
Cost-Based Data Consistency in a Data-as-a-Service Cloud Environment

Ilir Fetai Heiko Schuldt
Databases and Information Systems Group

University of Basel, Switzerland
{ilir.fetai|heiko.schuldt}@unibas.ch

Abstract—Clouds are becoming the preferred platforms for
large-scale applications. Currently, Cloud environments focus
on high scalability and availability by relaxing consistency.
Weak consistency is considered to be sufficient for most of
the currently deployed applications in the Cloud. However,
the Cloud is increasingly being promoted as environment for
running a wide range of different types of applications on top
of replicated data — of which not all will be satisfied with
weak consistency. Strong consistency, even though demanded
by applications, decreases availability and is costly to enforce
from both a performance and monetary point of view. On
the other hand, weak consistency may generate high costs due
to the access to inconsistent data. In this paper, we present
a novel approach, called cost-based concurrency control (C3),
that allows to dynamically and adaptively switch at runtime
between different consistency levels of transactions. C3 has
been implemented in a Data-as-a-Service Cloud environment
and considers all costs that incur during execution. These
costs are determined by infrastructure costs for running a
transaction in a certain consistency level (called consistency
costs) and, optionally, by additional application-specific costs
for compensating the effects of accessing inconsistent data
(called inconsistency costs). C3 considers transaction mixes
running different consistency levels at the same time while
enforcing the inherent consistency guarantees of each of these
protocols. The main contribution of this paper is threefold.
First, it thoroughly analyzes the consistency costs of the most
common concurrency control protocols; second, it specifies a set
of rules that allow to dynamically select the most appropriate
consistency level with the goal of minimizing the overall
costs (consistency and inconsistency costs); third, it provides
a protocol that guarantees that anomalies in the transaction
mixes supported by C3 are avoided and that enforces the
correct execution of all transactions in a transaction mix. We
have evaluated C3 on the basis of real infrastructure costs,
derived from Amazon’s EC2. The results demonstrate the
feasibility of the cost model and show that C3 leads to a
reduction of the overall costs of transactions compared to a
fixed consistency level.

Keywords-Cloud Computing, Data-as-a-Service, Transaction
Management, Concurrency Control, Data Consistency

I. INTRODUCTION

In general, the goal of Cloud computing is to provide

different types of services (IaaS, PaaS and SaaS) at low

cost. It promises infinite scalability and high availability [1].

It is the responsibility of the Cloud provider to guarantee

that data is highly available and that the infrastructure

will elastically scale in order to handle heavy loads. This

frees clients from the burden of managing their own in-

frastructure, so that they can concentrate on their core

business. The business model in the Cloud is pay-per-use.

That means, users can avoid investments and pay only

what they consume. Data management is a central aspect

of applications deployed in the Cloud [2], [3]. Usually,

application servers and web servers can be easily scaled

out by adding new server instances. However, replicating

only the servers does not guarantee high availability of

the data. Moreover, from a performance point of view,

the database usually becomes the bottleneck [4], [5]. Data

replication is a mechanism used to increase availability and

scalability for read-only transactions. But it also increases

the complexity when it comes to data consistency in the

presence of update transactions. As a consequence of the

CAP conjecture [6], most applications in the Cloud run with

relaxed consistency. While this is sufficient for many of the

current Cloud applications, strong consistency is crucial for

all types of applications which require access to consistent

data. The main goal of the applications deployed in the

Cloud is to generate high profit at low operational costs.

Different consistency levels generate different operational

costs: the stronger the consistency level, the higher the costs

for enforcing it, and the lower the degree of scalability.

Weak consistency is cheaper but may result in inconsistency

costs [7]. The operational costs are generated by the Cloud

resources which need to be used for achieving a certain

consistency level. The inconsistency costs are application-

specific costs and reflect the additional work which needs to

be done in order to compensate the effects of inconsistent

data (e.g., compensating oversold books or tickets).

There is a range of concurrency control protocols (CCPs)

leading to different consistency guarantees: from One-Copy

Serializability (1SR), providing the strongest consistency

guarantees, Snapshot Isolation (SI), providing weaker con-

sistency guarantees than 1SR, to Session Consistency (SC)

which just provides read-your-writes (RYW) inside a ses-

sion. In the ideal case, a system should run transactions

with weak consistency as long as possible in order to save

operational costs and automatically switch to a stronger

consistency level as soon as the expected inconsistency

costs are too high. Such desired behavior, which is not

supported yet by any existing system or Cloud provider, will

be provided by our cost-based concurrency control (C3), the

novel approach to concurrency control in Data-as-a-Service

(DaaS) Cloud environments we propose in this paper. With

C3, the overall cost of the application will be minimized.

The necessity for adaptive consistency control was already

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.38

526

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.38

526

identified in [8], [9] where the authors define different

application scenarios ranging from simple online bookstores

to complex collaborative systems. However, both approaches

do not treat the problem of costs (balance of consistency and

inconsistency costs) related to data consistency in the Cloud.

Our C3 approach is based on a generic cost model for data

consistency and an intuitive yet powerful programming API

which allows users to specify cost parameters at transaction

level. Based on these parameters C3 will adjust the consis-

tency level of the transaction so that the overall costs are

minimized.

The contributions of this paper are as follows: (1) We

introduce C3 which is based on a generic cost model for

adaptive concurrency control as described in [10]. (2) We

analyze the possible anomalies in case of consistency mixes

and provide a mechanism for avoiding these anomalies.

Moreover, we have implemented and evaluated C3 on top

of a range of CCPs (1SR, Strong Snapshot Isolation – SSI,

and SC) using resources of a concrete Cloud provider and in

the context of the transactional web e-Commerce benchmark

TPC-W.

This paper is organized as follows: Section II presents

related work. In Section III we provide an overview of

replication and concurrency control in replicated systems. In

Section IV we introduce C3 and present its architecture. The

core of this Section however is the analysis of the anomalies

in case of transaction mixes and the mechanism for avoiding

these anomalies. Section V presents the details of the C3

protocol. The evaluation of C3 on top of Amazon EC2 is

provided in Section VI. Section VII concludes.

II. RELATED WORK

Data replication has attracted many researchers from the

database and distributed systems community. The main chal-

lenge is to provide replication solutions, which are scalable

and at the same time provide strong consistency guarantees.

Usual solutions in this trade-off between performance and

consistency would either relax consistency guarantees in

order to increase performance or vice-versa. The traditional

CCPs providing strong consistency guarantees, like 1SR and

SSI, are not applicable for large-scale replicated data envi-

ronments like the Cloud. Currently, Cloud data environments

are oriented towards scalability by providing replication

solutions with weak consistency guarantees. However, the

Cloud is more and more becoming a platform for deploying

business applications, most of which require strong transac-

tional guarantees.

Kemme and Alonso [11], [12] present one of the first ap-

proaches to replication management which provides strong

consistency guarantees while being scalable. They avoid

costly protocols, like 2PC, by exploiting efficient group

communication.

In addition to performance, the costs are also an important

factor in the Cloud. In general, strong consistency generates

high costs for enforcing it. Weak consistency on the other

hand, can lead to high operative losses due to, for example,

oversells [7]. The cost parameter increases the complexity

of designing efficient CCPs. In contrast to the approach in

[11], our work does not focus on the design of new efficient

CCPs, but is rather based on the idea of adaptive cost-based

concurrency control: use existing CCPs and adjust the con-

sistency level at runtime according to cost constraints, i.e.,

find the right balance between consistency and inconsistency

costs. In [7], different types of applications are described

for which the consistency level might have to be changed

at runtime. The basic assumption is that not all data need

the same consistency guarantees. The approach introduces

a consistency rationing model, which categorizes data in

three different categories. Adaptive consistency means that

the consistency level changes between 1SR and Session

Consistency at runtime depending on the specific policy

defined at data level (annotation of the schema). However, in

our opinion the approach presented in [7] is limited to simple

cases in which data can be easily categorized. If we take

more complex data structures or heterogeneous data sources,

like stream data, XML, RDF, then the categorization is not

that simple anymore if at all possible. Another drawback of

the approach presented in [7] is that it is not possible to have

different applications work on shared data and still satisfy

their possibly diverging consistency requirements. If the

consistency level is specified per data object and if it turns

out that this consistency level is inappropriate for another

application/scenario, then the consistency specification at

data level has to be changed. This may lead to unexpected

behavior of existing applications and makes application

behavior data-dependent.

A first approach to cost-based concurrency control that

considers the cost of single operations (and their undo

operations for recovery purposes) in order to select and

influence CCPs can be found in transactional processes [13].

However, this does not consider any infrastructure-related

costs for enforcing a selected CCP.

III. CONCURRENCY CONTROL IN REPLICATED SYSTEMS

A replicated system is a distributed system in which

multiple copies of the same data are stored at multiple sites.

Replication increases availability and scalability. However, it

also increases the complexity of data consistency as correct

concurrent access requires serializable histories. A history

is serial if for any pair of transactions Ti and Tj , either Ti

is executed before Tj , or vice versa, i.e. the transactions

are executed serially, one after the other. A serializable

history is a history in which transactions are allowed to be

executed in parallel, yet with the result being the same as in a

serial history. In what follows, we briefly introduce the most

prominent concurrency control protocols, namely One-Copy

Serializability, Snapshot Isolation and Session Consistency.

527527

One-Copy Serializability (1SR): In a system providing

1SR guarantees, the user is basically unaware that the data

is replicated as all the replicas are always consistent. The

implication of 1SR is that each write transaction (i.e. a trans-

action which writes a data object) must update all copies.

Depending on the number of replicas, this may considerably

increase the response time of update transactions.

Snapshot Isolation (SI): The idea of SI is to increase

concurrency compared to 1SR. Its advantage arises from the

fact that reads are never blocked. SI avoids many of the

possible inconsistencies. However the write-skew anomaly

is possible [14]. Different variants of SI exist for replicated

systems which lead to different consistency guarantees. As

part of this work we have considered Strong SI (SSI). The

SSI protocol requires that a transaction Tk, which starts

after a committed transaction Ti must see a database state

including the effects of Ti [15]. In centralized systems it is

easy to provide the latest snapshot, whereas in distributed

systems, this leads to delays of transaction starts. 2PC is

usually used for updating all replicas in the context of the

transaction. Other possible SI variants, which relax the con-

sistency requirements for replicated systems are described

in [14], [15].

Session Consistency (SC): SC is a variation of the

eventual consistency model1. In this model, data is accessed

in the context of a session. Inside the session, the system

guarantees read-your-writes consistency. These guarantees

do not span different sessions. Transactions are guaranteed

not to see values older than their writes. However, they may

see newer values which have been written by concurrent

transactions. Regarding the conflict resolution between trans-

actions, for non-commutative updates (e.g., value overrides)

the last commit wins, for the commutative ones (e.g., in-

crementing or decrementing a numerical value) the updates

are executed one after the other. From an isolation point

of view, different anomalies between SC transactions are

possible. As data is usually propagated in a lazy way in SC,

inconsistencies may also occur due to the access to stale

data.

IV. C3 ARCHITECTURE

The ideal CCP provides strong guarantees and is cheap

to enforce. So, one of the possible approaches could be

to try and design such an ideal cost-effective and correct

concurrency protocol. However, there is no ”silver bullet”

and each CCP finds its own balance between consistency

and inconsistency costs. In contrast, our new C3 approach

is based on existing CCPs and introduces an adaptive layer,

which is able to dynamically switch between the different

1In a system providing weak consistency, it is not guaranteed that reads
that follow writes will see the updated value. The period until all replicas
are up-to-date is called the inconsistency window. Eventual consistency is
a form of weak consistency. The system guarantees that if no new updates
are made to the objects eventually all accesses will return the last updated
value

protocols at runtime in order to save costs (consistency and

inconsistency costs) and decrease response time of trans-

actions while at the same time providing the best possible

correctness guarantees.

A. System Model

Our system model considers full replication and an

update-anywhere approach. 1SR and SSI transactions update

all replicas inside the transaction context by using 2PC to

ensure atomic replica commitment, whereas SC transactions

commit only at the local replica. Replica reconciliation

is done on a periodic basis. The system model does not

constrain the replication strategy, i.e., the creation and de-

struction of replicas. However, we assume the existence of

a replica catalog. This means that any replica in the system

is aware of all other replicas. Care must be taken in case

of dynamic replication, so that transaction commits are not

interfered by the replica deployment process. Regarding the

positioning in the Cloud, our solution does not provide sim-

ple datastore functionality (it is even independent of specific

datastore), but a DaaS with C3 semantics with the goal of

minimizing application costs. The C3 middleware consists

of the following components. TransactionManager: Is re-

sponsible for managing all transactions and implements the

C3 protocol. SiteManager: Provides an abstract layer for

managing local data access (insert, update, delete, read).

TimestampManager: Manages timestamps of transactions

and guarantees that transactions will get timestamps ac-

cording to their arrival order. LockManager: Provides lock

management functionality. ReplicaManager: Manages the

available replicas. FreshnessManager: Is responsible for

the management of freshness information (Section IV-D).

All components are implemented as Web services and can be

deployed in different possible configurations. Regarding the

logical architecture, a replica site consists of a Transaction-

Manager and SiteManager, i.e., when talking about replicas,

both components are expected to be present at that site. Both

components further consist of a middleware layer present at

each replica and are equipped with a local datastore; the

SiteManager uses the datastore for handling the ”real” data,

whereas the TransactionManager stores data related to its

functionality. From the transaction perspective there are two

types of replicas: local and remote. If a transaction Ti is

assigned to replica Rj for execution, then Rj is called a local
replica for Ti. All others are remote replicas for transaction

Ti.

B. Transaction model

A transaction consists of a set of operations accessing

objects, uniquely identified by an objectId, in read or write

mode. A read-only transaction consists of read operations

only, whereas update transactions contain at least one update

operation. In our model transactions are assigned unique

start and commit timestamps that reflect the start and the

528528

commit order of transactions: the most recently started

transaction gets the highest start timestamp and the most

recent commit gets the highest commit timestamp. We

further assume that the write- and read-sets of transactions

are available. These are necessary for avoiding anomalies in

case of consistency mixes.

C. Avoiding Anomalies of Consistency Mixes

In C3, where a range of different CCPs is provided,

it is possible that the same data object is accessed by

different transactions with different consistency levels for

the following reasons. First, the application developer has

designed the application in such a way that the same data

objects can be accessed by transactions with different con-

sistency levels. Second, different applications work on the

same data and may have different consistency requirements.

Third, the different replicas may decide to execute adaptive

transactions accessing the same data objects based on a

cost model with different consistency levels depending on

the locally collected statistical data. In more detail, the

possible inconsistencies are as follows: (1) Inconsistencies

due to the isolation level between transactions running the

same CCP (e.g., write-skew between SSI transactions). (2)
Inconsistencies due to isolation level between transaction

running different CCPs (e.g., anomalies between 1SR–SSI,

1SR–SC and SSI–SC). (3) Inconsistencies due to data stale-

ness. If a transaction works on old data, it may generate

inconsistencies, e.g., decrement a value based on an old

value. The mechanism we provide targets the inconsistencies

(2). Inconsistencies (3) are handled by the replica syn-

chronization mechanism described in Section IV-E which

guarantees transactions requiring strong consistency (1SR

and SSI) to always work on the most recent data. The goal of

our mechanism is not to avoid inconsistencies between trans-

actions of the same consistency level. Cahill et al. [16] have

already provided a mechanism which avoids inconsistencies

between SI transactions, in order to make SI serializable.

Another important fact is that our approach guarantees the

chosen consistency level (e.g., 1SR or SSI) based on the

latest globally commited data. If the data was corrupted, i.e.,

an inconsistency was introduced by transactions running a

lower consistency level (e.g., SC), that inconsistency will

not be corrected. The guarantee our mechanism provides is

that for example an 1SR transaction will work on the most

recent data and will not be disturbed by transactions running

a lower consistency level.

The detailed analysis of the possible inconsistencies in

case of transaction mixes and the algorithms for avoiding

these inconsistencies is provided in [10].

D. FreshnessManagement

The FreshnessManager provides freshness information

for each of the data objects. This information is used

mainly for the replica synchronization mechanism described

in Section IV-E. We distinguish two types of freshness

information: last committed timestamp for non-commutative

updates (e.g., strings) and a range of timestamps for com-

mutative updates (e.g., integers). The commit timestamp

range is sorted in ascending order. For this purpose, the

FreshnessManager provides an API allowing the replicas to

add freshness information for both types of updates. One

important aspect is that the access to the FreshnessManager

must be synchronized. The reading of freshness information

for a set of data objects should not be disturbed by concur-

rent writes.

E. Replica synchronization

In a system supporting lazy replication, it might happen

that a transaction requiring strong consistency guarantees

(1SR or SSI) is executed on a replica which contains stale

data. In order to provide the desired guarantees, the local

replica must first synchronize with the replicas containing

the most recent data. The mechanism is based on the func-

tionality provided by the FreshnessManager and additionally

requires that for the commutative updates the SiteManagers

are able to provide the update logs for specific objects and

commit timestamps. The synchronization consists of the

following steps, which are executed before the transaction is

effectively started, but after the transactions has successfully

passed the startup checks of the mechanism for avoiding

anomalies of transaction mixes and has acquired the locks

[10]. (1) Check if all data objects to be accessed by the

transaction are up-to-date. The check is done by comparing

the local commit timestamps with the commit timestamps at

the FreshnessManager. In case of the commutative updates,

it must be checked if there are gaps in the update range.

(2) If the most recent commit timestamp is not satisfied or

there are gaps for commutative updates, than the local replica

synchronizes with the replicas which can provide the most

recent data or the missing updates in case of commutative

updates.

V. COST-BASED CONCURRENCY CONTROL

The goal of our C3 approach is to dynamically adjust

the consistency level of transactions at runtime according

to specific constraints. In the Cloud the constraints are the

costs: the stronger the consistency level the higher the costs.

A weak consistency level does not automatically mean less

costs, since the inconsistency costs have to be taken into

account. The system adjusts at runtime the consistency level

in order to minimize the total costs (the sum of consistency

and inconsistency costs). Based on the cost model described

in [10] we have defined a set of rules to achieve C3, with the

goal of providing the best possible consistency guarantees

while minimizing application costs. The focus is set on

minimizing the costs of the services delivered by the end-

service providers. The end-service provider specifies the cost

parameters for its (transactional) services. In doing so, it

529529

Parameter Definition

CBTrx Consistency (operational) budget
for a transaction.

CInc Inconsistency costs for a transaction.
Coststrategy [Optimal | Minimal]. Default is Minimal.

The semantics of this parameter is to use
up the specified consistency budget
CBTrx (Optimal) even if that does not
minimize the overall costs or minimize overall
costs E(COverallConsL) (Minimal).

E(CConsCCP) Expected consistency (operational) costs
of a specific CCP, where CCP=1SR|SSI|SC.

E(COverallCCP) Expected overall costs of a specific CCP.

Table I
C3 PARAMETERS

effectively determines the consistency guarantees that are

provided by the services. In order to show the operating

principles of C3, in what follows we provide a detailed

example. Let us assume that the end-service provider has

specified the consistency budget and inconsistency costs for

a specific transaction. This case corresponds to the Rules

4 and 5 (Section V-A). The cost parameters are always

specified per transaction execution, and should not be seen

as a kind of budget for the entire system. The default

behavior in this case is that the system will execute the

transaction with the consistency level having the lowest

expected overall costs. By doing this the system tries to

minimize the costs. However, the end-service provider may

have provided enough budget for running the transaction

with 1SR and the transaction might be forced to use up the

budget. In that case, the transaction would run with 1SR even

if that does not minimize the costs. A thorough analysis of

the cost model for C3 is provided in our Technical Report

[10]. Below we summarize the most important aspects of

C3.

A. C3 Rules

Table I summarizes the parameters used in the C3 rules

which are specified at transaction level. At least one of

the cost parameters, CInc or CBTrx, must be specified.

Moreover, it is possible to specify both parameters, the

system will then decide how to behave depending on the

specified values (Rules 4 and 5). Each of the rules is

only applied if its preconditions are true. A ‘*’ as a value

means that the parameter can take any value ≥ 0 or even

unspecified, ‘⊥’ means unspecified, whereas ‘Number’

means any number ≥ 0.

Rule 1: Preconditions: Transaction has infinite consistency

budget available (CBTrx = ∞ & CInc = ∗).
The desired consistency level is enforced independently

of the specified inconsistency costs. The important aspect

of this rule is that it allows the system to be operated as

a traditional database. If for example all transactions are

forced (provided with infinite budget) to run with 1SR,

then the system ”switches off” the adaptive component and

behaves as a traditional distributed database by enforcing

1SR. Consistency mixes are still possible, if for example

some transactions are forced to run 1SR, whereas some

others run SSI or SC.

Rule 2: Preconditions: The consistency budget is specified,

whereas the inconsistency costs are left unspecified

(CBTrx = Number & CInc =⊥).
The system will check if there is enough budget for the

transaction to be executed with a strong consistency (1SR,

SSI). If not, it will execute it with SC.

CL =

⎧⎪⎪⎨
⎪⎪⎩

1SR if E(CCons1SR) ≤ CBTrx

SSI if E(CConsSSI) ≤ CBTrx

SC if E(CConsSC) ≤ CBTrx

Abort else

Rule 3: Preconditions: The inconsistency costs are specified,

whereas the consistency budget is set to 0 or left unspecified

(CBTrx =⊥ & CInc = Number).
The system will check to find the consistency level with

the lowest expected overall (sum of consistency and

inconsistency) costs, in order to minimize overall costs.

CL =

{
minimum(E(COverall1SR), E(COverallSSI),
E(COverallSC))

Rule 4: Preconditions: Both the consistency

budget and inconsistency costs are specified.

Coststrategy = Minimal.
Similarly to rule 3, also in this case the system tries to

minimize the overall costs.

Rule 5: Preconditions: Similarly to rule 4, the

consistency budget and inconsistency costs are specified.

Coststrategy = Optimal.
The C3 system will execute the transaction with the

consistency level having the lowest expected cost or

which does not exceed the provided consistency budget.

According to this rule it might be that a transaction is

executed with 1SR if the expected costs do not exceed the

specified budget even if that does not minimize the overall

costs. It is important to notice that the checks are executed

hierarchically starting with 1SR down to SC and will stop as

soon as one of the consistency levels satisfies the conditions.

CL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1SR if isLowest(E(COverall1SR))
|| (E(CCons1SR) ≤ CBTrx)

SSI if isLowest(E(COverallSSI))
|| (E(CConsSSI) ≤ CBTrx)

SC else

The rules specified above are used by the C3 to decide

on the consistency level of a transaction before the trans-

action is effectively executed. In the current work, we have

taken the most prominent CCPs. The architecture of C3 is

component-based, i.e. the CCPs are implemented as com-

530530

ponents consisting of the functionality and the cost model.

This means that, the C3 framework can be easily extended

to take into account additional CCPs by just introducing the

corresponding CCP components into the framework. Even

different CCP implementations providing same consistency

level (e.g., 1SR) can be plugged into the framework as

dedicated components. Our C3 provides the possibility to

activate/deactivate specific components. If different CCP

components providing the same consistency level are active

then C3 will iterate through the components and use the CCP

component having the lowest costs for the decision making

based on the C3 rules. Let us assume that in our system

there are two active CCP components providing 1SR: one

based on 2PC for replica commitment and the second one

based on group communication protocols. C3 will calculate

the expected costs for both CCP components based on their

cost models and will take the one having the lowest cost as

a basis for executing the C3 rules. It means, the costs of a

specific consistency level in the C3 rules correspond to the

CCP component of that consistency level having the lowest

expected cost.

VI. EVALUATION OF C3

C3 adds additional complexity to the design of transac-

tional systems. The additional parameters like consistency

budget and inconsistency costs require careful analysis of

the transaction design. Additional actors have to be involved

in the design process in order to provide precise values

for the additional parameters. The inconsistency cost is the

critical parameter: if the value is too low, then too many

transactions are executed with weak consistency, which may

generate high penalty costs. On the other side, if the value

is too high, it may lead to high operational costs, since

many transactions are executed with strong consistency. An

additional complexity comes from the fact that, for adaptive

transactions, the system will decide on the CCP and by

that on the consistency level, based on the cost threshold

provided to it and collected statistical data at runtime.

This increases the complexity to argue about correctness of

transactions and debugging in case of errors.

In what follows, we will describe the experiments done

on top of an AWS EC2 to evaluate C3.

A. Setup

Application Scenario: For the evaluation, we have

implemented an application scenario as specified in the TPC-

W benchmark, which models an online bookstore. TPC-

W emulates users that browse and order books from the

online shop. It defines 14 different web interactions and

three different interaction mixes. From the possible mixes,

the Ordering Mix is the most update-intensive mix, which

specifies that 10% of actions are book purchases. We have

used the Ordering Mix for the evaluation of C3.

Infrastructure & Deployment: In the evaluations of C3

we have used the Apache Tomcat Webservice container for

deploying and running the implemented Web services. We

have used two different machine types. EC2 client machines,

which host the clients, are equipped with 1 EC2 Compute

Unit (1 virtual core with 1 EC2 Compute Unit); EC2 server
machines, which host the services and are equipped with 5

EC2 Compute Units (2 virtual cores with 2.5 EC2 Compute

Units each). Both machine types contain 1.7GB of RAM

and use Ubuntu 10.94 32-bit as operating system.

The TransactionManager and SiteManager are deployed

to different WebService containers on the same EC2 server

machine, each having their own local datastore, whereas all

the centralized components/services (see Section IV-A) are

deployed to dedicated WebService containers and machines.

Costs: The runtime costs of a transaction consists of the

transaction execution, data storage and retrieval, consistency

(additional services) and eventually inconsistency or penalty

costs. The costs for the execution and data access are usually

defined by the Cloud provider. The additional services we

have implemented are used for achieving a certain consis-

tency level and we have defined the costs for these services.

However, we have used the pricing schema of the AWS

SQS and the charges are based on the costs for a request

to a specific service and the data transfer. We have used a

standard price for all services, i.e. the costs for a request

or a reply (lock messages, 2PC messages and freshness

messages) is the same independently of the service type,

namely $0.001. In addition, costs are generated depending

on the data transferred into or out of a service. In our

experiments we have charged $0.00001 per byte.

Experiment Parameters: In our experiments we have

used four replicas and two clients. The clients start trans-

actions which are assigned randomly to one of the replicas.

Each experiment is repeated 10 times. The number of book

types in the system was set to 1’000 each with an instance

chosen randomly between 10-100. Each transaction buys

10 different book types and a randomly chosen number

of instances of a single book type between 1-10. The

transaction size is set to 50, i.e. each transaction works on

50 objects (reads and writes) according to the Ordering Mix

specified by the TPC-W.

B. Costs per Transaction

The goal of this experiment was to show the advantages of

the transactions with adaptive behavior of C3 with regard to

the overall costs compared to transactions with fixed consis-

tency level. During this experiment transactions are provided

with the inconsistency costs and the default cost strategy

(see Section V). This means that adaptive transactions are

executed based on Rule 3 (Section V). The parameters

as specified in VI-A are also used in this experiment;

additionally we have set the inconsistency costs to $1, based

on an empirical analysis. The experiment consists of single

531531

tests, where each test generates during a period of 300

seconds a system load of 500, 1’000, 1’500, 5’000, 6’000

and 10’000 transactions. Each test is executed as follows.

First, the system and the data are initialized. Afterwards,

independently 1SR, SSI, SC, and adaptive transactions are

generated and executed by the system. It is important to

notice that during test execution, before transactions of a

specific consistency level are executed, the system and data

are re-initialized. This is done in order to ensure fairness

between transactions running different consistency levels.

The consistency costs of the different CCPs are depicted

in Figure 1. When the number of transactions increases, the

consistency costs of 1SR and SSI are getting higher, which

is a consequence of the increasing lock conflict rate. SSI

transactions have lower consistency costs than 1SR, since no

read-locks are used. This leads to a decreased conflict rate

compared to 1SR. SC transactions have constant consistency

costs, which are generated by the startup and commit checks

(Section IV-C). The interesting aspect of this evaluation is

the behavior of the adaptive transactions. These will be

executed mainly with SC if the inconsistency probability

is low, which is the case with low numbers of transac-

tions (500, 1’000, 1’500). As the number of transactions

increases, the inconsistency probability will also go up. This

explains the increase in the consistency costs depicted in

Figure 1. On the other hand, transactions running with fixed

SC will observe an increasing number of inconsistencies

and consequently, higher inconsistency costs as the number

of transactions is getting higher. Adaptive transactions, in

contrast, will find the right balance between inconsistency

and consistency costs. This explains the difference in the

overall costs between SC and adaptive transactions (see

Figure 2). Figure 3 summarizes the overall costs (sum of

consistency and inconsistency costs) over all tests, which

clearly shows the advantage of adaptive transactions. During

our evaluations, we have used rather low inconsistency

costs. Real applications have much higher inconsistency

costs, which would be even more in favor of the adaptive

transaction model. In the online bookstore scenario, the

adaptive transactions will lead to a switch between SC and

SSI, since the expected write-skew costs are very low. In

other scenarios the situation may look different, especially if

the expected write-skew costs are high. In that case adaptive

transactions will finally also switch to 1SR.

C. Vary Inconsistency Costs

This experiment shows the impact of the inconsistency

costs on the behavior of the C3 system. The setup is as

follows. The number of executed transactions remains the

same, namely 5’000. The inconsistency costs are varied

between 0.01 and 0.25. The results depicted in Figure 4

show the behavior of adaptive transactions with increasing

inconsistency costs. As long as the inconsistency costs are

low enough, adaptive transactions will be executed mainly

Figure 1. Consistency Costs of the Different CCPs

Figure 2. Overall Costs (Consistency and Inconsistency Costs)

with SC. As the inconsistency costs increase more adaptive

transactions will switch to SSI. As a consequence, the

consistency costs of adaptive transactions will also increase.

However, this are much lower than SSI. In Figure 5 it can

be seen that in addition to the consistency costs, also the

response time of adaptive transactions will increase with

increasing inconsistency costs.

VII. CONCLUSIONS AND OUTLOOK

Cloud providers have to offer a flexible yet powerful

transactional middleware in order to support a wide range

of CCPs which are needed to accommodate the needs of

applications of different types. One of the main reason for

Figure 3. Total Average Costs over all Tests

532532

Figure 4. Consistency Costs of the Different CCPs

Figure 5. Response Time of the Different CCPs

customers deploying their applications in the Cloud is its

pay-per-use business model. The Customers do not have

to do any upfront investments to build scalable systems.

They can deploy their applications in the Cloud and pay for

what they consume. The main goal is actually to generate

profit from their business at low operational costs. However,

different CCPs generate different costs, as the higher the

consistency guarantees it provides, the higher the costs and

the lower the scalability that can be provided. Weak con-

sistency generates less operational costs, but may generate

high penalty costs, due to, for example, oversells, customer

disappointment, etc. In this paper, we have presented our C3

which is independent of the infrastructure of a specific Cloud

provider. The main features of C3 are its adaptive behavior

(a CCP does not have to be specified at build-time but is

dynamically selected at run-time), and its special treatment

for consistency mixes having conflicting data access. Since

it is costly for customers to execute transactions with strong

consistency, they need the guarantee that either the system

can enforce the consistency (the users get what they have

paid for), or the system will not waste the user’s budget

if it cannot provide such guarantees. The evaluation of C3

shows that transactions with adaptive behavior outperform

the transactions which have fixed behavior, not only from the

monetary costs point of view, but also from the performance

point of view.

In future work we plan to extend the cost model for non-

uniform data access [17] where some data objects might be

accessed more frequently than others. We will extend the

model to take into account hotspots. Moreover, in general,

the architects/developers of transactional systems are faced

with the task of selecting the most appropriate consistency

level for their transactions. For C3, this task is even more dif-

ficult, since additional parameters come into play. Therefore,

we will develop a catalog with generic criteria for deciding

on the consistency level of transactions.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science

Foundation (project GriDMan) No. 200021 132201 / 1.

REFERENCES

[1] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and
T. Kraska, “Building a Database on S3,” in Proc. 2008
SIGMOD. Vancouver, Canada: ACM, 2008.

[2] S. Das, D. Agrawal, and A. El Abbadi, “G-Store: a Scalable
Data Store for Transactional Multi Key Access in the Cloud,”
in Proc. SoCC 2010, Indianapolis, IN, USA, 2010.

[3] D. Kossmann and T. Kraska, “Data Management in the Cloud:
Promises, State-of-the-art, and Open Questions,” Datenbank-
Spektrum, 2010.

[4] R. Rawson and J. Gray, “HBase at Hadoop World
NYC.” http://www.docstoc.com/docs/12426408/
HBase-at-Hadoop-World-NYC/, 2009.

[5] F. Yang, J. Shanmugasundaram, and R. Yerneni, “A Scalable
Data Platform for a Large Number of Small Applications,” in
Proc. CIDR’09, Asilomar, CA, USA, 2009.

[6] E. A. Brewer, “Towards Robust Distributed Systems (ab-
stract),” in Proc. PODC’2000, Portland, OR, USA, 2000.

[7] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann,
“Consistency Rationing in the Cloud: Pay only when it
Matters,” PVLDB, 2009.

[8] Y. Lu, Y. Lu, and H. Jiang, “Adaptive Consistency Guarantees
for Large-Scale Replicated Services,” in Proc. NAS 2008,
2008.

[9] Y. Yang and D. Li, “Separating data and control: support for
adaptable consistency protocols in collaborative systems.” in
CSCW’04, 2004.

[10] I. Fetai and H. Schuldt, “Cost-based data consistency in a
data-as-a-service cloud environment,” University of Basel,
Switzerland, CS Technical Report CS-2012-001, Feb. 2012,
available at http://informatik.unibas.ch/research/publications
tec report.html.

[11] B. Kemme and G. Alonso, “Don’t be lazy, be consistent:
Postgres-r, a new way to implement database replication,” in
Proc. VLDB’2000. Cairo, Egypt: Morgan Kaufmann, 2000.

[12] ——, “Database Replication: a Tale of Research across Com-
munities,” PVLDB, 2010.

[13] H. Schuldt, “Process Locking: A Protocol based on Ordered
Shared Locks for the Execution of Transactional Processes,”
in Proc. PODS’01. Santa Barbara, USA: ACM Press, 2001.

[14] S. Elnikety, “Database Replication using Generalized Snap-
shot Isolation,” in Proc. SRDS’05, Orlando, FL, USA, 2005.

[15] K. Daudjee and K. Salem, “Lazy Database Replication with
Snapshot Isolation,” in Proc. VLDB’06, Seoul, Korea, 2006.

[16] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable
isolation for snapshot databases,” in Proc. SIGMOD 2008,
Vancouver, Canada, 2008.

[17] S. Banerjee and V. Li, “A General Model for Non-Uniform
Data Access in a Database System,” in Proc. COMPSAC,
1991.

533533

