1st International Workshop on Data Engineering meets the Semantic Web (DESWeb)
In conjunction with ICDE 2010, 5-6 March 2010, Long Beach CA, USA

Optimized Data Access for
Efficient Execution of Semantic Services

Thorsten Moller and Heiko Schuldt

Databases and Information Systems Group, Dept. of Computer Science, University of Basel, Switzerland
thorsten.moeller@unibas.ch, heiko.schuldt@unibas.ch

Abstract— Executing Semantic Services requires, in contrast to
traditional SOAP-based Web Services, frequent read and write
accesses to graph-based semantic data stores — for instance, for
the evaluation of preconditions or the materialization of service
effects. Therefore, the overall performance of semantic service
execution, in particular for composite services, is strongly affected
by the efficiency of these reads and writes. In this paper we
present two data access optimization techniques for semantic
data stores: Prepared Queries and Frame Caching. The former
reduces the costs for repeated query evaluation, e.g., in loops.
The latter provides rapid access to frequently read triples or
subgraphs based on materialized views using a Frame-based data
structure. The described techniques have been implemented and
evaluated on the basis of OSIRIS NEXT, our open infrastructure
for Semantic Service support.

I. INTRODUCTION

The proliferation of Service-oriented Computing has paved
the way for a new computing paradigm that enables and facil-
itates the seamless interoperation of loosely coupled software
components. Services as main abstraction provide functional-
ity in a modular and well-defined way, based on standardized
interfaces for description and invocation. In particular, Web
service standards that have been devised in recent years
cover a wide range of aspects such as service description
and access (e.g., SOAP, WSDL), service combination which
allows to define more sophisticated composite services (e.g.,
BPEL4WS), transaction support, and security and privacy
measures. The vast success of service-oriented architectures
has also brought forward Semantic Web Service standards such
as OWL-S [1] and SAWSDL [2]. These standards enrich the
purely syntactic description of (SOAP-based) Web services
with additional details on the service’s semantics, based on
Description Logics (DL), in order to support the automated
application-to-application interaction. This allows to address
novel applications such as the automated semantics-based
composition of services to ad hoc workflows, for instance
in mobile Internet-based applications, and advanced failure
handling strategies by dynamically choosing semantically
equivalent or at least similar services to replace a service that
has failed.

In this paper, we focus on efficient system support for the
execution of composite semantic Web services described in
OWL-S. In contrast to traditional workflow engines which
orchestrate the execution of BPEL processes by invoking
SOAP Web services in order in a request/reply style, thereby

mainly acting as interpreters of BPEL process specifications,
the execution of OWL-S processes is more complex. Semantic
Web service profiles include preconditions and effects, ex-
pressed by means of logic formulas (e.g., decidable SRWL
atoms or RIF production rules). Checking whether precondi-
tions are satisfied w.r.t. a given knowledge base (KB) is done
by translating those formulas into SPARQL [3] or SPARQL-
DL [4] queries that are then evaluated against the KB. The
KB is a specialized database for knowledge management that
usually adopts a graph-based data model to seamlessly support
RDF triples and that integrates inferencing engines for the
purpose of automated deductive reasoning. In addition, the
effects created as a result of service invocations need to be
properly materialized in the KB. Therefore, efficient semantic
service execution is strongly dependent on the efficient query
(evaluation of preconditions) and update (materialization of
effects) processing in the database(s) of the KB.

We apply two optimization techniques to semantic service
execution: Prepared Queries, which are well known from
databases, and Frame Caching. The former reduces the costs
for repeated query transformation (e.g., for the evaluation
of service preconditions) and does also reduce the number
of KB updates, which in turn improves the performance of
queries that involve inferencing. The latter aims at reducing
the number of KB queries by keeping materialized views
of frequently accessed individuals and data values in Frame-
based data structures [5]. The proposed techniques were eval-
uated in detail on the basis of our OWL-S execution engine
which is part of OSIRIS Next'. OSIRIS Next provides flexible
and dynamic failure recovery of composite Semantic Web
services [6] and executes these composite services in a fully
distributed way [7]. The evaluations show a performance boost
for repeated service execution and for execution of composite
services consisting of loops and iterative control constructs by
at least one order of magnitude, even when the KB itself is
completely kept in main memory. The performance gain can
be even much higher depending on the structure of the KB,
especially w.r.t. the topology of the RDF graph.

We note that there is a huge body of work on providing ef-
ficient data access contributed by the database and knowledge
representation communities over the last decades (e.g. [8],
[9], [10]). This includes (i) query answering using views, (ii)

! Available as open-source project at http://on.cs.unibas.ch/.

algebraic rewriting and reordering of execution plans, (iii)
result caching, (iv) indexing, (v) storage models, and (vi)
programming interfaces. Moreover, with the increasing use of
DLs, also optimizations to (vii) logic based query answering
have been proposed. The techniques proposed in this paper
rely on and contribute back to (iii) and (vi), applied to semantic
service execution. We do neither address the efficiency of the
reasoning services, nor propose novel methods falling into the
other categories. However, in contrast to work done in the past,
the results of the proposed approach are a valuable contribution
to the recent research towards main memory data storage
systems [11], since we can show reasonable performance gains
especially for main memory KBs.

The remainder of the paper is organized as follows. In Sec-
tion II we briefly introduce OWL-S and the execution task for
composite services. Section III introduces the two performance
optimization techniques. The utility of both techniques was
assessed by a quantitative experimental evaluation, which we
present in Section IV. Section V concludes.

II. EXECUTION OF OWL-S SERVICES

In short, OWL-S (formerly known as DAML-S) is a
framework for describing (i) functional and non-functional
properties of services, (ii) compositions of services in terms
of a process model, and (iii) the technical details on how
they can be invoked. Its formal specification comes as a set
of layered OWL-based ontologies, consisting of the Service
Profile, Process Model, and Grounding. The service profile
presents what the service does in terms of inputs consumed,
outputs produced, preconditions that need to be satisfied so
that it can perform when invoked, and effects created upon
termination. Inputs and outputs can be thought as variables that
are typed either to OWL concepts or OWL data ranges, while
preconditions and effects can be expressed by means of logic
formulas. The process model describes how a service works.
Services are classified as either (i) atomic or (ii) composite
(services that can be further decomposed into atomic or other
more fine-grained composite services). The process model
supports the orchestration of composite services by means
of various collection, conditional, and loop control constructs
such as Sequence, Split-Join, If-Then-Else, Repeat-While etc.
In other words, the process model specifies control and data
flow. Both, the service profile and process model are thought
of as descriptions of abstract services. Groundings provide the
necessary details for services to be actually usable, in terms
of message format, transport protocol, and addressing. This
allows service consumers to actually invoke them. Several
different types of groundings have been devised, amongst of
which the WSDL grounding enables integration of standard
Web Services.

Service execution, in general, comprises all the activities
that need to be carried out at runtime in order to work off
the control and data flow of composite services in a correct,
consistent, and reliable manner — like in classical workflow
or process management. Usually, this task is handled by
dedicated execution engines acting on behalf of a client.

queries, updates ¢

? query results

KB
__ R
Inferencing
@S Engine
Fig. 1. Overview composite semantic service execution.

OWL-S builds on OWL and RDF. Data is represented in
graph-based models, which are either maintained entirely in
main memory, or (at least partially) in persistent triple stores.
Moreover, such models usually realize the notion of knowl-
edge bases. In short, they provide a unified and monolithic
view on schema (a.k.a. TBox) as well as instance (a.k.a. ABox)
data and support standard DL inferencing tasks. Applied to
the context of semantic service execution this means that
a KB contains (i) required domain and OWL-S ontologies
(TBox), (ii) pre-existing domain individuals and data values,
(iii) individuals and data values created in the course of
execution, and (iv) the service description(s) themselves; the
latter three all falling into the ABox.

Carrying out service execution by an engine is characterized
by recurring sub tasks, depicted in Figure 1:

e Read the control and data flow constructs from the
process model so that the engine can interpret and execute
them (according to their operational semantics).

« Read preconditions (P) of services from the KB and check
if they are satisfied w.r.t. to the current state of the KB.

o Read inputs (I) for service invocations from the KB.
Write outputs (O) produced by service invocations (inter-
mediate results) back to the KB so that they are available
for subsequent use.

o Materialize effects (E) as a result of service invocations in
the KB to correctly represent the current execution state.

¢ Read service grounding details (G) from the KB in
order to prepare service invocation messages and process
replies.

All this tasks involve queries against and/or updates to
the associated KB. In fact, the KB needs to be queried and
updated almost permanently. As a consequence, the overall
performance of service execution is dominated to a large extent
by the runtime efficiency of basic operations and reasoning
services offered by the KB implementation.

IIT. OPTIMIZATION TECHNIQUES

In this section we will introduce two optimization tech-
niques that we have developed to improve efficiency of service
execution, both in terms of execution time and resource
utilization.

A. Prepared Queries

Service preconditions and conditions used in conditional
control constructs are usually expressed using DL-safe SWRL
atoms (note, however, that OWL-S does not mandate the use

TABLE I
SWRL ATOMS, THEIR SEMANTICS, AND MAPPING TO SPARQL BGP

Abstract Syntax Semantics
Triple form for SPARQL BGP
Class(t, c) u()’ €c

a, rdf:type, ¢)

Bt (pw)) ep”

ut), o))

(@), ((v))) EP

ult).pon(w))

p(tr)) = (u(t2))

wu(t1), owl:sameAs, u(t2))
)

(1)) # (u(t2))”

(u(t1), owl:differentFrom, uu(t2))
Using standard interpretation Z = (AZ, AP .Z); ¢ a concept;

p a object or data property; ¢, u a individual or individual variable;

v a data value or data variable.

IndividualProperty(¢, p, u)

DataProperty(t, p, v)

Samelndividual(¢1, ¢2)

(
(
(
{
(
(
(
(

Differentindividuals(¢1, t2)

nor support of particular formalisms). More formally, a SWRL
(pre-) condition p is a (possibly empty) conjunction of SWRL
atoms p = a; A ... Aa, (n > 0). Atoms can be either of
the form as illustrated in Table I, or from the set of built-
in SWRL atoms. The latter represent basic functions; due
to space restrictions not listed here. Atoms have arguments
called terms a(ty,...t,), where ¢ can be either a variable
or a constant symbol; the latter referring to some individual,
property, or concept in the KB. An atom is ground if it
does not contain variables. Note that a variable always refers
to a process variable declared in the process model of the
corresponding service, that is, an input, local, or existential
variable. Inputs and locals are in fact always bound to a
value at runtime, whereas existentials will be bound only
by evaluating a condition. This means that before condition
evaluation atoms can be made ground if they contain only
input or local variables, but remain partially-ground if they
contain existentials. We define a mapping pu to be the identity
for constant symbols and for variables the current value bound.

b = {f}al(t)

Finally, a condition is satisfied (evaluates to true) iff each
atom a; is entailed by the KB, that is, Va; € p: KB = a;;
and the empty precondition being trivially satisfied.

The approach used to check if a (pre-) condition is satisfied
is to translate it to a SPARQL or SPARQL-DL query and
evaluate it against the current state of the KB. This is possible
because the formal semantics of a conjunction of SWRL atoms
can be preserved when translating them to basic graph patterns
(BGP). Table I outlines how SWRL atoms can be represented
as BGPs. Finally, a condition is uniquely satisfied if evaluation
of the translated query yields exactly one result, it is not
uniquely satisfied if there is more than one result, and it is not
satisfied for no result. For example, the following condition in
abstract syntax

t is a constant symbol,
t is a variable.

Class(z, InsuredPerson) A Class(x, PhysicalObject)

where x shall represent a process input, its value shall refer
some individual in the domain, e.g., u(x) = DBob, and

53us; 6%

= Query Creation
229yis; 25%
Query Execution

Other

Fig. 2. Ratio of query creation and query execution on total query evaluation
time (in microseconds) for conventional approach using Repeat-While service.
InsuredPerson, PhysicalObject shall be classes of some
domain ontology, would be translated to

SELECT *
WHERE { :Bob rdf:type

rdf:type

:InsuredPerson ;
:PhysicalObject . }

The condition is satisfied if evaluation of the query against the
KB has a result (which would be emtpy in this case as there
is no variable to project to).

The conventional approach to condition evaluation starts
with replacing each atom which contains input and/or local
variables by a new atom where such variables have been
substituted by their value, i.e., creating a possibly ground
atom. Since conditions are in the majority of cases expressed
using input variables, this implies additional work in all of
these cases and, nota bene, an insertion of new triples in
the KB, which is required for the subsequent translation to
a query. Also recall that SWRL conditions are part of the
service description, hence, they are also represented as RDF
triples. While those insertions are cheap w.r.t. to the KB’s
database, they have severe consequences for the reasoning
engine integrated into the KB (which is usually present as
reasoning is basically inevitable). Unfortunately, today’s rea-
soning engines do not yet perform well under (frequent) KB
updates since they need to exhaustively re-perform consistency
checks, classifications, and realizations. The consequence is
that such updates to the database of the KB provoke (more
or less) high delays for subsequent queries, thus, reducing the
overall performance.

Yet there is another weakness when it comes to repeated
evaluation of the same condition, for instance when a con-
ditional control construct in a composite service is executed
multiple times (e.g., as part of a loop). Figure 2 shows the
result of an analysis to break down the times of overall
condition evaluation using a Repeat-While control construct
having a single lessThan built-in SWRL atom in the condition.
It shows that for repeated evaluation of this condition a
considerable amount of time is spent just for the creation
of the query (create ground atom and translate to SPARQL),
thereby exceeding the time for the actual evaluation of the
query against the KB by a factor greater than two.

An approach to optimize condition evaluation thus has to
address those problems by factoring out the efforts induced
by the query creation process. The proposed prepared queries
simplify and optimize the process of condition checking by
avoiding the creation of new ground atoms (from unground
atoms by variable binding) in the KB. This is done in three

SWRL (pre-) condition

!

Variable Create ground
Bindings Atoms
Translate to Translate to
Query Query
Evaluate Evaluate Variable
Query in KB Query in KB Bindings

(a) naive approach (b) optimized approach using late binding

Fig. 3. Comparison of (pre-) condition evaluation procedure for conventional
and optimized approach using prepared queries.

steps. First, we need to provide the possibility of translating
unground atoms directly to a SPARQL/SPARQL-DL query.
Second, we allow for late binding of variables occurring in
the query at query execution time. Third, having late binding
of variables gives the possibility of reusing queries, that
is, translating a query just once and evaluating it as often
as needed, thus also supporting conditions that need to be
checked multiple times.

These three steps can be realized by prepared queries which
are kept in memory as long as they are required. A pre-
pared query represents a (pre-compiled) SPARQL/SPARQL-
DL statement and allows the late binding of variables when
the query is actually evaluated (executed). As such, prepared
queries are similar to prepared statements, a well known
abstraction provided by today’s relational DBMS access in-
terfaces (e.g., in JDBC), aiming for similar improvements of
efficiency. However, implementations of prepared queries are
currently not yet available in well known frameworks such as
Sesame and the OWL-API. Only Jena/ARQ already provides
some support for late binding of variables. Since our OWL-S
execution engine builds on Jena, we have extended the engine
to allow for reusing queries and for better abstracting late
binding by the programming interface. This yields a simplified
(pre-) condition checking process for OWL-S as depicted in
Figure 3. Yet its most important advantage is that insertion
of additional ground atoms in the KB is eliminated, thus,
preventing that reasoning engines need to (exhaustively) re-
check consistency, re-classify, and re-realize the KB.

B. Frame Caching

A second challenge is to increase the performance of (i)
semantic services which may have to be executed repeatedly
and (ii)) composite services which consist of loop control
constructs (e.g. Repeat-While or For-Each) which, at execution
time, repeatedly loop over the body. In both cases, the same
information of the process model (i.e., control and data flow)
and the grounding specification is required by the engine
for each repetition. If an execution engine is not aware of
past query results from accessing the KB, it will issue the
same query over and over again. These kinds of reads can
be optimized by keeping the result of the first query in a
cache and by re-using this result, if appropriate, for subsequent
reads. However, finding an appropriate caching solution in the
context of semantic service execution is not straightforward as

it has to take into account the following aspects:

o Locality of cached data: Either close to the KB (probably
inside the KB) vs. close to the application which acts as
client to the KB and which uses the query results.

o Granularity of cached data: Limiting cached data to
exactly the query result vs. more advanced look-ahead
strategies where data that is likely to be read in the future
is prefetched and cached in advance.

o Representation of cached data: Graph-based, essentially
in the same representation as stored the KB vs. represen-
tation in other data structures that may be more suited
w.r.t. data access patterns of the client application.

e Cache coherence: Invalidation of cached data in the
presence of updates to the original data in the KB due to
concurrent access by multiple clients.

o Implicit data which is not materialized in the KB but
inferred by reasoning engines (dynamically at query
time).

The frame caching approach we have developed addresses
all the issues summarized above and provides (i) materialized
views of sets of proximate triples or sub-graphs of a KB, using
(i1) frame-based data structures, which, at the same time, also
realize (iii) a simple form of a look-ahead cache, (iv) local
to the place where they are used, and (v) possibly contain
inferred data.

The notion of frame was introduced in frame-based sys-
tems [5] as an alternative to logic-oriented knowledge repre-
sentation systems. More formally, a frame F' contains a set
of slots s1,...,S,, similar to entries in a record. Slot fillers
represent the value of a slot which can be data values or
again frames, thereby allowing nested frames. It is possible to
use frames for having a record-like view to triples (s, %P, x°)
in the KB, where the subject s corresponds to the frame F,
properties (xP) correspond to slots, and objects (x°) to their
fillers. If fillers are again frames, one can represent sub-graphs
by nested frames. A frame will always be created from the
results returned by KB read operations, i.e., the selected triples
or sub-graphs respectively. Using OO languages, frames can
be easily represented by objects (possibly having no methods,
i.e., behavior). In doing so, one will get rapid access to the
fillers of a frame. Consequently, one can have rapid access to
(all) objects of some subject once a corresponding frame was
filled. The performance evaluation which will be discussed in
detail in the following section shows that access is still faster
than directly fetching triples from a KB even if the KB is
entirely kept in main memory.

In the context of OWL-S execution we use frame caching
to gain rapid access to the process model (i.e., control and
data flow) and to groundings. Repeated execution of the same
service, or of loop control constructs that iterate over their
body, will profit from having instant access to them compared
to repeatedly fetching them from the KB. The same applies for
groundings when services are repeatedly invoked. The entire
process model of some service or a grounding can be kept
by one nested frame, which provides a concise representation.

Frames may also include inferred data which does not need
to be recomputed. Frames come with moderate additional
memory requirements as slots are basically references to data
values or other frames.

Representation of the process model by a frame is highly
beneficial if the former is not subject to modifications at
execution time. However, highly dynamic application sce-
narios where adaptation at execution time is required has
the consequence that frames need to be invalidated; at best
partially only for those parts which were modified.

IV. EXPERIMENTAL EVALUATION

We have implemented prepared queries and frame caching
in OSIRIS NEXT, our OWL-S execution engine. The imple-
mentation allows both to be toggled on and off; subsequently
we will refer to optimized (on) versus conventional (off)
configuration. This provides larger flexibility and allows us
to easily quantify the utility of both in any constellation, i.e.,
using any kind of invocable services and using differently sized
and shaped KBs. We have created various service descriptions,
designed specifically for testing and benchmarking purposes.
Because of their specific design, they cover a broad range
of possible OWL-S service descriptions. Hence, they are
well suited to simulate different characteristic cases. More

precisely, we used the following services?.

e Any-Order. Uses the Any-Order control construct of
OWL-S consisting of three elements, each being the
same atomic service that logs a given message. Does not
contain preconditions.

o For-Each. Uses a For-Each control construct that contains
an atomic service which plays a given MIDI note. This
is used to play an input list of MIDI notes. Uses a
consistency check precondition that asserts that each note
can actually be played.

o If-Then-Else (1 and 2). Two services, each consisting of
a If-Then-Else control construct, with different branching
conditions.

e Repeat-While. Uses a Repeat-While control construct
with a simple loop condition. The service does nothing
but an increment to a given input number until a target
value is reached.

o Translator. Atomic service realizing language translation
of words. Uses a precondition that asserts that source and
target language are supported.

e JavaGrounding. Atomic service that does a simple power
computation of two numbers. Does not have a precondi-
tion.

All experiments were conducted on commodity hardware
(Win XP, 3.4 GHz Intel Pentium D 32bit, 2GB RAM, Java
6, max. Java heap size ~1.5GB). We used Pellet [12] as the
reasoner attached to the KB. Note that in all tests the KB
was kept entirely in RAM. All tests started from an already
populated KB where a consistency check, classification, and
realization was initially done. In a first round we executed

2 Available via download from the OSIRIS Next website.

TABLE I
EXECUTION SPEEDUP OF EXEMPLARY TEST CASES

[Test Case | Conventional | Optimized | Speedup |
Any-Order 40ms 39ms 1.02
For-Each 5410ms 448 ms 12.08
If-Then-Else 1 180ms 33ms 5.45
If-Then-Else 2 27ms 3ms 12.33
Java Grounding 502us 42ps 11.96
Repeat-While 2834ms 828ms 3.42
Translator 6625ms 3631ms 1.82

all services in the conventional and the optimized setting to
measure the absolute speedup of using prepared queries and
frame caching. Each test run was repeated ten times and
the average time was taken. Table II shows results of this
evaluation.

The execution time of the Any-Order service can not be
improved because it neither has a precondition nor is any
part of the process model accessed more than once. We
decided to include this test in order to analyze if creation
of frame cache objects introduces a considerable overhead.
As the values show, the execution times are basically the
same in both settings. A more fine grained analysis has
shown that creation of the frame that represents the entire
grounding (having 8 slots) takes 80ns on average. This shows
that creation of frames is a cheap operation and its overhead
can be almost neglected. The For-Each test is interesting as the
speedup is solely caused by the optimized condition evaluation
process, that is, the elimination of additional KB inserts. In the
conventional implementation the execution time is dominated
by the need of repeated classification and realization by the
reasoner after a KB update. The JavaGrounding test run was
executing the service 3000 times and the average value for one
execution was taken. For the Translator service we measured
just the speedup of precondition evaluation (i.e., not including
execution time).

Figure 4 depicts the execution times measured for condition
evaluation and actual process execution for the Repeat-While
service. Apart from the reduction of execution time due to
frame caching, the numbers for condition evaluation show
that with prepared queries the overhead of repeated translation
from SWRL atoms to queries is basically eliminated (see also
Figure 2).

3000

2500
898

2000 - 260

1500 Query Evaluation
= Process Execution

Execution Time [us]

1000

267
) .
0 .

PQ & Frame Caching

Naive Implementation Prepared Query

Fig. 4. Composition of total execution times (in microseconds) for Repeat-
Until service using conventional and optimized engine configurations.

500 T T T
Frame Caching —8—
. A/A—’Mg&he__‘dﬁéﬁ
12}
B 400 B
o
(5]
Q
[%2]
<)
S 300 B
E
()
£
F 200]
c
S
5
(5]
© 100 |- B
w
& = =3 =3 £
0 Il Il Il
10° 10* 10° 108 10’

KB size [number of triples]

Fig. 5. Interrelation of Execution Time and KB size — OWL-S Services

So far, all tests were conducted with a “minimal” KB con-
taining not more data than actually required. In a second round
we repeated the JavaGrounding test run with incrementally
growing KB (ABox). In one test we enlarged it by additional
synthetically generated OWL-S service descriptions, while in
another test we enlarged it by randomly generated individuals
and assertions using the LUBM ontology [13]. These tests
have been made to confirm our expectation that execution
performance using frame caching should be independent of
the KB size and its structure. Note that the JavaGrounding
service is designed not to involve reasoning, thus, times can
not be distorted by reasoning.

Figures 5 and 6 show that execution time remains constant
when using frame caching, even with increasing KB sizes.
However, the numbers for the uncached execution feature
significant differences compared to the cached case. Whereas
in case of adding more OWL-S descriptions (Figure 5) ex-
ecution time also remains constant—but at a higher level
compared to the cached case—it increases linearly with the
KB size in the other case. This can be explained by looking
at how indexing is designed for graph-based data structures
in Jena. In case of adding more OWL-S services the KB is
enlarged by adding “new assertions about new individuals”.
This ensures that the number of triples |(s, P, °)| for any
subject s remains constant with KB increase, which results in
constant access times provided by the index. In the LUBM
test, however, the KB is enlarged by adding “new assertions
about existing individuals”, that is, |(s, *?, x°)| for any subject
s is proportional to KB increase, which represents a topology
of the KB resulting in the highest efforts for reads.

V. DISCUSSION AND FUTURE WORK

In this paper, we have introduced two approaches to speed-
up the execution of (composite) semantic services. First, result
caching of KB queries. In addition to the service execution
tasks, this technique is generally applicable to applications
that need to frequently fetch the same triples or sub graphs,
and even outperforms direct read access on KBs which are
entirely kept in main memory. Second, we have presented
prepared queries that allow for late binding of variables at
query evaluation time and for efficient re-evaluation.

The experiments with different KB sizes and structures
have indicated further optimization potential, not only w.r.t.

‘ Frame Cach‘ing —8—
Uncached —4&—

Execution Time [microseconds]

& 1= = 3]
101 1 1 1

10° 10* 10° 10° 107
KB size [number of triples]

Fig. 6. Interrelation of Execution Time and KB size — LUBM Individuals

query evaluation and optimization but also on the physical
organization of graph-based data. Conventionally, a KB is
considered as one coherent unit on the logical level and
often centrally stored at physical layer, with many efforts
that focus on scalability issues of large monolithic KBs.
Having more knowledge about KBs, for instance, by means
of runtime metrics capturing structural properties or access
patterns, would allow to better organize or partition KBs.
An optimized structure may allow for (temporarily) masking
data which is irrelevant for certain reasoning tasks, to better
parallelize reasoning tasks, or to improve performance under
frequent updates. We plan to address these aspects in future
work.

ACKNOWLEDGMENT

This work has been funded by the Hasler Foundation within
the research project LoCa.

REFERENCES

[1] OWL-S Services Coalition. (2004) OWL-S: Semantic Markup for Web
Services. [Online]. Available: http://www.w3.org/Submission/OWL-S

[2] J. Farrell and H. Lausen. (2007) Semantic Annotations for WSDL and
XML Schema. [Online]. Available: http://www.w3.org/TR/sawsdl

[3] The SPARQL Working Group. (2008) SPARQL Query Language for
RDF. [Online]. Available: http://www.w3.org/TR/rdf-sparql-query

[4] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL Query for OWL-DL,” in
3rd OWL: Experiences and Directions Workshop (OWLED2007), 2007.

[5] M. Minski, Mind Design. ~MIT Press, 1981, ch. A Framework for
Representing Knowledge.

[6] T. Moller and H. Schuldt, “Control Flow Intervention for Semantic Fail-
ure Handling during Composite Serice Execution,” in Proc. ICWS’08,
2008, pp. 834-835.

[7]1 T. Moller and H. Schuldt, “A Platform to Support Decentralized and
Dynamically Distributed P2P Composite OWL-S Service Execution,” in
Proc. MW4SOC’07. ACM, 2007.

[8] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database System
implementation. Prentice-Hall, 2000.

[91 P. C. Lockemann, H.-H. Nagel, and I. M. Walter, “Databases for

Knowledge Bases: Empirical Study of a Knowledge Base Management

System for a Semantic Network,” Data Knowl. Eng., vol. 7, pp. 115-

154, 1991.

J. Mylopoulos and M. L. Brodie, “Knowledge Bases and Databases:

Current Trends and Future Directions,” in st Workshop on Information

Systems and Artifificial Intelligence, 1990, pp. 153-180.

M. Stonebraker et al, “The End of an Architectural Era (It’s Time for a

Complete Rewrite),” in Proc. 33rd VLDB, 2007, pp. 1150-1160.

Clark & Parsia, LLC. Pellet: The Open Source OWL Reasoner.

[Online]. Available: http://clarkparsia.com/pellet

Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL Knowl-

edge Base Systems,” Web Semantics: Science, Services and Agents on

the World Wide Web, vol. 3, no. 2-3, pp. 158-182, October 2005.

[10]

[11]
[12]

[13]

