination of transactional processes in peer-to-peer
environments. In CIKM, pages 28–35, Bremen,
Germany, 2005.

[12] R. Harris and N. Olby. Archives for Earth observation
data. Space Policy, 16(13):223–227, 2007.

[13] M. Manohar, et all. A Replica Location Grid Service
Implementation. In GGF Data Area Workshop, 2004.

[14] N. Paton et al. Optimizing Utility in Cloud
Computing through Autonomic Workload Execution.
In IEEE DE Bulletin, 32(1):3–12, 2009.

[15] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt.
FAS: a freshness-sensitive coordination middleware for
a cluster of OLAP components. In VLDB ’02, pages
754–765. VLDB Endowment, 2002.

[16] L. C. Voicu, H. Schuldt, Y. Breitbart and
H. -J. Schek. Replicated Data Management in the
Grid: The Re:GRIDiT Approach. In Proc. ACM
DaGreS’09, May 2009. Italy.

[17] L. C. Voicu, H. Schuldt, F. Akal, Y. Breitbart and
H. -J. Schek. Re:GRIDiT – Coordinating Distributed
Update Transactions on Replicated Data in the Grid.
In Proc. Grid’09, October 2009. Canada.

[18] L. C. Voicu and H. Schuldt Load-aware Dynamic
Replication Management in a Data Grid. In Proc.
CoopIS’09, November 2009. Portugal.

