
A Benchmark for RDF-based Metadata Management
in Distributed Long-Term Digital Preservation

Ivan Subotic#, Lukas Rosenthaler#, Heiko Schuldt∗

#Imaging and Media Lab, University of Basel, Switzerland
∗Databases and Information Systems Group, University of Basel, Switzerland

{firstname.lastname}@unibas.ch

Abstract— In a large variety of applications, the long-term,
guaranteed availability of data is becoming increasingly impor-
tant. Thus, long-term digital preservation systems have to be
inherently distributed to allow content to be replicated. This
affects both the preservation of the actual digital objects and
their associated metadata. For the latter, RDF has become the
prevalent data model. Ensuring data integrity and consistency
requires periodic checks to timely detect inconsistencies, for
instance due to (partial) hardware failures, and trigger repair
actions. Hence, the access characteristics to metadata in long-
term digital preservation significantly differs from metadata
management in other types of applications. In addition, the
increasing size of digital archives challenges the consistency
checks of the associated metadata. In this paper, we introduce
a novel benchmark for triple store-based metadata management
that jointly takes into account the specific access patterns of
long-term preservation systems: i.) complex periodic consistency
checks, ii.) concurrent read and write requests to the archive, and
iii.) the actions to be taken on data to re-establish consistency if a
violation has been detected. Furthermore, we present the results
of this benchmark applied to our distributed long-term digital
preservation system DISTARNET.

I. INTRODUCTION

The long-term preservation of digital assets is becoming
increasingly important. Various applications require digital
objects to be available unaltered for potentially long periods.
In business applications, for instance, data needs to be kept for
several years due to legal constraints. Similarly, scientific data
needs to be preserved to ensure the reproduction of results.
In medical applications, health-related data on patients needs
to be available at least for the lifetime of a human. Finally,
data in cultural heritage digital libraries should be preserved
for potentially unlimited time spans.

In order to ensure the ability to interpret data, and also
interdependencies with other data, digital long-term preser-
vation needs to take into account metadata together with
actual digital objects. For the former, RDF has become the
prevalent data model and triple stores are used for managing
metadata, e.g., to describe how data has been produced (data
provenance), how data representations can be interpreted, etc.
The requirements on digital long-term preservation can best
be met by systems that are inherently distributed, i.e., that
apply replication to increase the availability of digital objects
and their associated metadata. The vulnerability of computer

hardware might lead to inconsistencies across different or
same replicas of digital objects and metadata. Therefore, to
guarantee integrity and consistency of digital objects, regu-
lar checks need to be applied to be able to timely detect
inconsistencies and trigger repair actions (e.g., to re-install
a corrupted replica from another, non-corrupted one). These
consistency checks generate a non-negligible additional load to
the system which forms the special characteristics of long-term
digital preservation systems, compared to other RDF database
applications. Consistency checks and corrective actions will
be referred to as system processes. In addition, read and write
requests (user processes) need to be considered in the archive.

In this paper, we introduce a novel benchmark for RDF-
based metadata management that jointly takes into account
specific access patterns of long-term preservation systems that
stem from both system and user processes, as such currently
not present in any existing benchmark. Furthermore, we
present the results of this benchmark applied to our distributed
long-term digital preservation system DISTARNET in two
realistic archiving settings, an image archive, and for digital
preservation of ancient documents.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. In Section III, we introduce
the DISTARNET system, in particular its data model and the
processes implementing consistency checks and repair actions.
Section IV presents our new benchmark for long-term digital
preservation. Section V provides the benchmark results of
DISTARNET and Section VI concludes.

II. RELATED WORK

There are a number of different benchmarks for evaluating
the performance of triple stores: the Berlin SPARQL bench-
mark [1] (BSBM), the Barton Library benchmark [2], the
Lehigh University Benchmark [3] (LUBM), which focuses on
inference and reasoning capabilities of RDF engines, and the
SPARQL Performance Benchmark (SP2Bench) [4]. All these
benchmarks have in common that they do not, or only partly,
address the specific access characteristics that can be found in
a long-term digital preservation system.

The e-commerce scenario used by BSBM takes into account
a similar access pattern a user would also have in an archiving
system (user processes). However, it lacks support for system

schuldt
Typewritten Text
In: 3rd International Workshop on Data Engineering Meets the Semantic Web (DESWEB), Washington, DC, USA, April 2012.

DISTARNET NODE
User Interaction Layer

Content and Network Management Layer (DISTARNET Processes)

DAO Management Workflows P2P-VO Services
 Data Layer

Ingest Access System Management

DISTARNET NETWORK

P2P-VO3
P2P-VO2P2P-VO1

DAO
Triple
Store

Node
Information
Repository

Replica
Location

Repository

DAO
File

Store

Fig. 1. DISTARNET System Architecture

processes which make the particular semantics of a preser-
vation system, (e.g., consistency checking, data migration,
etc.) and the recovery needed for corrupted data. Similarly,
the Barton Library benchmark focuses on user access without
special consideration of the access pattern imposed by system
processes. The same also holds for LUBM and SP2Bench.

There are a number of long term archiving initiatives
underway. Some follow a centralized approach like Kopal1 or
SHERPA DP [5]. Others, like LOCKSS [6], Cheshire 3 [7],
SHAMAN2, and DuraCloud3, take distributed approaches
which in general have lower infrastructure and maintenance
costs, the ability for virtually unlimited growth, and allow for
a higher degree of availability and reliability. DISTARNET
also follows a distributed approach.

III. DISTARNET SYSTEM MODEL

DISTARNET is a fully distributed system consisting of
a network of collaborating nodes (see Figure 1), organized
into virtual organizations (VO) [8]. Each VO is formed of
computer resources of organizations that collaborate based on
mutual trust. The structure of the network inside the VOs is
organized in a P2P fashion, i.e., a DHT overlay is used for
data management. We refer to this combination of VO and
P2P as a P2P-VO. A DISTARNET node can be part of one or
more P2P-VOs. Resources provided by nodes within a P2P-
VO can only be accessed by other member nodes. A detailed
presentation can be found in [9].

A. DISTARNET Data Model

A DISTARNET Archival Object (DAO, see Figure 2) is a
container holding an information object with possibly dif-
ferent representations (e.g., image, audio/video, text, etc.).
Moreover, it contains relationships to other DAOs (e.g.,
links) or information about the object’s membership in col-
lections/subcollections. Thus, the DISTARNET data model

1http://kopal.langzeitarchivierung.de
2http://shaman-ip.eu/shaman/
3http://duraspace.org/duracloud.php

Distarnet Archival Object
-URI

Representation

Preservation Policy

Audit Trail

Access Control Policy
Fixity Information

Type

Collection

0..*
0..*

1 0..*

hasRelationship

1 1..*

1 1

1 1

1
11

1

1..*

1..*

Fig. 2. Conceptual DISTARNET Data Model in UML Representation
(attributes omitted for better readability)

allows the archiving of networks of complex digital objects.
Further, a DAO can also contain semantically rich metadata
that will provide supplementary descriptions on an information
object (e.g., annotations). Finally, a DAO comprises an access
control policy, an audit trail where any changes to an object
are logged, a preservation policy, and fixity information where
different checksums of the parts of a DAO are maintained.

To represent, for example, an annotation for an archived
image, we will create a DISTARNET Archival Object of
the corresponding type which contains the annotation and
make a link to the DAO containing the image – note that an
annotation can be anything from text to a full-fledged DAO.
The DISTARNET data model provides support for different
kinds of complex objects like documents, images, electronic
books, and other compound information entities. Further,
DISTARNET allows any combination of media types to be
aggregated into complex objects. The container storing the
information objects corresponds to the Archival Information
Package (AIP) described in the OAIS Reference Model [10].
Although certain metadata like annotations are generated over
time, and were not necessarily present at the time the original
information object has been archived, they are treated equally
since they provide additional descriptive information and thus
need to be preserved as well.

B. DISTARNET Processes

The goal of DISTARNET is to guarantee the long-term
availability of data by applying dynamic replication, auto-
mated consistency checks, and recovery of DAOs. This is
done by means of automated system processes, governed by
preservation policies, which are run without any centralized
coordinator in a fully distributed network. In addition, there
are a number of user processes which allow users to retrieve
objects, to create arbitrary links between DISTARNET objects,
to create and manage collections/subcollections, and create
and edit annotations. In what follows, we briefly discuss the
DISTARNET system processes (details can be found in [9]):

a) Self-Configuration: the ability of the DISTARNET
system to automatically detect changes in the network. Events
such as new nodes joining or nodes leaving are constantly
monitored and taken care of by predefined processes.

Node Joining Process (NJP). These processes encompass
the necessary steps that need to be executed after a node that

has joined the network to integrate it into the P2P-VO (e.g.,
configure node credentials, update list of neighbor nodes).

Periodic Neighbor-Node Checking Process (PNCP). Every
node periodically pings its neighbors. If a node does not reply
after a predefined period, it is marked as lost.

Automated Dynamic Replication Process (ADRP). This pro-
cess is responsible for finding suitable storage nodes (e.g.,
based on geographic distribution), for estimating the optimal
number of replicas and for initiating the creation of replicas
by taking into account policy-based restrictions.

b) Self-Healing: Due to the continuous monitoring of
nodes, DISTARNET is able to detect events reflecting abnor-
mal conditions that may harm its proper functioning and it
will be able to execute processes for automated recovery.

Node Lost Event. The system automatically initiates coun-
termeasures by re-evaluating the affected DAOs. The ADRP
will create new replicas, if necessary, by taking into account
policy-defined redundancy and availability requirements.

Corrupted DAO Event. Periodic integrity checks are done
by the Periodic Integrity Checking Process (PICP) which
automatically trigger countermeasures like finding healthy
replicas and copy them in place of the corrupted DAOs.

Obsolete Data-Format. Data formats of DAOs are con-
stantly monitored and warnings are issued if a given data
format is becoming obsolete. The Data-Format Migration
Process (DMPP) can be used to automatically migrate data
formats by following a predefined migration path.

c) Self-Learning: DISTARNET automatically reacts to
changes in its environment by dynamically adapting the above
processes, for example by lowering the invocation frequency
of processes in the case no changes took place in the network
for a longer period, or shortened if there were recent changes.

IV. BENCHMARK DESIGN

In what follows, we present the benchmark we have devel-
oped for evaluating triple store systems in the context of the
typical load of long-term digital preservation.

A. Scenarios
To cover a wide usage spectrum, the benchmark will be

performed using data generated for two different scenarios.
Scenario 1 – Image Archive: The Image Archive consists

of collections of images where each image has three repre-
sentations: a TIFF and a JPEG representation, and a textual
representation of the image in Dublin Core. Each represen-
tation is characterized by attributes such as mimetype, label,
or creation-date-time. The TIFF and JPEG representations will
only contain URIs to where the TIFF or JPEG files are stored.
Figure 3 (a) depicts the Image DAO graph that describes the
metadata graph that will be stored in the triple store. Note that
this is not a complete illustration of the whole graph but rather
an excerpt that visually represents the differences between the
image and the manuscript graph (scenario 2).

This scenario is motivated by its generality, since the
images can be exchanged by any data type (e.g., documents,
audio/video, etc.) that can have multiple representations that
need to be jointly archived.

image

*/dc

hasRep

*/high
hasRep

text/xml
mimetype

*/thumb

hasRep

2010-10-74
T13:48:18Z

creation-date-time

<dc:title>Image of something</dc:title>
<dc:subject>Photographic image</dc:subject>
<dc:publisher>University of Basel</dc:publisher>
<dc:identifier>1</dc:identifier>

data

dc
metadata

label
http://...format-uri

manuscript

1 recto

*/1

hasPart

pagenumber
1sequence

*/dc

*/1/thumb

hasRep */1/OCR

hasRep

*/1/high

hasRep

image/tiff

mimetype

2010-10-74
T13:48:18Z

creation-date-time

*/1/high/data

original
size image

label

http://...
format-uri

data-uri

*/2-100

hasPart
hasRep

(a) (b)

Fig. 3. Image (a) and Manuscript (b) DAO Graph

Scenario 2 – Manuscript Archive: This scenario addresses
collections of digitized manuscripts. Each manuscript consists
of several pages, each one having multiple representations.
Additional metadata describes the manuscript as a whole. For
our scenario we set the number of pages per manuscript to
100. Every page has three representations, namely TIFF, JPEG,
and OCR Text. The metadata describing the whole manuscript
consists of Dublin Core formatted text. Figure 3 (b) depicts
the Manuscript DAO graph.

B. Scaling Factor

The RDF generator creates the metadata representing the
archives of different sizes for both scenarios. For this we have
defined a scaling factor F that specifies a multiple of a col-
lection containing 100 archived objects. In both scenarios, we
will perform the benchmark runs for scaling factor sizes of 10,
100, 1,000 and 10,000. The generated metadata corresponds to
archive sizes of 1,000, 10,000, 100,000 and 1,000,000 objects.
If we take the conservative assumption of a total of 100 MB
of digital data per image object (including all representations),
this implies for Scenario 1 required disk spaces of 100 GB,
1 TB, 10 TB and 100 TB, respectively.

For Scenario 2, if we again assume 100 MB of digital data
per image object (which will be needed for all representations
of each of the 100 pages), then the total disk space amounts
to 10 TB, 100 TB, 1 PB and 10PB, respectively. This total
disk space represents the size of the whole archive managed
by the metadata store. Table I shows the different scenarios
(S.), the scaling factor values (F), the number of image or
manuscript objects (# Obj.), the needed storage space for the
whole archive (Coll.), the size of the triple store on disk (Meta
Data), and the number of triples the graph consists of.

C. Benchmark Queries

The benchmark queries are derived from the (system and
user) processes’ access to metadata. The goal is to evaluate
the scalability characteristics – and possible limitations –
of the metadata store with increasing number of objects.
We assume that the benchmark load reflects the system and

TABLE I
CHARACTERISTICS OF S 1 AND S 2 WITH DIFFERENT SCALING FACTORS

S. Factor # Obj. Coll. Meta Data # Triples
1 10 1 k 100 GB 201 MB 29 k
1 100 10 k 1 TB 204 MB 290 k
1 1,000 100 k 10 TB 450 MB 2,902 k
1 10,000 1,000 k 100 TB 2.9 GB 29,020 k
2 10 1 k 10 TB 425 MB 2,515 k
2 100 10 k 100 TB 2.6 GB 25,150 k
2 1,000 100 k 1 PB 23.9 GB 251,502 k
2 10,000 1,000 k 10 PB 250 GB 2,515,020 k

user processes that need to be considered in the course of
one day (i.e., a number of system processes is supposed to
run daily). The focus of this benchmark is to evaluate the
triple store performance for metadata management. Therefore,
the processes that have been implemented in the benchmark
contain only the parts that pertain to the interaction with the
triple store.

System Processes

P1: For each DAO, find out if it was checked in the last
24h. If not then check if the checksums of the objects are OK,
and mark as checked. If a checksum is not OK, then lock and
mark DAO as corrupt. The whole archive must be checked
once a day. P1 has read-write access to the triple store.

P2: For all DAOs marked as corrupt, replace subgraph with
healthy version from another system retrieved with P3. We
assume a failure rate of 10% of all DAOs. These 10% will
be detected together by P1 and P3. The assumption of a 10%
failure rate is a very conservative one and corresponds to the
worst case that we anticipate based on the discussion in [11]
and [12]. P2 has read-write access to the triple store.

P3: Queries a local node will receive from other remote
nodes on which P2 runs. It returns the subgraphs and their
checksums of a DAO identified by URI. Before sending the
subgraphs, checksums are again calculated to check whether
the DAO is OK. If not OK, then DAO is locked and marked
as corrupt. We assume that at least three copies per object
are stored in the network. Therefore the other remote nodes
can run this query against the local node in consideration.
Hence, we conservatively assume two concurrent requests. P3
has read-write access to the triple store.

P4: Addresses data format migration, i.e., the actions to
bring preserved digital content up-to-date when a new data
format is available, or an existing format is deprecated. P4
converts each DAOs TIFF representation to JPEG2000. This
process must finish within 90 days (for the complete collec-
tion) – so the whole collection could in principle be migrated
four times a year, which is a very conservative assumption.
P4 implements read-write access to the triple store.

P5: Encapsulates the corrective actions needed to repair and
maintain digital objects. For each affected subgraph of a DAO,
the changed subgraph is retrieved, and the checksum of the
subgraph is recalculated and updated after P4, P8, P9, and
P10. This process accesses the triple store in read-write mode.

User Processes:

P6 (Simple Read): Query and return a certain number of
objects belonging to a collection. The number of objects to
be returned is determined by a normally distributed random
variable. The number of process instances are calculated by
multiplying 1/10 with the number of users and the scaling
factor. P6 has read-only access.

P7 (Complex Read): Find objects with creation date be-
tween two dates (randomly chosen from a list), that have
a particular author, and some keywords that occur in the
annotations. The number of process instances is calculated
by multiplying 1/10 with the scaling factor and the number
of users. P7 has read-only access to the triple store.

P8: User-created collection with some (randomly) selected
objects. We conservatively assume that each user creates one
collection per week (i.e., 1/7 per day). P8 needs read-write
access to the triple store.

P9: Creation of an annotation. We assume that every user
creates one annotation per day. Thus, P9 requires read-write
access to the triple store.

P10: Represents the user creating a link between two DAOs.
We assume that each user creates two links per day. P10 has
read-write access.

D. Benchmark Mix

Table II shows the frequency and concurrency per process
type that are used for creating the benchmark mix. Frequency
denotes how often a specific process type will run, and
concurrency denotes how many possibly concurrent instances
will be created each time the process runs. Multiplying the
frequency and the concurrency yields the total number of
instances of each process type created. Each process type
in turn is implemented by means of a number of SPARQL
queries. The factor F represents the scaling factor that is used
to generate the test data. Increasing the scaling factor linearly
increases the size of the metadata representing the archive,
which in turn also increases the number of process instances.
The variable b is the base number of objects (e.g., image or
manuscript) that is created for each F , and variable u the
number of users that access the system per F . The degree of
concurrency of the user process types depends solely on u and
F . r denotes the number of replicas (minimum r = 3)

For the evaluation, we have set b to 100 (i.e., 100 image or
manuscript objects are contained in a collection). The size of
b is by itself not important, but rather the ratio of b and u as it
defines the relation between system and user processes. For the
benchmark, we set the ratio between system and user processes
to approx. 1/4 user and 3/4 system processes which reflects
the special characteristics of a digital long-term preservation
system. Table III contains relative and absolute numbers of
process instances for the base case with F = 1, b = 100,
u = 20 and r = 3.

E. Benchmark Implementation

The benchmark (RDF generator and driver) implemented in
Scala [13] runs on any current JVM. The benchmark test driver

TABLE II
QUERY FREQUENCY AND CONCURRENCY. F - SCALING FACTOR, b - BASE

NUMBER OF OBJECTS, u - BASE NUMBER OF USERS, R - NUM. OF REPLICAS

P-Type Frequency Concurrency Access
P1 1 b ∗ F R/W
P2 0.10 ∗ b ∗ F 1 R/W
P3 0.10 ∗ b ∗ F r − 1 R
P4 1 1/90 ∗ b ∗ F R/W
P5 P4 + P8 + P9 + P10 1 R/W
P6 1/10 u ∗ F R
P7 1/10 u ∗ F R
P8 1/7 u ∗ F R/W
P9 1 u ∗ F R/W
P10 2 u ∗ F R/W

TABLE III
NUMBER OF PROCESS INSTANCES (F = 1, b = 100 AND u = 20)

P-Type Frequency Concurrency Absolute Relative
P1 1 100 100 38.43 %
P2 10 1 10 3.84 %
P3 10 2 20 7.69 %
P4 1 1 1 0.43 %
P5 63 1 63 24.25 %

74.64 %
P6 2 1 2 0.77 %
P7 2 1 2 0.77 %
P8 2 1 2 0.77 %
P9 20 1 20 7.69 %
P10 40 1 40 15.37 %

25.36 %
TOTAL 151 110 260 100.00 %

takes as parameter the location of the SPARQL endpoint. For
the communication to the triple store, the SPARQL 1.1 HTTP
protocol4 is used. The system and user processes implement
their operations on the RDF graphs by using SPARQL 1.1
Query5 and Update6. The benchmark mix is implemented
by serializing the system and user processes described in
Table III, depending on the size of F which is given by the
number of DAOs found in the triple store. This guarantees at
runtime an evenly distributed access pattern to the triple store,
where the system and user processes are evenly intermixed
and spread over the whole duration of the benchmark.

The benchmark can be run on any triple store that exposes
a SPARQL update enabled endpoint, and into which the RDF
data from the data generator is loaded.

V. BENCHMARK EVALUATION RESULTS

Evaluation Setup

Since one of the targeted types of organizations for DIS-
TARNET are small archives that do not possess a large
IT environment, we decided to perform the evaluation on
commodity hardware. The evaluation was performed on an
Apple Mac Pro with 2 x 3GHz Dual-Core Intel Xeon CPUs,

4http://www.w3.org/TR/2011/WD-sparql11-http-rdf-update-20110512/
5http://www.w3.org/TR/2011/WD-sparql11-query-20110512/
6http://www.w3.org/TR/2011/WD-sparql11-update-20110512/

TABLE IV
BULK LOAD TIMES FOR SCENARIOS 1 AND 2

S # of DAOs # of Triples TS Size Duration TPS
1 1,000 29,020 0.2 GB 00m 09s 3,224
1 10,000 290,200 0.2 GB 00m 42s 6,910
1 100,000 2,902,000 0.5 GB 06m 59s 6,926
1 1,000,000 29,020,000 2.9 GB 01h 07m 7,206
2 1,000 2,515,020 0.4 GB 06m 32s 6,416
2 10,000 25,150,200 2.6 GB 01h 14m 5,608
2 100,000 251,502,000 23.9 GB 13h 38m 5,120
2 1,000,000 2,515,020,000 250.0 GB 97h 20m 7,177

24GB RAM and a dedicated 2TB SATA disk drive. The
triple store used in the evaluation was Jena TDB7, a natively
implemented triple store, with a SPARQL endpoint provided
by the Fuseki server8.

Bulk Load Times

The Jena TDB triple store has two command line utilities
for fast initial loading (i.e., build TDB indexes) of RDF
data into an empty TDB store, namely tdbloader and
tdbloader2. They differ in the way indexes are generated.
tdbloader builds the node table and the primary indexes
first. After that, it builds the secondary indexes. tdbloader
can also be used for incremental loads. tdbloader2, in
contrast, builds just the node table and text files for the
input data using Node IDs. It then uses UNIX sort to sort
the text files and produce text files ready to be streamed
into BPlusTreeRewriter to generate B+Tree indexes.
tdbloader2 cannot be used to incrementally load new data
into an existing TDB database but it is faster when working
with larger data sets9.

For the two scenarios we have used the tdbloader2
command. Table IV contains the load time durations and
the rate in triples per second (TPS) for the two scenarios
and different scaling factors. This table shows that there is
a substantial amount of data that needs to be managed, even
though we are only dealing with the metadata of the archival
system.

S1 and S2 Evaluation Results

In the following we will discuss the results of our evaluation
runs made with scaling factor F set to 10, 100, 1,000 and
10,000 for both scenarios (summarized in Table V). Figure 4
depicts the durations of the evaluation runs per scale factor.
The change in duration from F = 10 to F = 100 is sub-linear
but can be explained through the large impact of the program
overhead of the short running F = 10. The change in duration
is rising slightly between F = 100 and F = 1, 000 for both
scenarios, and then between F = 1, 000 and F = 10, 000, S1
stays almost linear while S2 doubles in duration. This doubling
can be explained by the high load, i.e. 2.5bn triples and adding

7http://openjena.org/TDB/
8http://openjena.org/wiki/Fuseki
9http://seaborne.blogspot.com/2010/12/performance-benchmarks-for-tdb-

loader.html

TABLE V
EVALUATION RESULTS FOR S1 AND S2

Factor 10 100 1,000 10,000
S1
New Triples 3,438 34,476 344,914 3,449,197
P-Type Inst. 2,618 26,192 261,936 2,616,364
Duration 19s 2m 40s 46m 4s 7h 46m
S2
New Triples 11,060 111,405 1,106,400 11,145,304
P-Type Inst. 2,618 26,192 261,936 2,619,364
Duration 1m 37s 13m 28s 2h 35m 2d 10h 16m

FactorFactorFactorFactor
10 100 1'000 10'000

S1
DAOs (Images)

Triples
Triples created

Total Trans
Duration (ms)
Duration (m)

Duration
[s]/F
Eval

Bulkload

S2
DAOs (Manuscripts)

Triples
Triples created

Total Trans
Duration (ms)
Duration (m)

Duration
[s]/F
Eval

Bulkload

1'000 10'000 100'000 1'000'000
29'020 290'200 2'902'000 29'020'000
3'438 34'476 344'914 3'449'197
2'618 26'192 261'936 2'619'364

18'947 159'711 2'764'450 27'919'336
0.32 2.66 46.07 465.32

0h 0m 19s 0h 2m 40s 0h 46m 4s 7h 45m 19s
1.8947 1.5971 2.7645 2.7919

x x x x
x x x x

1'000 10'000 100'000 1'000'000
2'515'020 25'150'200 251'502'000 2'515'020'000

11'060 111'405 1'106'400 11'145'304
2'618 26'192 261'936 2'619'364

97'141 808'278 9'257'839 209'779'771
1.62 13.47 154.30 3'496.33

0h 1m 37s 0h 13m 28s 2h 34m 18s 2d 10h 16m
9.7141 8.0828 9.2578 20.9780

x x x x
x x x x

0

875

1750

2625

3500

Factor 10 100 1'000 10'000

Chart 5: Duration in minutes

S1
S2

0s

5s

10s

15s

20s

25s

Factor 10 100 1'000 10'000

Chart 6: Duration in seconds per Factor [s]/F

S1
S2

Fig. 4. Evaluation Run Durations in Seconds per Scale Factor in S1 and S2

11m new ones, combined with the limitations for executing
parallel write operations.

Discussion

The benchmark evaluation times for both scenarios and all
F values are well below the 24h mark except for S2 with
F = 10, 000 where the duration is over 48h. This means
that the evaluated triple store can be used for the storage and
management of metadata for DISTARNET archives of a size
of approx. 5 PB (as this corresponds to the case where all
benchmark queries terminate within the 24h margin).

Meta-Data-Only vs. All-Data Benchmark: The benchmark
and results presented here take only the metadata side of the
archival processes into consideration. The question now arises
how the results would differ if not only the operations on
the metadata but also on the archived data were taken into
account. Furthermore what sizes of F would still be feasible
while still fulfilling the 24h maximum running time constraint.
For this, mainly system processes P1 through P3 would be
affected. The additional run-time strongly depends on the size
of the archived objects (for the calculation of the checksums),
and the speed of the network connection. The calculation of
the checksum can be easily parallelized, which in light of the
widespread use of multicore CPUs will mitigate the effect.
The process instances can be run in parallel which will be
discussed in the next section. When taking the archived data
into account as well (which is planned in future work), the
archive sizes that can be handled in the predefined benchmark
period of 24h will shrink – but this is not because of the
performance of the triple store-based metadata management,
but because of the additional computational load imposed by
some of the system processes.

Parallelism: The implementation of the benchmark utilizes
parallel execution of the process instances whenever possible.
As described in Section IV-E, the execution is done in cycles
where one cycle is equivalent to the benchmark mix for
F = 1 and where all processes are run in a serial fashion.
The different process instances of the same type are always
run in parallel where possible. The process instances for P1,
P4, P6 and P7 are all run in parallel. Presently, the degree
of parallelization of the write processes is limited, as only a
multiple-reader / single writer locking model is supported.

VI. CONCLUSION

Long-term digital preservation is becoming increasingly
important. It requires that the actual digital content is archived
together with its metadata. In order to automatically cope with
possible failures, the DISTARNET system provides processes
that ensure redundant and consistent metadata storage. In this
paper, we have defined a benchmark for process-based meta-
data management tailored to long-term digital preservation
settings, and we have evaluated the scalability characteristics
of metadata management using the Jena triple store to find out
potential scalability restrictions. The evaluation results pro-
vided in this paper show that even with commodity hardware,
archive sizes up to approx. 5 PB can be supported with triple-
store based metadata management.

We also plan to apply this benchmark to other triple stores
and to create a benchmark for the evaluation of complete
long-term digital preservation systems. This will allow us
to evaluate the scalability characteristics of the distributed
DISTARNET system as a whole.

REFERENCES

[1] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” Intl.
Journal on Semantic Web Information Systems, vol. 5, no. 2, 2009.

[2] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach, “Using The Barton
Libraries Dataset as an RDF Benchmark,” MIT, Tech. Rep., 2007.

[3] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
Knowledge Base Systems,” J. of Web Semantics, vol. 3, Oct. 2005.

[4] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SP2Bench: A
SPARQL Performance Benchmark,” in Proc. of ICDE, Apr. 2009.

[5] G. Knight, “SHERPA DP: Establishing an OAIS-Compliant Preservation
Environment for Institutional Repositories,” in Dig. Repositories, 2005.

[6] V. Reich and D. Rosenthal, “LOCKSS (Lots of Copies Keep Stuff Safe),”
The New Review of Academic Librarianship, vol. 6, pp. 155–161, 2000.

[7] P. Watry and R. Larson, “Cheshire 3 Framework White Paper,” Intl.
Symposium on Mass Storage Systems and Technology, pp. 60–64, 2005.

[8] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Jounral of Su-
percomputer Applications, vol. 15, no. 3, 2001.

[9] I. Subotic, H. Schuldt, and L. Rosenthaler, “The DISTARNET Approach
to Reliable Autonomic Long-Term Digital Preservation,” in Proc. DAS-
FAA, 2011, vol. 6588, pp. 93–103.

[10] Ccsds, “Reference Model for an Open Archival Information System
(OAIS). Blue book, Tech. Rep. 1, January 2002.

[11] B. Schroeder and G. Gibson, “Disk Failures in the Real World: What
Does an MTTF of 1,000,000 Hours Mean to You?” in 5th USENIX
Conference on File and Storage Technologies, 2007, pp. 1–16.

[12] E. Pinheiro, W.-D. Weber, and L. Barroso, “Failure Trends in a Large
Disk Drive Population,” in 5th USENIX Conference on File and Storage
Technologies, 2007, pp. 17–28.

[13] M. Odersky, P. Altherr, V. Cremet, I. Dragos, and G. Dubochet,
“An Overview of the Scala Programming Language,” EPFL Lausanne,
Switzerland, Tech. Rep., Aug. 2004.

