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Abstract—The advent of service-oriented architectures has
strongly facilitated the development and deployment of large-
scale distributed applications. The middleware for orchestrat-
ing applications that consist of several distributed services has
to be inherently distributed as well, in order to provide a
high degree of scalability and to avoid any single point of
failure. Self-healing execution of composite services requires
replicated control metadata and instance data in a way that
does not affect adaptivity and elasticity of the middleware. In
this paper, we present OSIRIS-SR, a decentralized approach
to self-healing composite service execution in a distributed
environment. OSIRIS-SR exploits dedicated node monitors,
organized in a self-organizing Safety Ring, for the replication
of control data. Moreover, OSIRIS-SR leverages virtual stable
storage for managing composite service instance data in a
robust way. We present the architecture of OSIRIS-SR’s
Safety Ring and discuss how it provides self-healing composite
service execution. The performance evaluation shows that the
additional gain in robustness has only marginal effects on the
scalability characteristics of the system.

I. INTRODUCTION

The success of service-oriented architectures has paved
the way for an important class of complex distributed
applications that are built by combining existing services.
As these composite services, or workflow processes, are used
more and more in domains where their reliable execution is
crucial, they need to run in a robust and highly scalable way.
This applies both to the composite services and the middle-
ware which orchestrates their execution. Hence, while com-
posite services are inherently distributed, the middleware
supporting their execution also has to be distributed, to avoid
any single point of failure or potential performance bottle-
neck. However, such a distributed middleware poses new
challenges in terms of robustness, reliability and advanced
deployment (e.g., mobile, resource limited environments).
This is especially true compared to traditional centralized
middleware solutions [1].

In this paper, we introduce OSIRIS-SR, a middleware for
the decentralized and distributed management of composite
services based on locally available metadata (e.g., available
service hosts, instance data of composite services, etc.).
OSIRIS-SR has been built to combine both reliability and
robustness, needed for business-critical applications [2] with
a small systems footprint, so that it can even be used with
unreliable commodity hardware [3] (e.g., mobile devices).
The continuation model of distributed execution leveraged
in OSIRIS-SR requires redundancy to prevent the loss of

execution-related metadata, and thus unnecessary repetition
of possibly expensive computation. As the volume of the
replication metadata increases with the number of concur-
rently running composite service instances, the resources
available need to be used efficiently, and the system should
be able to scale with the number of nodes and concurrent
composite service instances. In this paper, we present a
scalable approach to self-healing data management within
composite service instances The solution adopted is based on
the concept of a Safety Ring, a scalable self-organizing “node
monitor” overlay in which every active node in the system
is supervised by a dedicated monitor. As those supervisor
nodes themselves may reside on unreliable hosts within the
system, they are organized in a redundant way as well,
and any node in the system can take over the role of the
supervisor.

The remainder is organized as follows: Section II intro-
duces the basics of OSIRIS-SR. Section III presents the
Safety Ring for self-healing decentralized composite service
execution which is subject to evaluations in Section IV.
Section V presents related work and Section VI concludes.

II. SYSTEM MODEL

OSIRIS-SR is an extension of OSIRIS [2] in which every
node can take over one or several roles: i.) provider of a
service; ii.) host (“worker”) for the OSIRIS-SR middleware
for decentralized execution and orchestration of distributed
composite services; iii.) dedicated node fault handler, in
which case it is called SR-node; and iv.) data management
node, in which case it is referred to as the SM-node. By
default, any OSIRIS-SR node is at start-up equipped with
the data management role and the composite service support
role, whereas the additional fault-handling role is determined
randomly based on the number of the already existing fault-
handling nodes.

From an architectural point of view, all the OSIRIS-SR
roles and their respective functionalities are implemented
within three software layers (c.f. Figure 1) that can be
deployed in any combination, at any node in the network.
The first layer, the core composite service support layer
(Figure 1.a), corresponds to the decentralized execution
and orchestration role and provides local functionality for
composite service management in terms of invocation,
navigation, and routing of service instances. The second
layer, the OSIRIS-SR layer (Figure 1.c), corresponds to
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the fault handler role and provides local functionality for
node monitoring, data consistency enforcement, ring topol-
ogy construction, and failure recovery. The third layer, the
Shared Memory layer (Figure 1.b), corresponds to the data
management role and provides node functionality for reliable
and distributed data dissemination and storage.

Finally, we assume communication channels to be reliable
channels. Services crash with a crash-stop behavior, an
eventually perfect failure detector [4] is available at any node
and all services invoked by worker nodes are fail-safe.

A. Distributed Composite Service Execution
An OSIRIS-SR composite service represents an descrip-

tion of an ordered set of activities, each of them corre-
sponding to the invocation of a service (either atomic or
again composite), and describes the control and data flow
between them. Service descriptions are abstract, i.e., they
only specify the type or class of services to be invoked.
The actual binding of services to concrete instances is
decided entirely by the local OSIRIS-SR layer at run-time
(late binding), depending on the current configuration of
the system (availability, load, cost of invocation). Following
the paradigm of service-oriented architectures [5], composite
services themselves are wrapped by service interfaces, and
can be invoked from within other services. The data flow is
defined as a sequence of mappings from a data space into
the composite service instance, called the whiteboard, to the
service request parameters and back.

The continuation model based execution proceeds in a
purely decentralized peer-to-peer fashion that involves only
those nodes that offer a service required by the composite
service definition. Upon completion of a service at a node,
the control over the execution migrates to one or more
successor nodes, by delivering a migration token contain-
ing flow-control information and the whiteboard. In order
to participate to distributed composite service execution,
nodes deploy the service instance support software layer
as depicted in Figure 1.a. Further details, illustrated on
an example composite service, as on how the continuation
passing distributed execution works can be found in [6].

The decentralized orchestration of composite services is
supported by locally available system-related metadata at
all involved nodes (SM-nodes). This includes metadata used
for routing (e.g., node addresses, hosted services at nodes),
load balancing (workload of other nodes) and activity result
backups (whiteboards). The storage and management of
all necessary metadata relies on two mechanisms. One
is a publish-subscribe repository and the other is a key-
value store. The publish-subscribe repository is responsible
for the pre-execution timed collection and dissemination
of metadata at nodes [2]. The key-value store serves as
permanent and reliable stable storage for any kind of data,
but in particular to the whiteboard.

B. Self-Healing Distributed Execution
The Safety Ring (see Figure 1.c) mechanism, employed

for scalable and reliable fault-handling, is based on the idea
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Figure 1. OSRIS-SR: Architectural Layers

of making each active worker node subject to supervision
by one SR-node. The responsible SR-node, in turn, is in
charge of worker node monitoring and failure recovery. In
the event of a node failure, the designated responsible SR-
node elects a replacement service host of the same type
(late binding) and thus recovers the execution of the failed
process. Upon selection, the replacement node is provided
with the same whiteboard (retrieved from the key-value
store) as the crashed node, and the failed service is restarted.
Finally, any intermediate results produced on the whiteboard
by the crashed node is discarded from the key-value store.

To guarantee continuous supervision of workers, even
in the presence of SR-node failures, supervision responsi-
bilities are shared with other SR-nodes. The dynamically
determined set of SR-nodes among which the state of the
monitored worker nodes along with execution control data
is shared is called the Replica Pool. A crashed pool member
is detected by another SR-node, in the exact same way as
worker crashes are, and is substituted by it.

Scalable and unanimous node clustering for any kind of
interaction (e.g., monitoring) is achieved by means of node
ring topologies. In such settings, each node is agnostic to
the full set of nodes in the environment, but is only aware
of a small (unique and ordered) subset of selected nodes,
which allows for overall effective node interaction.

The consistency of all data (whiteboard, execution control
data, etc.) shared by multiple nodes (e.g., SM-nodes) is
provided in OSIRIS-SR with a novel migration algorithm,
that is enforced with transactional guarantees. The new
migration algorithm replicates the whiteboard along to the
worker, responsible of continuing the execution, also to the
replica pool (SR-nodes), which informs the pool members
that a new worker is subject to monitoring. Further details
on how the self-healing distributed execution works can be
found in [6].

Finally, the introduced self-healing execution model al-
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Figure 2. Node Ring Topology

ways assumes an adequate number of replacement service
hosts and SR-nodes for fault recovery. The problems of
having insufficient service providers or SR-nodes at disposal
are outside of the scope of this paper. However, this can be
overcome with dynamic service deployment techniques in
the former case and by empowering the SR-nodes to promote
regular workers to SR-nodes in the latter case.

III. SAFETY RING

OSIRIS-SR aims at a large spectrum of possible deploy-
ments – from a small number of powerful servers up to
a large number of resource-limited mobile and heteroge-
neous devices. In all these cases, workers require reliable
supervision by SR-nodes. Therefore, effective means of
distributing the workers among the SR-nodes in dynamic and
large environments have to be provided. Even though each
active worker node is constantly monitored by one SR-node,
additional substitution SR-nodes have to be provided in case
the monitoring node fails. The distribution of SR-nodes has
to take into account the nodes’ load. The failure of an SR-
node has to be detected immediately by other SR-nodes and
result in an effective SR-node reassignment. Such properties
can effectively and efficiently be provided by leveraging
DHT-based node ring topologies such as Chord [7].

Given the unique circular space mapping, imposed by
the ring topology, any worker node will always lie in the
circular identifier space between two SR-nodes. Hence, the
Safety Ring performs worker to SR-node assignment by
subjecting all workers located between two SR-nodes to the
SR-node with the higher circular ID. Figure 2 illustrates
a sample Safety Ring and the positioning of nodes in the
ring space, in which case the smaller circles correspond
to worker nodes, the bigger rectangles to SR-nodes, and
the ID node labels to their respective circular identifier.

For example, the worker with the circular ID14 is located
between SR-nodes with the identifiers ID15 and ID12,
with the SR-node ID15 being its supervisor as it possesses
a higher circular identifier than the other SR-node. Since
workers are only temporarily associated with SR-nodes (i.e.,
during a service activity), their participation to the ring
construction would result in high ring churn rates. Hence, the
Safety Ring is built out of SR-nodes only. More details on
Chord ring construction (maintenance) can be found in [7].
Being only logically a member of the ring topology, worker
nodes can nevertheless interact with their SR-node by means
of the deliver2Ring(IP, Message) primitive. IP
identifies a worker node, and Message the data that the
worker wants to communicate to its responsible node. By
applying this primitive at any SR-node, the communicated
message is forwarded in the ring topology among SR-
nodes until it reaches the responsible SR-node for the
worker identifier associated with the message. Algorithm 1
illustrates the functionality of the deliver2Ring(IP,
Message) primitive. The communication in the ring relies
on the efficient Chord routing algorithm. Moreover, Figure 2
depicts the forwarding of messages (solid arrows 1, 2 and
3) induced by the functionality of deliver2Ring(IP,
Message). If a SR-node for any reason (e.g., failure)
leaves the ring, it will be simply detected and substituted
by the succeeding SR-node in the ring, and the responsi-
bility for workers is reassigned accordingly. Moreover, for
performance reasons, the Safety Ring features the primitive
deliverDirectly(IP, Message) as well, which al-
lows workers to communicate messages to destination nodes
directly (now, IP corresponds to the identifier of the des-
tination node), without having to route the messages in the
Safety Ring.

Note that resorting to a ring structure comes with the price
of uneven ring chunk distribution, churn, Byzantine nodes
etc. However, those problems are outside of the scope of
this paper, and can be overcome by applying solutions as
presented in [8].

A. Replica Pool

For the purpose of recovering failed workers each SR-
node maintains a certain amount of service execution related
metadata on its subjected worker nodes. This metadata
includes information such as the current activity of the
worker and the activity input whiteboard. Replication of
this metadata in the Safety Ring prevents the loss of it
in the event of the responsible SR-node failure. The set
of the metadata sharing SR-nodes we name the Replica
Pool. Within the pool we designate a leader that is in
charge of updating (managing) the shared metadata, whereas
the role of the other nodes is to serve as data back up
hosts. When a pool member fails, the succeeding SR-node
in the Safety Ring detects this failure and substitutes the
failed SR-node by taking over its position in the pool and
retrieving the shared metadata from the rest of the pool. In
order to dynamically determine the pool members we resort
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Require: IP identifier of the sender and Message to be
delivered
senderID = hash(IP )
ownID = getOwnID()
predID = getPredecessorID()
if predID < senderID and senderID ≤ ownID then
handle(Message)

else
node = routeToClosestPrecedingNode(senderID)
node.deliver2Ring(IP,Message)

end if

Algorithm 1. deliver2Ring(IP, Message)

Require: WB, a concrete instance of CompositeServiceS-
tate
nextActivity = WB.getNextServiceActivity()
listOfPeers = getPeersOfType(nextActivity)
nextPeer = chooseRandomly(listOfPeers)
SID = hash(WBID)
beginPaxos()
if nextActivity 6= JoinActivity then
WB.setNextServiceActivityPeer(nextPeer)
deliverDirect(nextPeerID,WB)

end if
node = routeToClosestPrecedingNode(senderID)
deliver2Ring(SID,WB)
commitPaxos()

Algorithm 2. migrate(whitebord)

to Symmetric Replication [9]. The set of metadata sharing
nodes is implicitly determined by applying (1) where IDx

corresponds to the circular identifier of the data object to be
replicated, and IDi corresponds to the computed circular
identifier of the replicated destination object. N is the circu-
lar identifier space size, R the desired replication factor, and
i the replication iterator. The actual node responsible for the
physical storage of the data object is thus found in the Safety
Ring by means of the deliver2Ring(IDi, Message)
primitive, in which case IDi corresponds to the newly
computed symmetric, circular identifier and the replicated
object to be stored to Message. The nodes responsible
for the computed symmetric circular identifiers thus form
the Replication Pool, and the one responsible for identifier
ID0 is, by convention, the leader of the pool. Finally, this
replication strategy facilitates fast failure recovery. Precisely,
a newly joined pool member is capable of retrieving all
metadata from the pool with just one message, whereas
the traditional Chord DHT replication usually requires R
(replication factor) messages.

IDi = (IDx + i× N

R
) mod N, i = 0..R (1)

B. Migration Algorithm

Data replication in a distributed environment can be
impaired by various environment-related issues (e.g., link
failures, congestions), and can result in inconsistent shared
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worker metadata in the pool. Consequently, provided with
outdated data SR-nodes might derive false assumptions on
the monitored nodes and behave falsely in certain situations.
Therefore, for the sake of consistency of any kind of data and
thus resulting correct self-healing execution, the replication
protocol of the Safety Ring is enriched with transactional
guarantees. In detail, all replication activities inside the
replica pool of the Safety Ring are enclosed within a novel
migration algorithm that is based on the Paxos Commit [10]
transactional protocol. The Safety Ring adopts a solution
similar to that presented in [11], which assumes a symmetric
replication scheme in conjunction with a modified version of
the Paxos commit protocol. A simple example of the general
migration algorithm is given in Algorithm 2.

Consequently, the deliver2Ring(SID, WB) primi-
tive shown in Algorithm 2 is enriched with transactional
guarantees, meaning that whenever a message is delivered
to the responsible SR-node, the message is guaranteed to
have been received also by all members of the related
pool. However, only the pool leader handles the received
message (e.g., starts monitoring), whereas the other members
only store it. Further details on the migration algorithms,
including application contexts, can be found in [6].

IV. EVALUATION

The evaluation of OSIRIS-SR focuses on the scalability
characteristics of the Safety Ring. For this purpose a com-
posite service is considered that mimics data back-up in a
mobile environment, depicted in Figure 3. The invocation
of each composition service, independently of the its type,
lasts for about one second, which makes the net execution
time add up to five seconds in total (parallel invocations
are counted as one). Taking into account the limitations,
in terms of the hardware resources, of a mobile device (in
our considered environment) we deploy only one service in-
stance per host. Further details on the considered composite
service can be found in [6]. To host the service instances,
we consider an environment of 40 equally equipped (both
hardware and software resources) nodes in the Amazon
Elastic Compute Cloud (Amazon EC2). In particular, we
have chosen the c1.medium [12] virtual image instance
configuration as it nearly corresponds, in terms of CPU
power and main memory capacity, to the configurations of
the latest off-the-shelf mobile devices (smart phones).

In order to systematically measure the performance and
robustness impact of the Safety Ring, we consider the
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following configuration parameters of our evaluation envi-
ronment: N (number of nodes), S (number of SR-nodes),
I (number of concurrent composite service instances), F
(number of failed services). We conduct the evaluation by
increasing the values of only one single parameter at a
time and by measuring the resulting execution times of the
running composite services in the system.

Figure 4 illustrates the evaluation results of 40 node
failure free run (upper graph) and a failure prone run (lower
graph) of the considered composite service. The 40 node
run is divided into several cases which are defined by
the percentage (from 50% to 100%) of the nodes that act
as SR-nodes (S) at the same time, and by the percent-
age of (between 50% and 100%) of the nodes (I) that
concurrently start their instance of the example composite
service. For each case, S stays constant, whereas I increases.
We can observe that with the increase of the concurrent
composite service instances, the average execution times
slightly oscillatingly increase at a small linear rate. Except
for some cases (50%, 60%), all the SR-node percentages
show similar execution times. The oscillations in increase
can be explained by the fact that the additional load, in
terms of composite service instances, is unevenly distributed
among the nodes as we select both workers and SR-nodes

to continue the execution randomly (i.e., we do not use
OSIRIS-SR’s load balancer). Moreover, it shows that for
the lower SR-node percentage cases (50%, 60%) high load
results in higher execution times as less SR-nodes are
provided for the handling of high composite service instance
numbers.

The failure-prone runs are divided into several cases,
which are defined by the number of evaluated nodes (N )
and the number of failed service hosts (F ). Additionally,
for each case S and I are defined as well, however they
maintain a constant and maximal (100%) value, whereas
only F increases. From the graph, we can observe that the
average execution times heavily differ with increasing node
failure numbers (F ). This can be explained by unequal fault
detector heart beat timing and uneven (ring based) worker
to SR-node assignment, which implies uneven SR-node fault
handling effort (e.g., replica pool recovery) for all SR-nodes.
In some cases (10 nodes) the system was not capable of
recovering from 6 consecutive node failures as all required
service hosts, needed to continue the execution, went down.
Further and more detailed evaluations can be found in [6].

Based on the observations of the graphs we conclude
that the system shows a reasonable scaling behavior (in the
presence of redundancy) in a failure-free scenario, however
with slight oscillations and inclines of execution times due
to the lack of a load balancer (in our experiments) and
suboptimal SR-node selection and distribution. In general,
the percentage of SR-nodes S in the system should always
be kept high, i.e., equal to N both for performance and
robustness reasons.

V. RELATED WORK

Providing reliable distributed composite service execution
presents a challenging task, and there are many solutions to
it. In general, most of the approaches are based on either
replication techniques [13], [14] or rollback-recovery [15],
[16] techniques. OSIRIS-SR offers both approaches. The
provided key-value store can be used as a scalable stable
storage for data back-ups, whereas the replication performed
on our Safety Ring is guaranteed to be consistent and
effective in terms of the peer agreement. In terms of fault
handling, most existing approaches are, similar to OSIRIS-
SR, based on dedicated nodes for the sake of monitoring
and recovery [14], [17]. Unlike our approach where any
node can take the role of the dedicated fault handling node
(SR-node), in [14], [17] fault handling nodes are predefined
and their sensibility to failures is not considered. Moreover,
approaches like [18] that allow for all nodes to fail are based
on complex node consensus algorithms for the election of
replacement nodes, whereas in OSIRIS-SR, induced by the
ring topology, leader election is simple and scalable.

Although there are many approaches that offer scalable
storage systems [19]–[21] for large volumes of data, they
generally sacrifice consistency of the data they manage for
the sake of availability. In the key-value store of OSIRIS-SR
the focus lies rather on consistency as in [22], because only
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consistent data at replacement nodes ensures a correct failure
handling. Similar to [22], we leverage Paxos for database
replication. However, we apply a concrete Paxos protocol
[11] that is based on a symmetric replication scheme which
allows us for a faster fault handling in the event of a failure.

VI. CONCLUSION

In this paper, we have presented OSIRIS-SR, a middle-
ware that addresses the scalability and fault-tolerance issues
of distributed service support. Scalable orchestration and
execution of composite services is achieved in OSIRIS-SR
by following a continuation model approach. In particular,
every peer based only on locally available knowledge (i.e.,
without having to rely on centralized components), con-
tributes to composite service execution. Moreover, metadata
is managed by means of a reliable and scalable key-value
data store. In order to be able to support self-healing
distributed execution we have presented the Safety Ring,
a sophisticated fault handling mechanism. The presented
Safety Ring is based on a self-organizing node overlay
composed of replaceable dedicated monitoring nodes, that
attend to active service instance hosts. Reliability is also
provided by a Paxos protocol which guarantees the avail-
ability of replicated instance metadata of a composite service
execution. Finally, in an evaluation based on amazon EC2
resources, we have shown that the high level of robustness
and the self-healing behavior has acceptable effects on
OSIRIS-SR’s scalability characteristics.

In our future work, we plan to expand the OSIRIS-SR
approach to streaming services, i.e., to applications that
continuously produce and process data. Essentially, these
applications have strong demands for a high degree of
reliability and are likely to be deployed on resource-limited
(mobile) devices, e.g., in the context of sensor networks.
In addition, we aim at further improving the self-healing
features of OSIRIS-SR by enabling it to dynamically de-
ploy service instances driven by a comprehensive economic
model, jointly taking into account the cost for service
provisioning and system parameters such as the load of
service providers or network bandwidth.
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