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a b s t r a c t

The proliferation of sensor technology, especially in the context of embedded systems, has

brought forward novel types of applications that make use of streams of continuously

generated sensor data. Many applications like telemonitoring in healthcare or roadside

traffic monitoring and control particularly require data stream management (DSM) to be

applications are deployed in a failure-prone distributed setting including resource-

limited mobile devices, for instance in applications which aim at remotely monitoring

mobile patients. In this paper, we introduce a model for distributed and reliable DSM. The

contribution of this paper is threefold. First, in analogy to the SQL isolation levels, we

define levels of reliability and describe necessary consistency constraints for distributed

DSM that specify the tolerated loss, delay, or re-ordering of data stream elements,

respectively. Second, we use this model to design and analyze an algorithm for reliable

distributed DSM, namely efficient coordinated operator checkpointing (ECOC). We show

that ECOC provides lossless and delay-limited reliable data stream management and thus

can be used in critical application domains such as healthcare, where the loss of data

stream elements cannot be tolerated. Third, we present detailed performance evaluations

of the ECOC algorithm running on mobile, resource-limited devices. In particular, we can

show that ECOC provides a high level of reliability while, at the same time, featuring good

performance characteristics with moderate resource consumption.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the proliferation of pervasive computing,
wireless communication and sensor technology has
spawned a variety of new applications in the area of Data
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Stream Management (DSM). In general, these applications
are continuously monitoring the physical world by means of
different sensors to extract and derive relevant information
from multiple streams of data generated by these sensors.
For example in healthcare applications, the continuous
monitoring of patients at home (telemonitoring) is becom-
ing more and more important, mainly due to the progression
of chronic ailments in an aging society. A vital requirement
of telemonitoring applications is that the DSM provides a
high degree of reliability and availability, since it can
potentially be life-saving. Another example is road traffic
management, where the tremendous increase of vehicles
requires the adoption of new traffic management systems to
cope with limited road capacities. Also in traffic manage-
ment, reliability of applications is an important aspect.
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Consider, as an example, the following scenario: Fred,
aged 68 and retiree, lives alone at his home. In the EU, 23
million adults are suffering from diabetes [24]. The dia-
betes disease affected Fred’s heart, which has developed
congestive heart failure (CHF). Fred is suffering from
shortage of breath, swelling of the legs and ankles, pulse
irregularity and palpitations, and difficulty with eating or
sleeping. Due to his age, Fred also shows slight signs of
dementia, which unfortunately affects the effectiveness of
his personal disease treatment as he for instance forgets to
take his medication. Without an assistive telemonitoring
system, Fred has to do manual random sampling of his
blood pressure, blood glucose level, heart rate, and body
weight. For further examination, he has to consult his
family doctor frequently. Nevertheless, this manual treat-
ment does not prevent Fred from regular hospitalization
due to dramatic degradations of his health state. In
hospital, Fred’s cardiac balance is restored by proper
medication. Unfortunately, this balance is very unstable
and hard to maintain by manual random sampling of
physiological signs. As a vision for the future, Fred’s
caregiver decides to equip him with a wearable health
monitoring systems consisting of a smart shirt [26], a ring
sensor [2], a glucose measuring watch, and a PDA for local
processing, intermediate storage, and wireless communi-
cation. This wearable setup will allow for unobtrusive
monitoring of ECG, heart rate, respiratory and sweating
rates, blood pressure, blood glucose level, blood oxygen
saturation as well as motion activities, sensed with an
inbuilt accelerometer. Fred’s PDA will wirelessly commu-
nicate with the base station of his smart home system in
order to extract and forward relevant streaming data to the
caregiver. Besides that, Fred’s smart home infrastructure
also aggregates additional context measurements. For this
reason, Fred’s physical activity is detected by acceleration
sensors attached to Fred’s body and an integrated position-
ing system in the smart home environment. Additionally,
an electronic scale is measuring body weight and fat and an
electronic medication dispenser controls his medication.
For this reason, the telemonitoring system builds up a
distributed environment of nodes which is rather sensitive
to numerous failure situations caused by unreliable mobile
devices, sensors, and wireless communication. In order to
achieve reliability, existing redundancy of devices, sensors,
and communication channels has to be utilized by the
smart home infrastructure.

In many practical settings such as the one presented
above, data stream management is considered in a dis-
tributed environment and involves a large variety of mobile
and embedded devices, like a doctor’s PDA together with a
patient’s smartphone in the health telemonitoring scenario
or different roadside sensor units in the traffic manage-
ment scenario—together with stationary servers in health-
care institutions and traffic control centers, respectively.
DSM applications which make use of mobile devices have
to meet two important requirements. Firstly, they have to
deal with limited resources, like CPU, memory, energy, or
network bandwidth. This implies also constraints on
applicable reliability strategies. For example, hot-standby
strategies [18] require data processing to be done in
parallel at multiple devices in order to achieve reliability.
These strategies are in general too resource demanding,
especially in environments where data streams are pro-
cessed on resource-limited, mobile devices. Due to limited
resources, individual operators on a device might fail
without the complete device (node) to fail. Thus, failure
handling needs to be considered at operator level, allowing
to individually migrate failed operators to other nodes.
Also, limited resources on a device may prevent that all
operators of a failed node can be migrated but just of subset
of them—so basically, all operators of a failed node might
have to be distributed across different devices. Secondly,
exploiting mobile devices for DSM applications also implies
a highly increased failure probability compared to distrib-
uted computing scenarios involving only administered
server computers and Ethernet connections. It is rather
likely that a roadside sensor gets damaged due to an
accident or even caused by animals or a wireless connec-
tion gets temporarily hampered by interference. Thus,
making DSM fault-tolerant is a primary concern due to
the high failure probability in mobile environments. In
addition, the provable guarantees a DSM system is able to
provide to its users are essential for applications like
telemonitoring. There is a variety of research in the field
of DSM but only a few groups have focused on reliable data
stream management [19,5,4,28,14,12,10]. In particular,
there exists no formal data stream model which allows
to reason about the degree of reliability that can be
guaranteed.

The contribution of this paper is threefold. First, we
present a formal model of reliability in distributed DSM and
apply this formalism to analyze reliability techniques for
DSM [10,12,11]. In particular, we identify several levels
which specify reliability and correctness of stream proces-
sing and which take into account the tolerated loss, delay,
or re-ordering of data stream elements, similar to the way
the SQL isolation levels specify the guarantees for con-
current transactions. Second, we apply this model to design
and analyze the efficient coordinated operator checkpoint-
ing (ECOC) algorithm which provides a high degree of
reliability for DSM with respect to constraints imposed by
mobile devices. Third, we present an in-depth experimen-
tal evaluation on the performance of this reliability tech-
nique when applied in a mobile environment. In particular,
we show that by properly designing algorithms for reliably
handling data streams, a high degree of reliability is
affordable in terms of the additional CPU and network
overhead, even for mobile devices.

The paper is organized as follows: The basic data stream
model is described in Section 2. Section 3 presents the
formal failure model and reliability levels of DSM. Section 4
introduces and analyzes the ECOC algorithm for reliable
DSM. Section 5 presents the experimental evaluation
performed with our prototype DSM infrastructure imple-
mentation OSIRIS-SE in a mobile environment. Section 6
surveys related work and Section 7 concludes.

2. Data stream model

The DSM system (DSMS) coordinates the execution
stream processes on top of data stream operators in a
network of loosely coupled hosts and ensures correctness
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even in case of failures. Table 1 gives an overview of
symbols used in the remainder of this work.
2.1. Basic data stream model

Let H denote the finite set of all hosts participating
within the distributed DSM system. Each host is able to
perform certain data stream operations, also called opera-

tor types. The finite set of all operator types available for
execution within the DSM system is called OT. The subset of
Table 1
Symbol description table.

Symbol Description

DSMS Data Stream Management System including all operators and

data streams

h A host participating in the DSMS

H Set of hosts

ot A operator type available for instantiation in the DSMS

OT Set of operator types

spd A stream process definition available for instantiation in the

DSMS

SPD Set of stream process definitions

sp A running stream process instance in the DSMS

SP Set of stream process instances

DS A data stream

DE A data stream element

op An output port, the producer end of a data stream

OP Set of output ports

ip An input port, the consumer end of a data stream

IP Set of input ports

S An alphabet of symbols appearing as payload of a data

stream

t The current global time

x The stream time associated with a data stream element

pd The payload information of a data stream element

Y The cartesian product of all input data stream alphabets of an

operator type

G The cartesian product of all output data stream alphabets of

an operator type

ST Set of possible operator states of an operator type

s Current state of a running operator instance

s0 Initial state of a running operator instance

d State transition function of an operator type

o Output function of an operator type

nd No data stream element present symbol

v,x,y Vertex of a stream process definition

V Set of all vertices in a stream process definition

e Edge of a stream process definition

E Set of all edges in a stream process definition

ow Vertex outside of the DSMS

o Running operator instance

O Set of running operator instances of a stream process

instance

DSS Set of data streams connecting operators of a stream process

Dt Processing delay

Xin Set of stream times of the last processed input data stream

elements

Xout Set of stream times of the last generated output data stream

elements

DSc A correct data stream

DSr A real-world data stream

DSf A incorrect data stream

TC Time context of a running operator instance

TS Transfer state of a running operator instance

RI Routing information of a running operator instance
all operator types available at a given host h 2 H is called
OT(h).

Stream process definitions combine operator types to
build up complex stream processing tasks which
consume and produce data streams of the outside world

which encompasses all external systems interacting
with the DSMS. The DSMS executes instances of stream
process definitions, called stream processes. Stream pro-
cesses make use of instances of operator types, also called
operators. Operators continuously process data streams. In
the following, we introduce these terms with formal
definitions.

A DSM system (DSMS) is defined as the following 4-
tuple:

DSMS ¼/H,OT,SPD,SPS

where H is a finite set of hosts participating in the DSM
system, OT the finite set of globally available operator types
offered by all hosts, SPD is a set of available stream process
definitions, and SP is the set of running stream processes.

A data stream (DS) is a possibly infinite, totally ordered
set of data stream elements ðDE,!,op,ip,SÞ. DE is the set of
all elements de within a stream. The connection point of a
data stream at producer-side is called output-port op and at
consumer-side input-port ip, respectively.

Input and output naming is assigned from a consumer/
producer point of view. The symbols to be sent as payload
within data stream elements are defined in the data stream

alphabet S. A DS represents a continuous transmission of
data stream elements de in a temporal order between a
producer and a consumer. The notation DS.ip refers to the
input-port of the data stream DS and DS.op refers to the
output-port, respectively.

A data stream element de 2 DS is defined by the following
tuple: de¼/t,x,pdS where t 2 Rþ is a global timestamp
attribute which is given to a data stream element at the
time of processing, x 2 N0 is a sequence number which is
used for ordering and gap detection of the data stream
elements within the data stream, and pd is the payload
information, which is a symbol of the data stream alphabet
pd 2 S.

Although a data stream element shows some simila-
rities to a tuple of a relational database table, especially
since both are structured according to a given schema, the
number of data stream elements in a data stream is
potentially unlimited. In order to ease the notation of
structured objects and their attributes, we use a labeled
notation. For example, the payload attribute pd of a data
stream element de is denoted as de.pd.

According to the previous definition data stream ele-
ments have two temporal ordering contexts. First, a global
timestamp, called processing time and second, a logical
sequence number, called stream time. The global time-
stamp specifies in absolute terms when a particular stream
element has been processed. Thus, it allows for quantita-
tive measurements of processing and transmission delays.
In contrast, the stream time specifies in relative terms the
order of data stream elements. Hence, the stream time
allows for detection of gaps and disorder in data stream
elements.
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For example, a data stream element coming from a
sensor and arriving at a processing operator may look like
the following:
de189 ¼/
29.02.2008 10:00:00.50,

189,

osample4
otime429:02:2008 10 : 00 : 00:00o=time4
ovalue410 mVo=value4

o=sample4
S

The data stream element is the 189th element within
the data stream (stream time). It was received by the
operator at 10:00:00.50 on 29.02.2008 global time
(processing time). The payload of the element contains a
structured entry, e.g., in XML format. The XML format is
displayed here for illustrative reasons. In practice, a more
compact data representation may be chosen. The payload
was generated by the sensor and contains the global time of
generation and the value 10 mV (e.g., a sensor voltage value
that corresponds to a physical quantity). Moreover, this
example illustrates that processing time and stream time
give no information about the original time the data stream
element was generated by the sensor (generation time). If
this information is necessary for the application it must be
part of the payload information (as it is the case in the
example given above). Of course, if data streams coming
from different sensors are joined on the basis of generation
time, the clocks of the different sensors have to be
synchronized.

Based on the data stream definition, we define operator

types which are in charge of processing data stream
elements of incoming data streams and producing derived
data stream elements of outgoing data streams. The
connection points of data streams to the operator type
are called ports. Each operator type ot has an ordered set of
n 2 N0 input-ports IPot with cardinality jIPotj ¼ n and an
ordered set of output-ports OPot with cardinality jOPotj ¼m.
Each output-port opi 2 OPot produces data stream elements
with the stream alphabet opi:S. Accordingly, each input-
port ipi 2 IPot expects to receive data stream elements with
the stream alphabet ipi:S. The behavior of an operator type

is deterministic and can be modeled as finite state machine
(FSM). Fig. 1 illustrates the operator type model. This
means that we assume an operator type to always produce
output stream elements with the same payload for the
same input stream elements (note that global timestamp
Operator
Type

(Θ,Γ ST, min Δt)

Input Streams Output Streams
.
.
.

.

.

.

0

n-1

0

m-1

Input
Ports

Output
Ports

Config Stream

State Backup
Stream

Fig. 1. Operator type model.
and stream time are part of the input stream elements).
However, in a real-world setting, processing time and
transmission delays may have an impact on the output
data streams (e.g., on their stream time and or processing
time). For example, an operator type implementation
running on a highly loaded device may induce a processing
delay that leads to a timeout. Hence, processing results, i.e.,
the results produced by an operator type implementation
in a particular system environment, can differ from the
ideal case and are not supposed to be deterministic.

Two streams shown in Fig. 1 have a special purpose.
First, the config stream allows for explicitly changing the
operator state. This can be used, for instance, for operator
initialization. A sample operator, in XML representation,
processing medical alerts may have the following internal
state:
oState4
oBeginOfMeasurement4

29.02.2008 10:00:00

o=BeginOfMeasurement4
oAlertsOverall4

16

o=AlertsOverall4
oAlertsLastHour4
1

o=AlertsLastHour4
oStartOfCurrentHour4

30.10.2007 18:00:00

o=StartOfCurrentHour4
o=state4
The operator counts the number of medical alerts since
the beginning of the measurement and the number of
medical alerts during the last hour.

Second, the state backup stream allows for reading the
current operator state. This allows to take checkpoints of an
operator A during execution, if necessary, in order to deal
with failures and to achieve a high degree of reliability by
migrating A’s state to another operator B. Details on
operator checkpointing are presented in Section 4.

An operator type OT is defined by the following tuple:

OT ¼/Y,G,ST ,d,o,IP,OP,minDtS

whereY is the input alphabet as cartesian product over the
alphabets of all n data streams received by all input-ports
IP:

Y¼
Y

i ¼ 0: :ðn�1Þ

ðipi:S [ fndgÞ

and where G is the output alphabet as cartesian product
over the alphabets of all m data streams produced by the
ordered set of output-ports OP:

G¼
Y

i ¼ 0: :ðm�1Þ

ðopi:S [ fndgÞ

ST is a finite, non-empty set of operator states. The state
transition function d is defined as: d : ST �Y-ST and the
output function o is defined as: o : ST �Y-G. Finally,
minDt 2 Rþ describes a minimal delay for processing a
single state change of this operator type.

An operator type describes a deterministic finite state
machine. Whenever new input data stream elements
are available, d is applied in order to proceed to the new
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state and o is applied in order to produce output data
stream elements. Of course, the processing delay of a state
change Dt of an operator type instantiation in real-world
depends on various factors, e.g., speed and architecture of
CPU. An operator type defines an upper limit minDt for this
minimal processing delay that a real world instantiation of
the operator type has to guarantee. Hence minDt does not
specify the actual processing delay of a concrete operator
instance.

The nd symbol identifies input or output data streams
where no data stream element is present. In this model, the
FSM works asynchronously which means that the FSM has
not to wait for data stream elements to be present at each
input in order to proceed to the next state. Similarly, not
every state change has to produce data stream elements at
each output-port.

Based on the two basic DSM building blocks of operator
types and data streams, we are now able to combine these
two in order to define complex stream processing tasks,
called stream process definitions. A stream process defini-
tion is described as a directed multigraph, where the
vertices are operator types and the edges are data streams.
The graph is a multigraph because more than one edge
(data stream) can connect a pair of vertices (operator
types). For example, we consider a combined heart and
blood pressure sensor, which generates a heart activity and
a blood pressure data stream as two distinct output data
streams and an analysis operator type which combines
blood pressure and heart activity as two distinct input data
streams. In this case, we have two edges (data streams)
from the combined sensor to the analysis operator type.

A stream process definition, spd¼/V ,ES describes a
directed multigraph, where V is a finite set of vertices
and E is a finite set of edges. The set of vertices V of spd is
defined as

V ¼ f/ot,so,DtSjot 2 OT [ fowg,s0 2 ST ,Dt 2 Rþ g

where ot is describing the operator type of the vertex. In
addition to the operator types offered by the DSMS, outside
world interactions are represented by ow-vertices. The
initial state of the vertex using the operator type is given by
s0, this state is set by sending along the config stream of the
operator instance at the time of startup. In order to specify a
ECG 

Aquisition
ECG

Filter

ECG 

Sensor (ow)
Outside Wo

DSMS

ow Edge

ow Vertic

System Border

Fig. 2. Example stream p
maximum tolerable delay for processing a state transition
at this vertex, Dt is given.

The set of edges E of spd is defined as

E¼ f/x,op,y,ip,DtSj
x 2 V ,op 2 x:ot:OP,y 2 V ,ip 2 y:ot:IP,Dt 2 Rþ g

where x is the source vertex, op is the corresponding output
port at the operator type ot of vertex x. Similarly, y is the
destination vertex, ip is the corresponding input port at the
operator type ot of vertex y. Edges where either the source
vertex or the destination vertex is an ow-vertex are called
ow-edges. Dt specifies a maximum tolerable transfer delay
for a data stream element along this edge.

Fig. 2 illustrates a simple example stream process
definition taken from a telemonitoring application by
applying the presented DSM model. The stream process
offers heart activity analysis by applying three operators.
The first operator reads out the sensor device. The second
operator applies filtering at signal level in order to remove
noise. Finally, the third operator derives medically relevant
information of the electrocardiogram (ECG). Consequently,
the sample stream process consists of three vertices where
ot 2 OT and two outside world vertices where ot = ow. The
sensor device is an ow-vertex. The acquisition is already
part of the DSMS. Furthermore, filtering and analysis of the
heart signal is performed. Finally, the DSMS is producing
a data stream feeding an analysis database, which is an
ow-vertex again.

2.2. Stream process execution

When a running instance of an operator type is gener-
ated at a host during the execution of a stream process, this
instance is called operator. In addition to the operator type,
the operator has a current time context, a current state and
a current host. Fig. 3 illustrates the operator model.

An operator o is a running instance of a vertex of a stream
process and has the following definition:

o¼/v,Xin,Xout ,s,h,tS

where v 2 spd:V is a vertex taken from the corresponding
spd, Xin is the set of stream times of the last data elements
ECG

Analysis

Analysis

Database (ow)
rld

s

es

rocess definition.
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de processed at each input port. Analogously, Xout is the set
of stream times of the last de processed at each output port.
The current state of the operator is given by s 2 ST , the host
executing the operator instance is h 2 H, and the current
global time is indicated by t.

In order to initialize running operator instances,
a data stream element with a new initial state as payload
can be sent to the operator instance along the config
stream. In order to retrieve the current state of an
operator during execution, the state backup stream pro-
duces a data stream element with the current state as
payload information for each state transition of the
operator.

Finally, running operator instances form together a
running instance of a stream process definition, called
stream process. In addition to the stream process definition
the stream process has a set of operator instances. In this
set of operators, we do not consider outside world ow-
vertices because these operator instances are not executed
within the modeled DSM system (DSMS).

A stream process, sp¼/spd,O,DSSS has a corresponding
stream process definition spd and a set of operators O

executing the operator types given by spd. DSS is a set of
data streams connecting the operator instances.
2.3. Well-formed stream processes

In this section, we describe the set of constraints a
stream process definition has to fulfill in order to be
considered valid or well-formed. In a practical system, these
constraints should already be evaluated by the stream
process design tools before process execution.
1.
 Each vertex in a stream process definition has exactly

one input edge attached to each input port.

2.
 Each vertex in a stream process definition has at least

one output edge attached to each output port.

3.
 The stream alphabet of each output port corresponds

along all connected edges to the expected stream
alphabet of input ports.
4.
 Outside world ow-edges are always connecting ow-
vertices with non ow-vertices. The stream process
definition is not describing interactions between ow-
vertices.
5.
 Reasonable delay constraints are given within the
stream process definition, which means the minDt
constraints given by the operator type are not violated
in the spd.

More formally, a well-formed stream process (spd) defi-
nition holds the following constraints:

8v 2 spd:Vð8ip 2 v:ot:IPð(!e 2 spd:E : e:ip¼ ipÞÞ ð1Þ

8v 2 spd:Vð8op 2 v:ot:OPð(e 2 spd:E : e:op¼ opÞÞ ð2Þ

8e 2 spd:E : e:op:S¼ e:ip:S ð3Þ

)e 2 spd:E : ðe:x¼ ow4e:y¼ owÞ ð4Þ

8v 2 spd:V : v:DtZv:ot:minDt ð5Þ

Finally, well-formed stream process definitions may con-
tain cycles in the stream process definition multigraph.
Cycles are paths within the stream process definition, where
the start vertex corresponds to the end vertex. We distinguish
between cyclic and non-cyclic stream process definitions.

2.4. Well-activated stream process

After the design of a well-formed stream process
definition spd, the DSMS is in charge of activating a stream
process instance sp of the given spd. After successful
activation, the following constraints on well-activated

stream process instances are defined:
1.
 Each non-ow-vertex in spd has a corresponding run-
ning operator instance in O.
2.
 Each edge in spd has a corresponding running data
stream instance in DSS.
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the following constraints:

More formally, a well-activated stream process (sp) holds

8v 2 sp:spd:V jvaowð(!o 2 sp:O : v¼ o:vÞ ð1Þ

8e 2 sp:spd:Eð(!ds 2 sp:DSS:

ðe:op¼ ds:op4e:ip¼ ds:ipÞÞ ð2Þ

2.5. Reliability levels of DSM

The presented model describes all interactions of the
DSMS with the outside world through outside data streams
(ow-edges). Therefore, from the outside world point of
view, the internals of DSMS can be considered a black box.
Based on this fact, we can define the reliability level of a
DSMS as seen by an outside user by comparing a real-world

DSMS to an ideal DSMS. The ideal DSMS system is a virtual
system which executes all stream processes in a proper
way according to the stream process definition (spd). This
means that no delays happen during stream process
execution (i.e., no processing time needed by the operator
instances and also no time needed for transferring data
stream elements between operator instances), no data
stream elements get lost, and no misordered data stream
elements are produced due to failures. In contrast, the real-

world DSMS is an error-prone DSMS system that has to deal
with failures happening in the real-world.

In the following, we compare the output outside data

streams DSi of an ideal DSMS with output outside data
streams DSr of a real-world DSMS. Since the input outside
data streams are generated by the outside world, which is
per definition failure-free, we only need to compare output
outside data streams.

The highest level of reliability has a real world system
with identical output data streams as the ideal system. In
this case, there is no difference to the ideal DSMS from the
outside world’s point of view.

The ideal reliability level is achieved when for all output
data streams DSi=DSr holds.

Unfortunately, real world systems have to cope with
failures. Therefore, in general, they do not produce the
same result as ideal systems. For this reason, we define the
following two subset data streams of a real world output
outside data stream.

The correct data stream DSc contains the subset of the
data stream elements appearing in the real-world data
stream DSr (i.e., DSc DDSr) which have the same (correct)
sequence number x and payload information pd as data
stream elements appearing in the corresponding ideal data
stream DSi:

8dec 2 DScð(!dei 2 DSi : ðdei:x¼ dec:x4dei:pd¼ dec :pdÞÞ

The incorrect data stream DSf contains the subset of the
data stream elements appearing in the real-world data
stream DSr (i.e., DSf � DSr) which have no corresponding
data stream elements appearing in the ideal data stream
DSi with respect to sequence number x and payload
information pd:

8def 2 DSf ð)dei 2 DSi : ðdei:x¼ def :x4dei:pd¼ def :pdÞÞ
Furthermore, we are able to degrade the ideal reliability
level in three orthogonal dimensions considering loss,

delay, and order, respectively.
Loss is defined as having a smaller number of correct

data stream elements DSc in the real-world output outside
data stream than the ideal output outside data stream, but
may have additional incorrect data stream elements DSf.
The loss definition does not put constraints on the global
timestamp t, hence loss is neither related to delay
nor order.

Limited-loss reliability level (LILO) is defined as having:

DSr ¼DSc [ DSf

jDSijZ jDScjZ jDSij � LF, LF 2 ð0,1�

jDSf jr jDSij � EF, EF 2 ½0,1Þ

where LF is a maximum allowed loss factor and EF is a
maximum allowed error factor.

Lossless reliability level (LOLE) is a special case of the loss
reliability level, where LF=1 and EF=0.

Delay is defined as having a certain delay in the global
timestamp t compared to DSi for correct data stream
elements in the real-world outside data stream. Delay is
not putting any constraints on missing correct data stream
elements, which are subject of loss. In general, delay is also
not putting any constraints on the order of data stream
elements within global time.

Limited-delay reliability level (LIDE) is defined as having:

8dec 2 DScð(!dei 2 DSi:

dei:x¼ dec :x4dei:pd¼ dec :pd

4dei:trdec:trdei:tþDtÞ

where Dt is a maximum allowed delay.
Delay-free reliability level (DEFR) is a special case of the

limited-delay reliability level, where Dt¼ 0. Particularly in
the delay-free case, the order of the data stream elements is
preserved.

Order is defined for correct data stream elements in the
real-world outside data stream and comes in two flavors.
One is the intra stream order, which means that the ordering
of the data stream (according to the global timestamp t) is
preserved.

Intra-stream order preserving reliability level (IASO)
guarantees

8decðxÞ 2 DSc : decðxÞ:trdecðxþ1Þ:t

The other is inter-stream order, where we additionally
compare whether the temporal-order of data stream ele-
ments is preserved between data streams.

Inter-stream order preserving reliability level (IESO) guar-
antees:

8dec1 2 DSc1, 8dec2 2 DSc2, 8dei1 2 DSi1, 8dei2 2 DSi2:

dei1:x¼ dec1:x4dei1:pd¼ dec1:pd4dei2:x¼ dec2:x4dei2:pd

¼ dec2:pd4ðððdei1:trdei2:tÞ4ðdec1:trdec2:tÞÞ
3ððdei1:t4dei2:tÞ4ðdec1:t4dec2:tÞÞÞ

Fig. 4 illustrates the reliability levels of DSM and their
relationship. The three levels of reliability LILO, LIDE, IASO
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represent orthogonal sets. Lossless (LOLE), delay-free
(DEFR), and inter stream order (IESO) are subsets of LILO,
LIDE, and IASO, respectively. The only exception of ortho-
gonality is between DEFR and IESO/ IASO are related
because delay-free reliability guarantees inter-stream
and intra-stream order reliability but not vice versa. The
formal proofs for the pairwise relationships between
reliability levels can be found in [9].

3. Runtime behavior of a DSMS

3.1. Failure model

In the following, we describe a failure model based on
the given DSMS model and analyze the consequences of
failures at the operator, data stream and host levels,
respectively. Note that this failure model encompasses
the failures of all operator instances on a particular host,
but also takes into account that individual operator
instances at a host might fail, for instance due to an
‘out-of-memory’ exception in an overload situation,
without impacting other instances at that host. The
latter situation is likely to occur, for example, if
operator instances are hosted on resource-limited (mobile)
devices.

Failure of an operator instance of: This failure affects the
stream process SPf which is using the affected operator:

SPf 2 SPjof2SPf :O

Moreover, within SPf besides of all data streams DSf from
DSS are affected that are connected to a port of of:

DSf 2 SPf :DSSjðDSf :ip2of :v:ot:IPÞ3ðDSf :op2of :v:ot:OPÞ
Failure of a data stream DSf: This failure affects the
stream process SPf which is using the affected data stream:

SPf 2 SPjDSf2SPf :DSS

Moreover, within SPf, in addition to DSf all operator
instances of that are connected by DSf are affected:

of 2 SPf :OjðDSf :ip2of :v:ot:IPÞ3ðDSf :op2of :v:ot:OPÞ

Failure of a host hf: This failure affects all stream
processes SPf having running operator instances, which
are hosted by the affected host:

SPf 2 SPjð(of2SPf :O:of :h ¼ hf Þ

Within each affected stream process SPf the following
operators of are affected:

of 2 SPf :Ojof :h ¼ hf

Moreover, also the following data streams DSF connecting
to an affected operator of are affected by the failure:

DSf 2 SPf :DSSjðDSf :ip2of :v:ot:IPÞ3ðDSf :op2of :v:ot:OPÞ

Our failure model assumes all failures to be fail-stop

failures. Fail-stop failures are failures where the affected
part is completely stopping its work. The outside world
system is assumed to be always working correctly.

It should be noted that the approach presented in this
paper jointly addresses different types of failures, including
failures at operator level. This is in contrast to other work in
the field, such as [4,14], that only focuses on failure
handling at host granularity. However, more fine-grained
failure handling at operator level is beneficial for two main
reasons. Firstly and most importantly, our approach is
tailored to handle failures in mobile environments which
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are characterized by devices with limited resources. In such
environments, operator failures may be triggered by over-
load situations. Typically, memory or CPU load limits are
reached and some (but not necessarily all) running opera-
tor instances on a mobile host may suffer from memory
allocation errors or thread starvation. This leads to the
situation that one or more operators on a mobile host are
subject to operator failures. Addressing failure handling at
operator level allows to restrict operator migration to these
failed operators while keeping the other operator instances
that are working properly on the device. Secondly, the more
fine-grained approach at operator level subsumes failure
handling at node level. However, it allows to individually
treat all local operators that fail due to a node failure. This
means that they can be migrated independently of each
other. Again, when considering devices with limited
resources, the individual migration of the operators of a
failed node to different nodes can be highly beneficial in
order to prevent new hosts to be overloaded after
migration.

In our approach, we explicitly exclude software bugs as
reason for operator failures since such bugs cannot be
managed by recovery mechanisms. In our model, we
assume that all operator types have been verified correctly,
i.e., they do not feature inherent logical failures.

When an operator fails, the subsequent operator will
not receive any data stream elements because of the fail-
stop assumption. Subsequent operators will wait for
recovery but do not fail themselves. If there is a data
stream failure between two connected operators we
assume that the affected operators do not fail and will
wait for recovery of the failure situation.

Moreover, our approach assumes the DSMS infrastruc-
ture offers a reliable FIFO-transport for data stream ele-
ments. This FIFO-transport already guarantees intra-order
reliability of DSM as described in Section 2.5.
Operator
State

Time 
Context

X
(sx)

h x

t
τ1

Global Time

op

ξop

TS(τ1) = DS(ξs, 

Fig. 5. States of a st
3.2. States within a stream process

During runtime of a stream process in a DSMS different
kinds of states are generated (illustrated in Fig. 5):
�

Tr

ξ

ξe)

ream
Operator state ðsðtÞÞ. This is the most obvious state and
has already been introduced in Section 2.1. This state is
generated by each running operator instance during the
processing of data streams.

�
 Time context ðTCðtÞÞ. Each operator instance has to know

its current stream-time context.

TCðtÞ ¼/Xin,XoutS

where Xin,Xout refer to the stream-time of the last
processed input and output data stream elements
(cf. operator definition in Section 2.1).

�
 Transfer state ðTSðtÞÞ. In a real world system the processing

and transmission of a data stream DS suffers from delays.
Therefore, there may be at a given global timestampt some
data stream elements in a state of transfer along an edge
e¼/x:op,y:ip,DtS of a stream process. The state of the
data stream between op and ip is called transfer state TS. The
transfer state along an edge is given as subset of DS:

TSðtÞ ¼DSðxs,xeÞ

where xsrxe and jDSðxs,xeÞj ¼ xe�xs is the number of
elements in the transfer state. xs refers to the element with
oldest stream-time and xe refers to the element with the
newest stream-time in state of transfer. In practice, an
acknowledgment protocol between consumers and produ-
cer of a data stream will describe elements in transfer as
non-acknowledged elements.

�
 Routing information ðRIðtÞÞ. Finally, for each edge the

stream process execution has to know the host which is
currently hosting the source vertex x and the host of the
destination vertex y, where the data stream has to be
ansfer State

Routing
State

Y 
(sy)

hy

ip
ip

process.
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send to. This routing information hx, hy is also considered
as state of the stream process.

3.3. Consistency within a stream process

Based on the previous definitions of states within
stream processes, we are able to define consistency con-
straints for relations between the time context of the
operator state and the transfer state.

Exact consistency constraints ensure that at every
point in time t during processing, all operator instances
are working consistently with regard to the transfer states
of the data streams in between. This means that no
operator instance has lost any data stream element or
has processed data stream elements multiple times.
Furthermore, all internal states of the operator instances
are correct with regard to the processed data stream
elements. Hence, all operator instances are consistent to
each other. In this case, exact consistency guarantees the
lossless reliability level, because loss would cause an
inconsistency.

Exact consistency is defined as follows: For all pairs of
two operators x, y which are connected via an edge e from
x.op to y.ip at any point in global time t the following has
to hold:

xðtÞ ¼/OTx,Xin
x ,Xout

x ,sx,hx,tS

yðtÞ ¼/OTy,Xin
y ,Xout

y ,sy,hy,tS

TSðtÞ ¼DSðxs,xeÞ

ðxop ¼ xeÞ4ðxip ¼ xsÞ

where xop is the current stream time of the last element
produced at the output port of x taken from Xout

x and xip is
the current stream time of the last element consumed at
the input port of y taken from Xin

y .
Based on the deterministic operator model, we are able

to relax the exact consistency constraint. Relaxed consis-
tency allows for the sender x to re-send data stream
elements if necessary and for the receiver y to receive data
stream elements again. An appropriate transport mechan-
ism within the DSMS is able to guarantee these assumption
for internal edges. For interaction with the outside world
along ow-edges, these assumptions require to allow to
re-read data stream elements coming from sensors and to
re-send data stream elements to outside world receivers.
Of course, the available time window within the data
stream for re-reading and re-sending is limited by an
acknowledgement mechanism.

Relaxed consistency is defined as follows: For all pairs of
two operators x,y which are connected via an edge e from
x.op to y.ip at any point in global time t:

xðtÞ ¼/OTx,Xin
x ,Xout

x ,sx,hx,tS

yðtÞ ¼/OTy,Xin
y ,Xout

y ,sy,hy,tS

TSðtÞ ¼DSðxs,xeÞ

ðxoprxeÞ4ðxipZxsÞ
Having relaxed consistency enforced at all times during
the processing of a DSMS guarantees lossless reliability. Re-
sending or re-reading data stream elements within our
deterministic finite state machine model is not generating
loss (which also includes wrong data stream elements)
because the replayed elements are exact duplicates of the
original elements and only applied if needed. Duplicate
detection based sequence numbers allows to drop unne-
cessary duplicates without affecting the correctness of
DSM processing. Note that data stream elements both
contain their global timestamp and their stream time.
Hence, re-reading complete streams will not impact the
output produced by this operator. However, it might have
an impact on the output of a subsequent operator, as the
processing time of the data stream elements received by
this operator might be different.

3.4. Distinction between delays and failures

In a real-world DSM system, the processing and trans-
mission of data stream elements is commonly subject to
delays. Our model has inherently accepted delays as part of
operator types and stream process definitions where
vertices and edges are associated with maximum allowed
delay constraints. Given these delays, we can define
temporary failures, where the effect of a failure is only
temporary, for instance due to a wireless network
disturbance. On the other hand, if a failure is persistent
in a way that the delay constraints are exceeded, we
consider the failure as permanent failure. In a real-world
implementation of DSMS the temporary failures are
usually compensated by having buffers between pairs of
operators. Contrarily, permanent failures have be treated in
a more sophisticated way. In order to guarantee the limited
delay reliability level, the DSMS system has to resolve the
failure situation before the maximum allowed delay Dt is
reached. Since the reliability strategy needs some time tr to
recover from the failure situation, the DSMS has to start
failure handling when the current delay exceeds the
maximum allowed delay Dt minus the recovery time tr .
Fig. 6 illustrates the failure handling of a DSMS over
stream-time (x-axis) and processing time (y-axis). After
the failure has been resolved the DSMS needs additional
catchup time tc to work-off the congestion caused during
time of failure and reduce the delays back to average level.
4. Reliable operator execution

In this section, we formally analyze the degree of
reliability provided by a family of algorithms addressing
coordinated checkpointing [12] based on the data stream
model presented in Sections 2 and 3. We focus in particular
on guaranteeing relaxed consistency which results in
lossless reliability.

4.1. Operator migration

During runtime of a distributed DSMS, failures as
described in Section 3.1 are likely to happen. If a failure
situation persists longer than Dt�tr , at any edge or vertex
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Table 2
Categorization of states.

State Changes Size

Operator state (s) Frequent Constant medium

Time context (TC) Frequent Constant small

Transfer state (TS) Frequent Varying medium—big

Routing information (RI) Infrequent Constant small
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of a running stream process, the DSMS has to actively apply
some mechanism in order to recover from the failure
situation and to keep the required reliability level. The
expected failure situations in our model are operator
failures, data stream failures, and host failures. In the case
of an operator failure, only an operator instance has failed
and may be restarted at its current host. In the case of a data
stream failure, a data stream connection between two
operators has failed, e.g., due to a network disconnection. In
the case of a host failure, a host of the DSMS has failed and
all running operator instances have to be migrated to other
unaffected hosts. Different kinds of operator failures or
data stream failures may be solved by restarting an
operator at the same host or by re-establishing a data
stream between two operators, maybe by using a different
kind of network connection.

In this work, we focus on failure situations which can be
resolved by migration of running operator instances from
the affected hosts to other unaffected hosts. This move-
ment of an operator instance from one host to another is
called operator migration. Operator migration implies the
redirection of data streams (which corresponds to the
replacement of edges in the data stream graph).

Of course, there are failure situations that cannot be
handled by operator migration. For example, if a data
stream failure persists and making communication
between hosts executing operators of the current stream
process impossible. These failure situations are out of scope
of this work.

In our work, we do not focus on the detection of such
failure situations in a DSMS. We assume that failures are
detected and that there is a significant number of unaffected
hosts in the network available to take over the workload.

For this reason, we consider a passive-standby approach
based on checkpointing [15,19]. We define an operator
checkpoint as the reliable storage of the current state of the
operator instance and the transfer state of all streams
produced by this operator instance at a reliable backup host.
The producer is responsible for keeping the transfer states.
Moving this responsibility to the consumer side would
cause unnecessary overhead since our DSM model assumes
a multiple consumer—single producer pattern for data
streams. Furthermore, we assume the backup host not to
fail. Otherwise, multiple backup hosts are needed to cope
with such failures. In a DSMS, the backup host of an
operator checkpoint is ideally able to be the host of the
corresponding operator. In case of a failure, the backup host
which has the operator checkpoint locally available is the
destination of operator migration.

4.2. Operator checkpointing

An operator checkpoint contains the current state of an
operator and the transfer states of the outgoing data
streams. These states are as introduced in Section 3.2
and categorized by size and frequency of changes in
Table 2.

Furthermore, the reliability strategy of the DSMS has to
guarantee relaxed consistency (see Section 3.3) in case one
or more operators are migrated and restart from their last
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checkpoint while all other operators keep their current
state. In order to reduce the effort for checkpointing, we
introduce an additional constraint for the reliability strat-
egy according to which only the most recent checkpoint is
kept at the backup node. Therefore, it is not possible to go
back further than to the most recent checkpoint during
operator migration.

4.3. Uncoordinated operator checkpointing

Fig. 7 illustrates uncoordinated checkpointing, where
checkpoints are scheduled individually for each operator
instance. In the illustrated example, operator A schedules a
checkpoint at t1. At this point in processing time, operator
A has an operator state sA, a time context /xg6,xa3S, and a
transfer state TSaðt1Þ ¼DSaðx

a
3,xa1Þ. Later in time at t2

operator B schedules a checkpoint with operator state sB,
a time context /xa2,xb5S, and a transfer state TSbðt2Þ ¼

DSbðx
b
5 ,xb2Þ. After performing this checkpoint, operator B

will never rollback before this checkpoint so the transfer
state of DSa can be trimmed to the start stream time xa2
which corresponds to the time context of the last check-
point of B. This is done by sending an appropriate acknowl-
edge message along all input edges after performing a
checkpoint.

Uncoordinated checkpointing as described above guar-
antees relaxed consistency if in case of failures one or more
operators are recovered from their recent checkpoints.
Based on relaxed consistency (see Section 3.3) this guaran-
tees lossless and intra-stream order preserving reliability.
A formal proof can be found in [9].

In the single failure case, only one operator fails at a time.
Without loss of generality, we choose operator B of Fig. 7 to
fail. In this case, operator B is recovered from the most
recent checkpoint taken at t2. The connected operators
along DSa and DSb are affected by the rollback to the
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previous checkpoints. Since this was the stream-time of the
checkpoint of B, the recovered operator B is able to
seamlessly continue to work.

For the multiple failure case, we start with a failure of two
connected operators. Since consistency is defined pairwise,
this argumentation can be extended to general multiple
failure cases. Going back to the example, we assume
operators A and B have been recovered from their recent
checkpoints. For the consistency evaluation of this case, we
can distinguish between edges to non-failed operators and
edges between failed operators. For edges to non-failed
operators, we use the argumentation of the single failure
case in order to prove correctness of the algorithm. In this
case, we have only to investigate for relaxed consistency
along the edge (data stream DSa) connecting the failed
operators A and B. For this analysis, we distinguish three
cases. Firstly, the checkpoint of operator B was performed
after the checkpoint of operator A. In this case, the
recovered operator A starts processing earlier in time than
the recovered operator B is expecting. Relaxed consistency
allows for correct processing in this case. Secondly, check-
points of operators A and B are synchronous with respect to
the stream time of their connecting data streams. In this
case, even exact consistency is guaranteed. Thirdly, the
checkpoint of operator B was performed earlier in time
than the checkpoint of operator A in this case the recovered
operator A has to be able to re-send data stream elements
for the recovered operator B which are actually before its
own recovery time. This is achieved due to recovery of the
transfer state and in this case allows to guarantee relaxed
consistency.

The presented uncoordinated checkpointing algorithm
is suffering from a high transport overhead on sending
checkpoint messages from the active host to the backup
host. Transfer overhead is defined as the relation between
the transport load because of checkpoint messages
ξ2
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compared to the transport load of a DSMS without check-
pointing. Since the transfer state is part of the checkpoint
message the algorithm leads to a high transport overhead.
This is particularly expensive for mobile devices because of
high energy consumption. In order to supersede this
problem, we present in the following another existing
reliability algorithm, called ECOC, which aims at coordi-
nating the checkpointing activities of operators.

4.4. Coordinated operator checkpointing

The efficient coordinated checkpointing (ECOC) algorithm
[12] reduces the overhead needed for checkpointing mes-
sages between the active and the backup host. A significant
portion of the checkpoint message is contributed by
transfer states, which are needed to guarantee relaxed
consistency. In order to develop an algorithm which allows
to omit transfer states from checkpointing, we first analyze
in which cases the recovery of transfer states does not have
to be considered. The recovery of transfer state is not
needed to achieve relaxed consistency in case of failures
if it is guaranteed thatxout

x rxin
y for every pair of checkpoints

along an edge connecting two operators in a stream process.
In order to achieve a temporal coordination of check-

points, ECOC introduces an additional checkpoint-request

message (Check-Request) which is sent to downstream
operators attached on the corresponding data stream
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Fig. 8. ECOC o
element extending the alphabet of the payload informa-
tion. Fig. 8 illustrates the messages used for checkpoint
coordination and the additional pending checkpoint log

(PCL). An additional advantage of this approach is that
message exchange is only between connected operator
instances in a Peer-to-Peer fashion, without centralized
control. The PCL is used to store checkpoints locally until
along all outgoing edges all downstream operator have
performed their checkpoints and xout

x rxin
y is fulfilled.

Further details on the ECOC approach are presented in [12].
For this reason, a two-phase protocol described in

pseudocode in Fig. 9 is applied. Checkpoints may be
triggered by a local scheduler or by a Check-Request
message from an upstream operator. The local scheduler
can follow different strategies for checkpoint planning, e.g.,
every 50 incoming data stream elements. During execution
of the two-phase protocol, the processing of data stream
elements by operator instances continues without
disturbance.

In the first phase (planning phase), a checkpoint is
triggered either by receiving a Check-Request or by the
local scheduler and stored in the local PCL. Additionally,
along all output edges Check-Request messages are sent
with the corresponding stream-time context xout

i . In the
second phase (checkpoint phase), corresponding Ack
messages with xack

i are received along the outgoing edges.
If for a checkpoint in PCL all output edges have received the
eckpoint Log
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Fig. 9. Pseudocode of ECOC.
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Ack messages where xout
i rxack

i the checkpoint is fully

acknowledged. In this case, the checkpoint is sent to the
backup host and removed from the PCL. The PCL is a data
structure in the local memory assigned to an operator
instance holding a list of checkpoints ordered by time of
creation. Following the edges transitively, we see that
checkpoint requests are cascaded until they reach an operator
instance without internal output data streams. Outside out-
put data streams are ignored in this case. At this operator
instance, the checkpoint can be passed immediately to the
backup host. The Trim-Ack’s are cascaded backwards transi-
tively against the flow of data streams and allow to make
pending checkpoints permanent at the backup host.

A drawback of the ECOC approach is the delay of a
checkpoint in the planning phase. Checkpoints are delayed
until all downstream operators have acknowledged the
checkpoint. After acknowledgement, the checkpoint mes-
sage is sent to the backup node. In particular, these delays
are getting longer if we go upstream, closer to the sensors,
in a stream process. Downstream, closer to the final
consumer operators, which themselves have no more
output streams, the delays are getting shorter. These delays
are not blocking stream processing and have no effect on
time constraints in stream time. It has to be noted that
checkpoints are always performed when planned. The
delay only affects the propagation of the checkpoint to
the backup host, but does not impact the regular processing
of the data stream. New stream elements produced in the
time in which the coordination of a checkpoint takes place
will be part of the operator’s transfer state. However, when
the checkpoint will be actually executed, only those
elements of the transfer state that have been produced
before the acknowledgement of the checkpoint request
will be part of the checkpoint. New stream elements that
have been created after the acknowledgement/request of a
checkpoint will have to be considered in subsequent
checkpoints.

Assuming the case of a failure in the planning phase, the
affected operator is recovered from the most recent
permanent checkpoint. In this case, correct data stream
processing is still guaranteed, but duplicates are produced
because of recovering from the older checkpoint. On the
other hand, storing checkpoints in the pending checkpoint
log requires additional memory overhead. Since we do not
need to store the output queue in the pending checkpoint
log, this overhead is similar to the reduced communication
overhead. Therefore, we consider these drawbacks as
acceptable.

4.4.1. Reliability levels guaranteed by ECOC

When applying the ECOC formalism for reliability of
DSM, we state that ECOC guarantees relaxed consistency
for non-cyclic data stream process graphs if in case of
failures one or more operators are recovered from their
most recent checkpoints. ECOC ensures coordination of
checkpoints along outgoing edges which allows the omis-
sion of the transfer state in checkpoints ðxout

x rxin
y Þ. Further-

more, ECOC behaves like uncoordinated checkpointing—

which means that it can be proven correct with regard to
relaxed consistency (a formal proof can be found in [9]).
Furthermore, it is needed to show that ECOC terminates
when cascading checkpoint requests transitively along
connected edges. This is guaranteed because finally each
path in a non-cyclic stream process graph will reach an
outside world vertex. The last operator of the DSMS is
allowed to perform checkpoints at the backup host imme-
diately. Finally, since the Ack-messages caused by perma-
nent checkpoints are cascaded upstream in the same
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manner, all pending checkpoints will be acknowledged,
which proves the termination of ECOC for non-cyclic
stream process graphs.

Delay limitation is not an intrinsic behavior of the
algorithm, except from the fact that cascading checkpoints
have to terminate. But delay-limited reliability is achieved
by the underlying infrastructure as shown in Fig. 6 in
Section 3.4. Given the assumption that there is a backup
host available which is able to recover the operator within a
known recovery time, the infrastructure is able to trigger
recovery before the maximum allowed delay time is
exceeded. Of course, the maximum allowed delay time
has to be reasonably long, given processing and network
delays of the investigated environment.

Finally, the ECOC approach is able to support lossless
and delay-limited reliability of DSM at operator level with
affordable effort.

4.4.2. Extensions of the ECOC algorithm

Supporting complex stream processing topologies is
crucial for real-world DSM applications. Recently, research
in the area of DSM is focusing on adaptive stream
processing [20,16,3,30]. In these research projects, stream
processing is continuously adapting to changes in the
computing environment, e.g., system load or sensor input
characteristics. In general, this implies that a feedback loop
is applied within a stream process graph where results of
current stream processing are affecting the stream proces-
sing in the future. In order to model and support such
feedback cycles for DSM processing, also reliability algo-
rithms have to support these topologies.

Firstly, we focus on optimizations for join-operators.
Particularly for join-operators, obeying all Check-Request
messages that may come along different input edges will
increase the checkpoint frequency at the operator itself and
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subsequently on all operators following transitively down-
stream in the data stream process graph. The checkpoint
requests along the different input edges are not correlated
and therefore may be received shortly after each other. An
increased checkpoint frequency may reduce the benefit
achieved by ECOC because resulting again in increased
checkpoint overhead.

In cases where multiple checkpoints are requested in a
short time interval, it may be beneficial to extend the
previous still pending checkpoint by the necessary transfer
state instead of performing a new checkpoint. Multiple
checkpoints in a short time frame may appear due to
multiple input edges on operators (as for join operators) or
when local scheduling of checkpoints is combined with
obeying Check-Request messages from input edges. Due to
the coordination of checkpoints in ECOC, a checkpoint
imposes load both on the operator itself and on all
operators transitively following operators along down-
stream paths in the data flow of the stream process.

In order to reduce the overhead for checkpoints trig-
gered within a short time frame, we propose an optimized
version of ECOC (see Fig. 10), where an additional extension

request message (Ext-Request) is introduced to request the
extension of an existing checkpoint in the PCL by a limited
part of the transfer state. Adding a subset from xCPO to xCPN

of the transfer state of checkpoint CPN extends the relaxed
reliability constraint from xCPN rxi

ip to xCPOrxi
ip, where

xCPO is before xCPN which is the time context of the
checkpoint to be extended. In Fig. 10, xb5 is the stream
time of the pending checkpoint with respect to output
stream b and xbCPO is the stream timestamp of the Ext-
Request. This extension is only applied if the overall

checkpoint load of the system is reduced compared to the
standard ECOC algorithm. Based on this, the extension is
only done if the size of the extended transfer state jTSej is
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smaller than the overhead caused by performing a new
coordinated checkpoint.

Extended ECOC allows the receiver of a Check-Request
message to decide whether a new checkpoint is performed or
an Ext-Request is returned to the sender. The decision is
based on the average network load imposed by a checkpoint
acquired during runtime of an operator instance. From
downstream neighbors, each node receives an average down-
stream load imposed by all transitive checkpoints triggered
along the corresponding output edge. This statistic informa-
tion is passed upstream as attachment to Ack-messages.

Still, ECOC has to support cycles in the stream process.
A closed control cycle in a stream process is in particular
beneficial in scenarios where stream processing has to
adapt dynamically to changes in the data stream charac-
teristics during runtime [20,16,3,30]. For example, the
processing of an ECG signal has to be adapted when the
heart beat becomes pathologic. In order to adapt stream
processing, the operator parameters have to be changed.
The cycle support is based on the previous optimized ECOC
algorithm. Fig. 11 illustrates a cycle in a stream process. The
cycle caused an infinite cascading of checkpoint requests
with unlimited increase of the pending checkpoint log
without applying permanent checkpoints at the backup
host. To break this infinite cycle, unique identifiers are
applied to Check-Request messages by the first operator
instance that triggers the coordinated checkpoint. All
transitive checkpoints caused by cascading checkpoints
inherit the same identifiers. Consequently, the checkpoint
identifiers are also used to identify checkpoints in the
pending checkpoint log. Therefore, whenever a Check-
Request message is received which has a checkpoint
identifier that already is available in the pending check-
point log, a cycle in checkpoint coordination is detected.
After the cycle is detected, the affected node can easily
break the request cycle by requesting an extension of the
previous checkpoint by using the presented extended ECOC
approach. Obviously, the pending checkpoint is extended
in this case without regard to checkpoint load statistics.

The proposed optimized ECOC approach is able to
support lossless and delay-limited reliability of DSM at
operator level with affordable effort [9]. Efficient reliability
is achieved for complex stream process graphs including a
large number of operators with combinations of splits,
joins, and even loops. Extended ECOC is able to adapt its
behavior according to acquired data stream statistics in a
way that the overall checkpointing overhead is kept
minimal based on Peer-to-Peer communication with
neighboring operator instances without establishing a
centralized checkpoint control.

5. Evaluation results

In this section, we present performance evaluations of
the coordinated and uncoordinated checkpointing algo-
rithms for mobile devices. The overall objective is to
analyze the overhead which is imposed by adding support
for reliable DSM, especially in a mobile environment with
resource-bound devices, with data stream processes taken
from real-world telemonitoring applications. For these
evaluations, we use real patient data produced by a
single-lead human electrocardiogram (ECG) sensor device.
We address both the performance during normal (failure-
free) runtime of the DSM system and the performance
during recovery from one or more failures. The reliable
DSM is implemented within our distributed data stream
management infrastructure OSIRIS-SE [10,25,12,11].
OSIRIS-SE is fully implemented in Java and therefore only
requires a Java virtual machine (JVM) for each participating
node. Our evaluation is targeted to measure network
transport overhead, CPU load, and memory consumption
during the failure-free runtime of a stream process. Due to
the requirements demanded by the intended usage for
pervasive computing applications including mobile and
embedded devices, we consider the utilization of these
resources as critical. Moreover, we also investigate the
behavior during failure recovery.

This experimental setup consists of four Dell Axim X51v
PDAs and three HTC TyTN smartphones. The PDAcs are
equipped with an Intel XScale processor with 624 MHz and
64 MB of main memory. The smartphones have a Samsung
SC32442A processor with 400 MHz and also 64MB of main
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memory. Both device types are running the Windows
Mobile 5 operating system. Each mobile device has a local
OSIRIS-SE software layer hosted by an IBM J9 Java virtual
machine and all devices are connected via wireless LAN. An
additional laptop computer is used to host the OSIRIS-SE
global repositories which contain metadata on DSM appli-
cations. Due to the Peer-to-Peer nature of stream process
execution with OSIRIS-SE, the laptop computer is not
directly involved in stream process execution and does
not host any operator instance. The stream processes are
executed with a rate of 30 data stream elements per second
produced by each sensor operator.
5.1. Evaluation settings

During the evaluation, stream processes are executed
according to four different settings:
1.
 Unsafe stream process execution refers to the execution
of a stream process without applying any reliability
strategy. In this case, no recovery by operator migration
is possible in case of failures. In the unsafe setting, no

operator checkpoints are scheduled or performed.

2.
 Uncoordinated stream process execution refers to the

execution of a stream process based on the uncoordi-
nated operator checkpointing algorithm (see Section 4).
This case allows for recovery of failures by operator
migration. In this setting, each operator instance trig-
gers checkpointing locally. In our evaluations, the
stream process execution is investigated for different
checkpoint intervals c. Checkpoint intervals are speci-
fied by means of the number of data stream elements
processed between two subsequent checkpoints. For
the uncoordinated setting, a fixed checkpoint interval
would again cause some form of coordination of check-
points between the operators. For this reason, check-
pointing is not exactly done after every c elements in the
uncoordinated setting. At each checkpoint the exact
time of the next checkpoint is chosen randomly within
an interval from c/2 to 3c/2.
3.
 Coordinated stream process execution refers to the
execution of a stream process according to our ECOC
operator checkpointing algorithm (see Section 4). This
case allows for recovery of failures by operator migra-
tion. In the coordinated setting, only sensor operators
trigger checkpoints. All other operators receive check-
point requests via data stream connections. For sensor
operators, the checkpoints are scheduled according to
the given checkpoint interval parameter.
4.
 Extended stream process execution refers to the execu-
tion of a stream process using the extended ECOC
operator checkpointing algorithm (see Section 4.4.2).
This case allows for recovery of failures by operator
migration even for stream process topologies that
contain cycles in the flow of data stream processing.
Similar to the coordinated setting, also in the extended
setting only sensor operators trigger checkpoints and
the checkpoints are scheduled according to the given
checkpoint interval parameter.
5.2. Investigated parameters
The following resource utilizations are measured during
the failure-free runtime of different stream processes:
�
 Network transport overhead is the additional amount of
communication data caused by uncoordinated and
coordinated reliability strategies, respectively. The
overhead is measured in relative terms, as ratio of bytes
needed for sending checkpoint messages and bytes
needed for sending data stream elements between
running operator instances.

�
 CPU load is the utilization of the CPU of a participating

node during the execution of a stream process.

�
 Memory consumption is the additional amount of main

memory of a participating node imposed by uncoordi-
nated and coordinated operator checkpointing during
the execution of a stream process. Memory consump-
tion is provided by the JVM. For this reason, some
deviations will occur in this measurement due to the
heuristics of the JVM’s garbage collector.

Furthermore, we evaluate the performance of failure
handling of our presented reliability strategies during the
operator migration phase:
�
 Recovery time is the time tr needed for instantiation of a
new operator instance and reconstruction of the recent
operator state from the checkpoint (see Fig. 6).

�
 Catch-up time is the time tc needed to work off the

congestion that has piled up during the time when the
failed operator instance was not available (see Fig. 6).

�
 Resource utilization at the recovering node. The CPU

and memory utilization is presented as the average
value over the recovery phase tr and the catch-up phase
tc of an operator instance.

5.3. Stream processes used for the evaluation

For the experiments, the sample stream process (SP1)
depicted in Fig. 12(a) has been implemented to process real
world ECG data within a healthcare application. The
ECGSensor operator is simulating a sensor for a single-
lead human electrocardiogram (ECG) by reading real-world
data values from a file which have previously been
generated by an ECG sensor (in order to make the evalua-
tion repeatable). Each sample within the file contains one
float value for the real-world timestamp of measurement
and one float value for the ECG voltage. The DSPFilter
operator is processing the incoming raw-ECG data in order
to remove noise. Finally, the preprocessed ECG data stream
is arriving at the QRSDetector operator. The QRS complex is
the characteristic shape within the ECG which allow for
diagnosis of various diseases of the heart.

The sample stream process SP2 depicted in Fig. 12(b)
has been implemented to allow for the analysis of more
complex stream processes including a join of two different
data streams. This stream process uses artificially gener-
ated stream data and corresponds, for instance, to a
telemonitoring application which combines sensor



Fig. 12. The evaluation stream processes. (a) Stream process 1. (b) Stream process 2.

Table 3
Operator providers in mobile environment.

Node Operators (SP1) Operators (SP2)

PDA 1 ECGSensor TestSensor1

PDA 2 ECGSensor TestSensor2

PDA 3 DSPFilter TestJoin

PDA 4 DSPFilter TestJoin

Smartphone 1 QRSDetection TestAvg

Smartphone 2 QRSDetection TestAvg

Smartphone 3 QRSDetection TestAvg
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streams from a blood pressure and an ECG sensor. Again,
the two sensor operators (TestSensor1 and TestSensor2)
are generating sensor data streams containing two float
values (timestamp and value) for each data stream element
(sample). The TestJoin operator integrates the two streams
by calculating the sum of the data elements from both data
streams within a sliding time window with the size of 100
elements. Finally, the TestAvg operator is performing an
average over a sliding time window with the size of 100
elements on its incoming data stream. Due to the sliding
window operations performed by TestJoin and TestAvg, the
internal state of the operators is larger than in the first
stream process.

Table 3 illustrates the operators that are available at the
different nodes in the experimental setup. Since all opera-
tors are available at more than one node in the OSIRIS-SE
network, the infrastructure is able to select one node as
operator provider and another node as backup provider for
each operator instance. The only exception is for SP2 where
the backup provider for both TestSensor1 and TestSensor2
is the additional laptop computer. However, this does not
affect the measurement because only the providers hosting
running operator instances have been evaluated, but not
the providers selected for hosting backups. There is also no
effect on the failure measurement because no failures are
triggered on either TestSensor1 or TestSensor2.
5.4. Evaluation procedure

The performance evaluation investigates two cases
situations of a stream process execution.

Firstly, the failure-free runtime is evaluated. In this case,
the stream process is up and running without any failure
(such as crashed operator providers or network disconnec-
tions). In order to avoid any disturbances, the stream
process is executed in a way that each operator instance
is hosted by a different provider node. Moreover, each
operator instance has a dedicated backup node which is not
performing other tasks. The actual selection of provider
nodes and backup nodes is done by the OSIRIS-SE
infrastructure based on the load distribution at startup
time of the data stream process. During the experiment, the
stream process is executed for each setting (unsafe, unco-
ordinated, coordinated, and for SP2 also extended) in
combination with the different backup intervals (500,
1000, 1500, 2000, 2500, 3000) for a duration of 400 s
and averaged logging statistics are collected. Of course, for
the unsafe setting the checkpoint interval is not applicable.
In order to avoid the influence random disturbances (e.g.,
operating system tasks) the execution of each measure-
ment is repeated 5 times. The presented results are
aggregated over the execution time and the number of
repetitions. Moreover, only one stream process is executed
at the same time.

Secondly, the failure handling is evaluated. In this
experiment, the stream process is initially running without
failures for a duration of 150 s. After that, an operator
failure is explicitly triggered. In order to avoid time
synchronization effects, a random delay of between 0
and 50 s is introduced before the actual failure triggering.
As for the failure-free measurement, this measurement is
repeated 5 times. Again, only one stream process is
executed at a time. In order to compare the different
strategies, the measurements are performed for each
setting (uncoordinated, coordinated, and extended) in
combination with the different checkpoint intervals
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(500, 1000, 1500, 2000, 2500, 3000). Of course, the
checkpoint interval is irrelevant in the unsafe setting.

5.5. Evaluation results

Fig. 13 illustrates the evaluation results for the network
overhead during a failure-free run of the two sample
stream process SP1 and SP2. Comparing the coordinated
and uncoordinated setting, we see that ECOC is signifi-
cantly reducing the overhead for checkpointing due to the
transport of checkpoint messages from operator provider
to backup provider. Comparing SP1 and SP2, we see a
slightly higher network overhead for the coordinated
setting. This is because of larger operator states in SP2.
For SP2, also the extended ECOC approach has been
evaluated because of the join in the stream process
topology. For short checkpoint intervals, extended ECOC
results in even more reduced network overhead compared
to ECOC.

Fig. 14 shows the CPU load of the different reliability
strategies. Compared to the unsafe setting where no special
support for increasing the degree of reliability is applied to
stream processing, the overhead of CPU load imposed by
coordinated and uncoordinated operator checkpointing is
reasonable. For SP1 which has a simple topology, this
overhead is less than for the more complex SP2. Another
result indicated in Fig. 14 is that the coordinated setting is
slightly less CPU demanding than the uncoordinated set-
ting because no transfer state is serialized and sent to the
backup host. The extended setting evaluated with SP2
shows no additional CPU overhead compared to the
coordinated approach.

Fig. 15 illustrates the average JVM memory consump-
tion of a node during stream process execution. Compared
to the unsafe setting, the memory overhead imposed by
coordinated and uncoordinated checkpointing is reason-
able. In particular, the coordinated setting shows only
slightly higher memory demand. The significant higher
memory demand for the uncoordinated settings comes
from the need to also checkpoint the transfer state. During
checkpointing of the transfer state, larger data structures in
memory are needed to send the larger checkpoint
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messages. This fact is also pointed out by increasing
memory overhead for longer checkpoint intervals which
lead to larger checkpoint messages. The extended setting
evaluated with SP2 shows no additional JVM memory
consumption compared to the coordinated approach.

Failure handling in the mobile environment has been
evaluated by triggering an operator failure of the QRSDe-
tector operator for SP1 and of the TestAvg operator for SP2.
Fig. 16 illustrates the recovery time tr of a failed operator
instance. Regarding tr , there are no significant differences
between the different strategies. In addition, there is a
slightly shorter recovery time for SP2 which is connected to
the higher CPU utilization during recovery in SP2 (see
Fig. 17), whereas JVM memory consumption (see Fig. 18) is
almost constant in all settings.

The general belief that frequent checkpoints accelerate
recovery is not effective in the mobile environment we
considered in our evaluations. There are two reasons for
this fact. Firstly, we distinguish between recovery and
catchup-time. We define recovery as the process of instan-
tiation of a new operator instance from an existing
checkpoint. This time does not depend on checkpoint
frequency but on checkpoint size. Moreover, for ECOC
even checkpoint size is constant and does not depend on
the checkpoint frequency. The catch-up time is defined
as the time needed to work off congestion that has piled
up after a failure situation has occurred. Therefore, in
contrast to recovery time, catch-up time is actually related
to the checkpoint frequency. Secondly, the CPU load of
resource-limited devices in the mobile environment is
generally close to full CPU utilization (see Fig. 17). The
higher CPU utilization at high checkpoint frequencies does
not allow for improving recovery or catch-up time.

Fig. 19 illustrates the catch-up time tc of a failed
operator instance. During the catch-up phase, a newly
recovered operator instance is working off the congestion
that was caused during the time of failure. There are no
significant differences between the different reliability
strategies. Also CPU load (see Fig. 20) and JVM memory
consumption (see Fig. 21) are within reasonable variations.
Only for higher checkpoint intervals an additional JVM
memory overhead is caused for SP1 and the uncoordinated
setting. This behavior is similar to the one of the failure-free
evaluation.
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All these evaluations in a mobile environment have
shown that the ECOC approach performs significantly
better than the uncoordinated setting, which uses the
standard passive standby approach. In particular, ECOC
dramatically reduces the network overhead, which is the
major drawback of the uncoordinated passive standby
approach. For short checkpoint intervals, the extended
ECOC approach is able to even further reduce the network
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overhead for certain stream process topologies. Additional
measurements demonstrate that ECOC and extended ECOC
do not result in higher memory consumption than the
uncoordinated checkpointing approach. For the handling of
single and multiple failures, the experiments have shown
that ECOC and extended ECOC are about the same in
performance compared to the uncoordinated approach
with respect to the recovery and the catch-up phase.

5.6. Further evaluations in server environment

The experimental server environment consists of a
network of 12 server nodes. Each node has an Intel Xeon
CPU with 3.2 GHz, 2 GB of main memory, and is running on
the Windows Server 2003 operating system. One dedicated
node hosts the global OSIRIS-SE repositories. The others are
operator and backup providers. All nodes are equipped
with a local OSIRIS-SE software layer which is hosted by a
Sun J2SE1.6 JVM and thus are able to run operators of the
evaluation stream processes. Like in the mobile environ-
ment, a node is not operator provider and backup provider
at the same time and only the operator providers have been
evaluated. All nodes are connected via a reliable Gigabit
Ethernet connection. The stream processes within the
stationary environments are executed with a rate of 200
data stream elements per second produced by each sensor
operator.

Fig. 22 shows the two additional stream processes, SP3
and SP4, that have been evaluated in the server environ-
ment in order to also analyze the effect of the extended
ECOC approach for cyclic graphs and for joined data
streams. Additional, feedback cycles from the TestAvg to
one or both TestSensor operators allow to influence the
sensor processing. In these sample processes, generated
sensor values are attenuated if the result of TestAvg
exceeds a certain threshold. This can be used to achieve
detailed processing when a critical health condition
appears.

As already shown in the mobile environment, the
network overhead (Fig. 23) of the uncoordinated setting
is significantly higher compared to the coordinated (ECOC)
approaches. Regarding the influence of the backup interval,
we see no significant increase of CPU load for smaller
backup intervals. A reason for this is the fact that the CPU
load in the server environment was generally low, espe-
cially compared to the evaluations done on mobile devices.



Fig. 22. Additional loop processes. (a) Stream process 3. (b) Stream process 4.
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Another reason is that performing a backup is not causing
significant additional load to the CPU compared to proces-
sing 500 incoming data stream elements as for the shortest
backup interval in our evaluation. This work focuses on
reduction of network overhead and not reduction of CPU
load because network overhead is more resource demand-
ing (i.e., energy demanding) than CPU overhead. When
further analyzing the uncoordinated setting for the various
stream processes, we see that for SP3 and SP4 the network
overhead is reduced compared to SP2. The reason for this is
that the network overhead is measured as ratio of bytes
needed for sending checkpoint messages and the number
bytes needed for sending of data stream elements. In SP3
and SP4 the number of bytes needed for checkpoint
messages has only moderately increased compared to
the number of additional bytes needed for sending data
stream elements along the new feedback data streams. This
results in less network overhead for a more complex
stream process in the uncoordinated setting.

Fig. 24 illustrates the CPU load of the different reliability
strategies in the server-based evaluation. The experiments
show that there is no measurable CPU overhead due to
uncoordinated and coordinated operator checkpointing,
compared to the unsafe setting. In general, CPU utilization
increases with more complex stream process topologies.
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Fig. 24. CPU load server environment. (a) Stream process 1. (b) St
In some experiments, the unsafe setting even is slightly
more CPU demanding compared the three reliable
settings—which might be based on the higher network
utilization in the reliable settings that, in turn, result in idle
CPU cycles due to network access.

Moreover, the experiments have shown that OSIRIS-SE
implements reliable DSM processing for various platforms
in a resource efficient way. Overheads due to reliability
algorithms for data stream processing are affordable even
for mobile devices. By means of the ECOC algorithm,
network overhead can be minimized. Furthermore, the
experiments have shown that memory overhead is the
second major overhead due to reliability algorithms.
Nevertheless, increasing memory availability even for
mobile devices is relieving this issue. CPU overhead for
reliability is still measurable but can be tolerated as it
imposes only moderate additional load.

6. Related work

The presented reliability approach is based on process-
pairs [7], that describes a model of primary and backup
processes. The primary process checkpoints all requests to
the backup process, so that the backup process has all
information necessary to take over control in case the
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primary process fails. This approach has been widely
adopted in distributed database research, for example in
the Tandem architecture [8]. Furthermore, work of Chandy
and Lamport [15] emphasized on performing checkpoints
in a distributed system in order to get a meaningful global
state. Based on this work, Baldoni et al. [6] have designed
algorithms to take consistent checkpoints for general
distributed systems. Elonazhy et al. [17] have presented
a survey of work on rollback recovery protocols in mes-
sage-passing systems. As distributed DSM systems are
special kinds of message-passing systems, many of these
protocols can be applied to DSM as well. However, effects
like the domino effect cannot occur in our approach. Our
DSM model only keeps track of the most recent checkpoint
in order to reduce the overhead. Therefore, rollback
propagation – a prerequisite for the domino effect – is
not possible. Still, the analyzed reliability algorithms
guarantee that all most recent checkpoints are consistent
and support lossless reliability. This is achieved by relaxing
the notion of reliability with respect to our deterministic
system model.

Only few approaches address aspects of reliability in
DSM—although this area has become increasingly popular
in the last few years. Unlike most of the work in this field,
we focus on reliability of DSM at the level of data stream
operators. Temporary network disruptions can be
addressed by buffering stream elements between pairs
of subsequent operators (e.g., STREAM [21], PIPES [13], or
GSN [1]). Algorithms for reliable DSM have been discussed
in [19] as part of the Aurora [4] project. In contrast to our
work, Aurora focuses on the reliability of a whole DSM
engine running at a node within a loosely coupled network,
whereas we focus on reliability at operator level. Similarly,
the process-pairs approach and checkpointing is applied,
but without the focus on taking coordinated consistent
checkpoints at operator level. Further work [5] presented in
the context of Borealis [4], an extension of Aurora, allows
for reduced result quality which is not applicable in
applications where lossless reliability levels are demanded
(e.g., in healthcare). Work in the context of the TelegraphCQ
[14] project is providing fault tolerance and load balancing
by applying parallel data stream processing [28]. In this
approach, multiple instances of the same operator are
running in parallel at different hosts. Flux partitions the
overall data stream in an adaptive way across this multiple
instances. Our work focuses on mobile environments
where resources are limited and therefore such active
process-pairs approaches are not applicable. Other work
[31] in the area of DSM is also investigating the migration of
stateful DSM operators but with the focus on optimization
of DSM rather than on achieving reliability.

Work in the area of reliability in sensor networks mainly
focuses on data transport reliability [29,23]. Outcome of
this research is also beneficial for reliable DSM, but not
sufficient. Reliability is also needed at the higher level of
abstraction for data stream operators.

Approaches in the area of reliable middleware [27,22]
propose central coordinators in a process-pairs approach
and discrete, non-streaming function calls. The focus of
this work is on server clusters, rather than on mobile
environments.
7. Conclusion

Applications which operate on data that is continuously
generated by hardware and/or software sensors require
proper system support for data stream management
(DSM). In most cases, like for instance in health monitoring,
reliable DSM is a crucial requirement. In this paper, we have
introduced a model for DSM where data stream operators
are distributed across a loosely coupled network of hosts.
Based on the DSM model, we have identified failures that
are likely to occur in a DSM system during runtime.
Furthermore, as one major contributions of the paper,
we have formally defined reliability levels of DSM, based
on input/output behavior of DSM systems which are
considered black boxes as seen from the outside world.
The reliability levels, in turn, allow for a precise character-
ization of the consistency a DSM system is able to provide
at runtime. The three dimensions along which the relia-
bility levels are defined address (i) limited-loss and lossless
DSM, (ii) limited-delay and delay-free DSM, and (iii) intra-
stream and inter-stream order preservation.

Moreover, we have presented an algorithm for efficient
coordinated checkpointing, ECOC, based on this DSM
model. ECOC provides consistent operator checkpoints
with low overhead. It is based on the migration of stateful
data stream operators. In order to allow operator migration
in case of failures, a recent checkpoint of the state is needed.
It has been shown that ECOC meets the lossless reliability
level which is particularly important for medical applica-
tions in which each single data element of a data stream
might be highly relevant to characterize the physical
situation of a patient.

Finally, we have provided a thorough evaluation of the
existing ECOC approach in a mobile environment. A pro-
totype implementation of a distributed DSM system, called
OSIRIS-SE, has shown a significant reduction of the over-
head for checkpointing, compared to standard uncoordi-
nated checkpointing, while still keeping the desired
lossless reliability level. This allows for reliable DSM with
reasonable overhead even on mobile devices.

Future work on the DSM system OSIRIS-SE aims at
further extending the self-adaptation and self-healing
capabilities of the system, e.g., by dynamically deploying
operator instances on devices with free resources to make
best usage of mobile and fixed devices in a network.
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