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ABSTRACT
Clouds are very attractive environments for deploying dif-
ferent types of applications due to their pay-as-you-go cost
model and their highly available and scalable infrastructure.
Data management is an integral part of the applications de-
ployed in the Cloud. Thus, it is of outmost importance
to provide highly available and scalable data management
solutions tailored to the needs of the Cloud. Data availabil-
ity can be increased by using well-known replication tech-
niques. Data replication also increases scalability in case of
read-only transactions, but generates a considerable over-
head for keeping the replicas consistent in case of update
transactions. In order to meet the scalability demands of
their customers, current Cloud providers use DBMSs that
only support weak data consistency. While weak consis-
tency is considered to be sufficient for many of the currently
deployed applications in the Cloud, more and more appli-
cations with strong consistency guarantees, like traditional
online stores, are moved to the Cloud. In the presence of
replicated data, these applications require one-copy serial-
izability (1SR). Hence, in order to exploit the advantages
of the Cloud also for these applications, it is essential to
provide scalable, available, low-cost, and strongly consistent
data management, which is able to adapt dynamically based
on application and system conditions. In this paper, we
present SO-1SR (self-optimizing 1SR), a novel customizable
load balancing approach to transaction execution on top of
replicated data in the Cloud which is able to efficiently use
existing resources and to optimize transaction execution in
an adaptive and dynamic manner without a dedicated load
balancing component. The evaluation of SO-1SR on the ba-
sis of the TPC-C benchmark in the AWS Cloud environment
has shown that the SO-1SR load balancer is much more ef-
ficient compared to existing load balancing techniques.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management Sys-
tems—Transaction processing; Concurrency
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1. INTRODUCTION
Data replication is a mechanism used to increase the avail-

ability of data by storing redundant copies (replicas) at
usually geographically distributed sites. Especially in the
Cloud, data replication is intensively used as it is essential
for providing a high degree of availability. In case of read-
only transactions, data replication can increase system scal-
ability by using the additional processing capacities of the
hosts where replicas reside to balance the load. For many
applications that are newly to be deployed in the Cloud,
one-copy serializability (1SR) is the desired level of data
consistency for replicated systems. It guarantees serializable
execution of concurrent transactions and a one-copy view
on the data. The most common approaches to implement
1SR use lock-based protocols such as strict two-phase lock-
ing (S2PL) for providing serializable transaction execution,
and two-phase commit (2PC) for synchronously updating
all replicas. However, in case of update transactions, 1SR
together with replicated data generates a considerable over-
head and thus decreases the overall scalability of the sys-
tem. According to Brewer’s CAP theorem [6] it is impossi-
ble to jointly provide consistency, availability and partition
tolerance in a distributed system. As partition tolerance is
a mandatory requirement in distributed systems, this im-
plies a trade-off between availability and consistency. The
stronger the consistency level, the lower are availability and
scalability (and vice-versa).

Due to their pay-as-you-go model, in Cloud environments
also the costs that incur for guaranteeing a certain consis-
tency level on top of replicated data have to be considered.
Strong consistency is costly to enforce from both a perfor-
mance and monetary point of view. Weak consistency, on
the other hand, is cheaper but may lead to high inconsis-
tency costs for compensating the effects of possible anoma-
lies and access to stale data.

In an attempt to provide maximum scalability and avail-
ability, a first generation of Cloud DBMSs, such as NoSQL
systems of key-value stores [8, 9], provide only weak con-
sistency. This has been sufficient for satisfying the con-
sistency requirements of simple Cloud applications. How-
ever, more sophisticated applications, like traditional online
stores, governmental services, etc., are increasingly discover-
ing the Cloud and its advantages (scalability, availability and
the pay-as-you-go cost model) and thus are to be moved into
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Figure 1: Replica Consistency and Concurrency Control

the Cloud. These applications essentially demand strong
consistency guarantees and providing these guarantees on
top of weakly consistent DBMS is very challenging [2]. At
the same time, existing commercial and open source DBMSs
which provide strong consistency cannot exploit the avail-
ability and scalability advantages of the Cloud.

As depicted in Figure 1, data consistency in replicated
system has two aspects: first, concurrency control (trans-
action isolation) and second, replica consistency. For con-
currency control, different isolation levels which define the
possible anomalies and concrete protocols which implement
a certain isolation level are available. Replica consistency
controls the allowed divergence of replicas in comparison to
the most recent data (i.e., the site where the most recent
update operation has been executed). Combining both as-
pects leads to a broad spectrum of approaches that differ in
terms of consistency, availability, scalability, and, especially
in a Cloud context, the costs that incur.

As part of a long-term project, we are currently develop-
ing a comprehensive CloudDBMS that can be easily tailored
to the particular needs of a Cloud application and that will
allow to dynamically optimize transaction execution by se-
lecting the best (w.r.t. cost and performance) combination of
concurrency control and replica consistency. The core of this
novel CouldDBMS is SO-1SR (self-optimizing 1SR), a novel
protocol that allows to dynamically optimize all phases of
the execution of transactions on replicated data in a Cloud
(i.e., the selection of the best replica(s), the selection of repli-
cas for eager commit, the point in time for lazily propagat-
ing changes to replicas) separately, albeit not independently.
To the best of our knowledge, this is the first approach that
holistically addresses optimization of transaction execution
on top of replicated data in Cloud environments.

In this paper, we focus on the first phase of transaction
execution, the selection of the best replicas in the Cloud, on
the basis of the current load of the different replica sites. The
contribution of the paper is threefold: first, we present the
SO-1SR approach to optimize transaction execution with-
out a dedicated load balancer. Second, we show how this
approach can by dynamically adapted to changing require-
ments and/or systems. Third, we present the result of de-
tailed evaluations based on the TPC-C benchmark in a typ-
ical Cloud setting using AWS resources.

The paper is structured as follows: Section 2 discusses
related work. The system model of our CloudDBMS is pre-
sented in Section 3 and the SO-1SR protocol is introduced in
Section 4. The evaluation results of SO-1SR’s load balancer
are presented in Section 5. Section 6 concludes.

2. RELATED WORK
In the last decade, data replication has attracted quite

some attention in the research community. The main ob-
jective of the work is to design data replication mechanisms
that are highly scalable on one hand, and on the other hand
provide dedicated correctness guarantees, ideally 1SR [5].
The necessity for providing databases with support for strong
consistency by still retaining the availability and scalability
properties of NoSQL databases is best documented by re-
cent initiatives such as Google’s Spanner, a highly scalable,
globally-distributed and consistent database [10].

In centralized (non-replicated) DBMS, the data consis-
tency level is defined by the isolation level of transactions (cf.
Figure 1). The focus of research in this area is to achieve se-
rializable transaction execution at low overhead [7]. In repli-
cated systems, replica consistency is the second pillar that
has to be considered to determine the overall consistency
guarantees. Current approaches usually provide a one-copy
view by updating replicas eagerly, which generates a con-
siderable overhead and leads to a decreased level of scala-
bility [12]. Other approaches relax the replica consistency
by updating replicas in a lazy manner. While this leads to
an increase in scalability, it also implies inconsistencies that
may be costly to resolve [15]. In [23], a fully decentralized
approach is introduced which guarantees 1SR for replicated
data. This has been extended by a refresh mechanism that
allows replicas to refresh their data if transactions request
data with a higher freshness than locally available [24]. How-
ever, both works rely on a tree based replication structure
which distinguishes between read-only and updatable nodes,
with updatable nodes being eagerly updated. The updates
to the read-only nodes are propagated in a lazy fashion.
[19] proposes an approach for increasing the throughput of
OLAP queries by trading freshness for performance. It is
also based on a replication scheme which distinguishes be-
tween read-only and update nodes and does not always pro-
vide freshest data. In contrast to [24, 19], our SO-1SR does
not rely on a specific replication scheme.

A family of 1SR protocols avoids the use of 2PC and relies
on efficient group communication [14]. Although this leads
to decreased transaction response times, it does not provide
a one-copy view on the data [17, 20]. In contrast to these ap-
proaches, our SO-1SR aims at holistically optimizing the dif-
ferent transaction phases separately, yet not independently
in order to take advantage of the scalability provided by the
Cloud and its cost model (cost-awareness). Existing data
consistency protocols like [15, 11] are towards the first to
incorporate the cost factor into the design. However, the
cost is just one of the parameters in the optimization space;
other important parameters like distance between replicas,
replica type and capacity, data importance, data popularity,
etc., which also strongly influence the overall performance
are not considered. To the best of our knowledge, none
of the existing approaches works has incorporated the opti-
mization of transaction execution phase (load balancing) as
part of the consistency protocol, although it has a huge im-
pact on the overall performance (e.g., resources are blocked
for a shorter time).

3. SYSTEM MODEL
SO-1SR assumes that transactional applications are built

on top of a Cloud data environment which replicates data
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Figure 2: System Model

for availability and scalability inside the same or across dif-
ferent data centers. Further, we assume the SO-1SR mid-
dleware to be present at each replica node. Clients submit
transaction to the application servers, which forward them
to the SO-1SR middleware for optimal execution. SO-1SR is
based on a fully replicated system with an update anywhere
approach (multi-master replication) and a flat transaction
model (cf. [1]). However, in order to provide strong consis-
tency guarantees, protocols like 2PC or Paxos are needed.
The goal of our SO-1SR is not to invent new protocols for
replica synchronization that replace 2PC or Paxos, but to
decrease latency by using clever optimization techniques at
different phases of transaction life-cycle.

A transaction consists of a set of operations accessing
objects uniquely identified by an objectId in read or write
mode. There are two type of transactions, read-only and
update; the latter contains at least one write operation. If a
transaction Ti is assigned to replica Rk for execution, then
Rk is called a local replica. All other replicas are remote
to Ti. Each replica can serve read-only and update trans-
actions. The underlying replication mechanism (static or
dynamic) is not relevant to SO-1SR, however it relies on a
replica catalog which manages information about the avail-
able replicas. The metadata needed by SO-1SR to achieve
its goal is managed by a clustered MetadataManager. Fig-
ure 2 provides an overview of the SO-1SR system model.

3.1 User-Defined and System Parameters
Two different types of parameters influence the optimiza-

tion behavior of SO-1SR: user-defined parameters and sys-
tem parameters. The user specifying relevant parameters
can be the application developer or architect who designs
the transactional application. System parameters are dy-
namically collected by SO-1SR and analyzed for taking ap-
propriate optimization decisions. In the current version of
SO-1SR, the priority of transactions is a user-defined pa-
rameter; all others are system parameters.

Transaction Priority: Usually, application transactions
have different priorities. If we take for instance an order-
entry application as defined by the TPC-C benchmark [22],
the transactions for ordering an item are more important
than administrative transactions for checking the stock level
of products, i.e., users are less tolerant to delays with in-
creasing transaction importance. Hence, transactions may
have different priorities and should be treated based on their
priority. The priority can be specified at transaction level

explicitely or implicitely by specifying the profit generated
by the transaction or its response time requirements.

Replica Load: The load of a replica is defined by the
number of requests being executed or waiting for execution
in a queue. By properly balancing the load between replicas,
the overall system performance can be increased. Advanced
models are needed for the prediction of load and response
time by taking into account transaction priorities. A load
balancing mechanism should then balance the load so that
the overall response time is minimized (and the profit max-
imized).

Replica Type: In a replicated data Cloud environment,
different types of replicas may coexist. They may have dif-
ferent different processing capabilities and thus strongly in-
fluence the response time of transactions (as, for instance,
different AWS instance types1).

Replica Distance: Requests (transaction execution, com-
mit, etc.) need to be forwarded from one replica to another.
Replicas may have different distances between each other
and in combination with dynamic replication, replicas may
be created/destroyed dynamically, which again influences
the network distance between the replicas. Additionally,
different bandwidth capabilities can be assigned to replicas.

3.2 Management of Metadata
All system metadata need to be collected at runtime. It

is used by each replica for optimizing transaction execu-
tion (e.g., load balancing) in an autonomous and dynamic
manner. SO-1SR manages metadata separately from the
user data by using a clustered MetadataManager based on
Apache ZooKeeper2. The following design decisions leads to
a very scalable metadata management. Publish only when
necessary: Each replica collects data locally and publishes
it periodically to the MetdataManager whenever the differ-
ence from the previously published metadata is significant
enough. Publish/Subscribe: Each replica registers its inter-
est for metadata at the MetadataManager which, in turn,
immediately distributes it whenever it is updated. Caching:
Each replica caches metadata (its own the medata from
other replicas). Replicas are responsible for updating their
cache once new metadata has been published.

4. SO-1SR FOR OPTIMIZING TRANSAC-
TION EXECUTION IN THE CLOUD

Cloud environments provide virtually infinite capacity. In
order to exploit this capacity, it is crucial to provide infras-
tructures that are able to scale at each layer of the entire
stack – in particular, this should also include the data man-
agement layer. However, even though scalable data man-
agement is essential, most existing approaches only address
load balancing at the application server layer. In addition,
current load balancing approaches mostly require a dedi-
cated component, which is in sharp contrast to the Cloud
paradigm. Moreover, Cloud environments should support
the specification and/or dynamic collection of the parame-
ters introduced in Section 3 to optimize transaction execu-
tion by load balancing.

In this Section, we describe in detail the SO-1SR load
balancing approach. The SO-1SR system model requires
the SO-1SR middleware to be present at each replica. The

1http://aws.amazon.com/de/ec2/instance-types/
2http://zookeeper.apache.org/
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Figure 3: Response time prediction for the different workload types

SO-1SR execution engine is based on a queue model with a
certain thread pool size. Each request (transaction, commit,
etc.) is put into the queue and once a thread is available,
it will dequeue a request and execute it. The response time
of a request is influenced by the load of the replica, which
is the sum of requests waiting in the queue and being pro-
cessed. In what follows we will describe the details of how
SO-1SR optimizes response time of transaction execution
by effectively balancing the load between available replicas
without the need of a dedicated load balancer and by taking
transaction priorities and overhead into account.

In SO-1SR, the time is divided in periods of length plength.
Each replica samples its load with a sampling rate of sf . At
the end of the current period (pi), the replicas will predict
their load for the next period (pi+1) by using the Expo-
nential Moving Average (EMA) [18] and publish it to the
MetadataManager. EMA is the weighted mean of n mea-
sures, where the weights decrease exponentially. Other pre-
diction models, which are able to predict workload bursts
as described in [21] can be implemented as modules and in-
tegrated into our SO-1SR framework by providing a simple
API getExpectedResponseT ime(Ttype). Let St be the value
of EMA at any time period t and st be the resource mea-
sure sampled at time period t. Further, let W be the sample
period. Then, EMA can be calculated as follows:

EMA(St) = α(tn − tn−1) · st
+ (1 − α(tn − tn−1)) · EMA(St−1)

α(tn − tn−1) = 1 − exp(
(tn − tn−1)

W
)

(1)

While EMA allows to predict the load, SO-1SR is actually
more interested in reducing the response time of transac-
tions. In order to predict the response time, each SO-1SR
replica stores for each executed transaction the current load
and response time. By using a linear regression [13], a re-
lationship between load and response time is established.
With the linear regression, each replica is able to predict its
expected response time for the next period, which is then
published to the MetadataManager. As it can be seen in
Figure 3, the combination of EMA for load prediction with
the linear regression worked quite well for the workload types
we have evaluated as part of this work: alternatefix, alter-
nate random and staircase. Similar results were reported in
[3]. In case of the alternatefix workload type (Figure 3a),
the workload will alternate between a lower and an upper
range based on a specific period duration. The alternate
random workload (Figure 3b) type will also alternate the
workload, however by choosing the lower range and upper

range randomly. The period duration is also chosen ran-
domly based on a specified range. The staircase workload
type (Figure 3c) generates a step-wise symmetric increasing
and decreasing workload.

All replicas are notified by the MetadataManager once
new metadata is published. Based on the metadata each
replica receives, a decision has to be taken for the best load
balancing strategy with the goal of reducing the overall re-
sponse time of transactions, min Resp(T ), with Resp(T ) be-
ing the average response time of transactions (T ). There are
different possible strategies to load balancing. In the sim-
plest approach, each replica would have only a local view
on the strategy and would simply decide on per transaction
basis whether to execute it locally or forward it to the least
loaded replica. Although this would reduce response time
of transactions being forwarded, it would not minimize the
overall average response time. Even worse, it may lead to an
overall increase of response time and thus a penalty, since
the approach does not take into account the overhead gen-
erated at the remote replica. Other possible strategies are
to randomly forward transactions to any replica, or based
on a Round Robin strategy. Even the strategy based on the
least loaded replica is not well suited since it does not take
the replica capacity into account.

SO-1SR follows a different approach which is depicted in
Figure 4. The main idea is that each replica which suffers
from a high load (in Figure 4, these are the replicas R4 and
R1) needs to calculate the optimal rate at which it should
forward transactions to the least loaded replicas (replicas
R3 and R2 in Figure 4). The optimal rate leads to a re-
duction of the response time at the heavy loaded replicas
by still avoiding the overloading of the least loaded repli-
cas and minimizing the network overhead. It is important
to mention that each replica will decide locally on the best
load balancing strategy. However, since each replica runs the
same algorithm and has a consistent view on the metadata
(e.g., load, expected response time, etc.), the decision will
be globally consistent. In the first step, the overloaded and
underloaded replicas are determined. Since all replicas have
a consistent view on the load of all other replicas, the de-
cision will be globally consistent. In the second step, based
on the load balancing approach described above, each replica
will calculate the forward rate of transactions from the over-
loaded to the underloaded replicas. Again, since all replicas
run the same algorithm based on the same metadata, all
replicas will get consistent results for the forward rate from
the overloaded to underloaded replicas. This means that no
additional synchronization is necessary between the replicas
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apart from the sharing of metadata. In Figure 4, both repli-
cas R1 and R4 will in the first step calculate how they will
distribute the load (independently of each other) and then
in the second step calculate the best possible forward rate
to each of the least loaded replicas (R2 and R3). The en-
tire load balancing process to minimize the overall response
time is only executed if there is a change in the load of any
replica in the system. In that case all replicas are notified
by the MetadataManager to initiate the process. As already
mentioned, SO-1SR does not predict the load on the basis
of single measures, but by using averaging methods (EMA).
Hence, in a stable system, there is only a marginal overhead

In what follows we will explain the different steps of the
load balancing process on the basis of a sample system con-
sisting of two replicas, R1 and R2, both having the same pro-
cessing capabilities. Let E[Load(R1)] > E[Load(R2)] with
E[Load(R1)] be the expected load of R1 and E[Load(R2)]
that of R2. The expected overall load at any point in time of
the SO-1SR system is defined as the sum of E[Load(R1)] and
E[Load(R2)]: E[TotalLoad] = E[Load(R1)]+E[Load(R2)].
A perfect balancer would divide the load so that each replica
would get 0.5 · E[TotalLoad]. However, balancing the load
means that transactions have to be forwarded from one replica
to the other, in our case from R1 to R2. This generates ad-
ditional overhead (e.g., network overhead) which has also
to be taken into account. Additionally, the more transac-
tions are forwarded from R1 to R2 the higher the impact on
the response time of existing transactions at R2. The send
rate for achieving a certain load can be calculated using Lit-
tle’s law [16]: Rate(X,Y ) = L(Y ) · (ResidenceT ime(Y ))−1,
with L(Y ) being the load of replica Y (

∑
r inR L(r) = 1)

and ResidenceT ime(Y ) the average time a request spends
at replica Y . In our case, since transactions need to be
forwarded from R1 to R2, L(R2) is the load we need to
achieve at R2 and ResidenceT ime(R2) is the average time
a requests spends at R2. Now the goal is to find the value
of Rate(R1, R2) so that min Resp(T ) can be achieved. In
our example, the starting point for finding the optimal rate
at which transactions should be forwarded from R1 to R2

(Rate(R1, R2)) is the evenly distributed load.

E[NewLoad(R1)] = E[NewLoad(R2)] = 0.5 ·E[TotalLoad]

To characterize the new load at replica R2, the transac-
tions forwarded from R1 to R2 at rate Rate(R1, R2) have to
be considered. If Rate(R1, R2) is known, we can then cal-
culate the overall response time by also taking the network
overhead into account. The rate defines actually the num-
ber of transactions to be forwarded per time unit. Now,
starting with the initial Rate(R1, R2) (evenly distributed

load), SO-1SR will iterate through different possible load
balancing values to find the optimal Rate(R1, R2) by decre-
menting E[NewLoad(R2)] in each iteration step. At each
iteration, the new Rate(R1, R2) and new overall response
time is calculated until the new overall response time is
greater than the one calculated from the previous iteration.
The value of the previous iteration is the optimal forward
rate. Otherwise, the procedure is repeated until the point
is reached in which no transactions are forwarded at all
(E[NewLoad(R2)] = E[Load(R2)]).

From an application point of view, different transactions
generate different profit and thus have different priorities.
In the context of a TPC-C application, the transactions for
ordering an item and executing a payment are more im-
portant than transactions for checking the stock level. In
its current version, SO-1SR supports only binary priorities.
Additional transaction semantics can be introduced in form
of an upper bound of expected response time (RespU (TP1))
to be guaranteed up to a certain system load. If specified,
the upper bound of the response time must be guaranteed –
otherwise, the DBMS provider (Cloud Provider) is penalized
according to a specific penalty model (part of an SLA agree-
ment). Transactions of priority 0 do not generate any profit.
The only requirement with regard to priority 0 transactions
is to avoid starvation. Thus, SO-1SR focuses on the opti-
mization of transactions with priority 1 and the avoidance of
starvation for transactions with priority 0. This means that
the goal is to minimize the overall average response time of
transactions with priority 1, i.e., min Resp(TP1) with TP1

being all priority 1 transactions.
With the introduction of an upper bound and a penalty

for the response time of transactions with priority 1, the
optimization problem can be re-formulated as:

min u(Resp(TP1) −RespU (TP1)) · Pen(TP1) (2)
The goal of Equation (2) is to keep the average response

time of transactions below the agreed upper boundRespU (TP1).
Pen(TP1) defines the penalty that applies per time unit
if the average response time is above the specified upper
bound. In Equation (2), u(t) is a unit step function with
the following property: if t ≤ 0 then u(t) = 0 else u(t) = t.

Minimizing the overall penalty of transactions with prior-
ity 1 is however not sufficient for the following reason. Let
us assume that the application provider has defined a high
value for RespU (TPrio1), i.e., it is quite tolerant to delays.
This case might even result in a situation where the load is
not balanced at all, since executing each transaction at the
local replica may still satisfy Equation (2). However, that
does not maximize profit, since the throughput has also to
be taken into account. The more transactions of priority 1
are executed, the higher the profit.

SO-1SR is able to avoid starvation by reserving a certain
time period for the execution of transactions of priority 0
waiting for execution in the execution queue. Based on the
the expected response time and the number of transactions
waiting in the queue, SO-1SR is able to accurately predict
the time it needs to execute all transactions with priority 0.
If the execution is faster than the reserved time slot, than
SO-1SR will immediately start executing transactions with
priority 1 to avoid that resources are wasted. The reserved
time defines an upper bound and it is not expanded if the
number of transactions with priority 0 waiting for execution
is too high. However, other models such as like aging are
also possible.



Server Environment Description

Server Machines

CPU 5 EC2 Compute Units (2 virtual cores with 2.5 EC2 Compute Units each)
Memory 1.7 GiB of memory
DBMS Derby 10.9.1.0
WebService Container Apache Tomcat 7.0.32

Client Machines CPU 2 EC2 Compute Unit (1 virtual core with 2 EC2 Compute Unit)

All
OS Linux Ubuntu 10.4
Java Sun Java 1.6.0 35-b10

Table 1: Setup of experimental system

Finally, a load balancing scheme has also to be able to
timely react to load bursts. There are prediction models
such as [21] that are able to predict burst by incorporating
application knowledge into the prediction model. It is well
known that averages and linear models (linear regression)
adapt more slowly to sudden load changes. For applications
that are subject to such burst load situations, other predic-
tion can be used. However, the algorithm for distributing
the load among replicas will remain the same. It is impor-
tant to note that SO-1SR follows a modular approach. It is
even possible to combine different modules for load predic-
tion with other modules for response time prediction based
on the load.

5. EVALUATION
SO-1SR has been evaluated based on a transactional on-

line store as defined by the TPC-C benchmark in an AWS
EC2 Cloud environment. As baseline, we have used a tra-
ditional 1SR (T-1SR) implementation as described in [4].
Hence, the difference between our SO-1SR implementation
and T-1SR lies in the load balancing strategy. SO-1SR uses
the load balancing approach described in Section 4, whereas
T-1SR is uses a random balancing strategy and a strategy
based on the least loaded replica and does not handle trans-
action priorities. It means, T-1SR treats all transactions as
having the same priority. In the case of the random load
balancer (T-1SR-R), each replica, when receiving a transac-
tion for execution, will assign the transactions to a replica
by choosing randomly from the available replicas (includ-
ing itself). Only the initial replica can forward a transac-
tion. The replica receiving a forwarded transaction must
execute it (the initial replica forwards transaction T by call-
ing the forceExecute(T ) operation on the second replica).
The approach based on the least load (T-1SR-LL), will as-
sign a transaction to the least loaded replica based on the
load published at the MetadataManager. In order to avoid
the overload of the least loaded replicas, T-1SR-LL uses a
hysteresis-based approach, which may publish the new ex-
pected load out of schedule, if there is a deviation by a cer-
tain factor from the last published load.

The transaction managers for both SO-1SR and T-1SR
have been tested using the different workload types as de-
scribed in Section 4. The goal of the experiments is to show
that the SO-1SR load balancer is able to execute transac-
tions so that the overall response time is minimized and that
SO-1SR is able to adapt to changing system conditions. The
basic evaluation setup is as follows: Each experiment is run
based on the specified parameters listed in Table 2 using the
T-1SR TransactionManager. Then the same experiment is
repeated using the SO-1SR TransactionManager. A number
of replicas and clients is started as defined by the correspond-
ing experiment. Each client is attached to one of the replicas

and will generate a number of Emulated Browsers (EBs).
The number of EBs is determined on the basis of the speci-
fied EBRange and the specified workload type. If for exam-
ple, the EBRange = 10 . . . 50, then in the case of the alter-
nate fix workload type, the workload will alternate between
10 and 50 EBs based on the PeriodDuration. In case of the
alternate random workload type, the number of EBs will
be chosen randomly from the alternating ranges [10 . . . 20]
and [21 . . . 50] (more general: [Min . . . 1

2
(Max−Min)] and

[ 1
2
(Max −Min) + 1 . . .Max]). The number of EBs for the

staircase workload type will be increased stepwise based on
the PeriodDuration starting with 10 (Min) EBs until the
maximal load of 50 (Max) EBs is reached. Then it will start
decreasing until the number of 10 (Min) EBs is reached.
Each EB will generate a transaction and once it gets a re-
sponse will start the next one. Each experiment is repeated
ten times. The depicted results present the averaged results
over all runs.

Table 1 lists the characteristics of the different compo-
nents used for the evaluations. The different components of
the system are implemented as Web Services, which allows
different deployment strategies. Apache Tomcat is used as a
Web Service container. Each request (transaction, commit,
etc.) is forwarded to the Apache Tomcat container running
the TransactionManager. The container will then forward
the request to the internal queue of the TransactionMan-
ager. In the evaluation results we neglect the time it takes
to forward a request from the container to the Transaction-
Manager, as it is implementation specific and thus difficult
to model. The reported results do however take the network
overhead into account.

Different priority ratios. The goal of this experiment is to
compare the response time of transactions when executed
with different load balancing strategies T-1SR-R, T-1SR-LL
and SO-1SR for different transaction priority ratios: 100%
priority 1, 80% priority 0 and 20% priority 1, 50% priority

Parameter Description

Workload Type staircase, alternate fix or alternate
random.

Number of Replicas Number of replicas involved in the
experiment.

Number of Clients Number of clients involved in the
experiment.

EB Range Min . . .Max. Defines the range of
EBs based on the specified work-
load type.

Period Duration Defines the adaption steps for a
workload type.

Total Duration Total duration of an experiment.

Table 2: Evaluation parameters



(a) 100% Priority 1 (b) 80% Priority 0 - 20% Priority 1 (c) 50% Priority 0 - 50% Priority 1

Figure 5: SO-1SR vs T-1SR-R and T-1SR-LL for different priority ratios

0 and 50% priority 1. Priority 1 transactions correspond to
the NewOrder transaction type as defined by TPC-C. All
other TPC-C transactions are of priority 0. In this exper-
iment, we have used two replicas and two clients to mimic
a Cloud environment with two geographically distributed
data centers. The clients will generate transactions based
on the specified workload type. The first client will work
with an EB range of [20 . . . 100], whereas the second one
with a range of [5 . . . 20], i.e., the first replica will have a
higher load than the second one. The clients are attached
to one of the replicas and will always send their transactions
to the same replica. Load balancing is executed inside the
replicated system, i.e., each replica will decide on the best
replica for execution based on its load balancing strategy.
The evaluation results for the different priority ratios are
depicted in Figure 5. As it can be seen, the SO-1SR load
balancing always outperforms T-1SR-R and T-1SR-LL. The
results for priority 1 ratio of 100% (Figure 5a) show that SO-
1SR is able to balance the load so that the overall response
time is minimized. The lower response times of SO-1SR
compared to T-1SR-R and T-1SR-LL are based on the fact
that SO-1SR balances the load by taking also the forward
overhead (network) and replica capacities (based on their
response times) into account. The experiments with the
80%-20% and 50%-50% priority ratios show that SO-1SR
is able to considerably reduce the response time of priority
1 transactions by giving them precedence over transactions
with priority 0 (see Figure 5b and 5c).

Mixed workload types. The goal of this experiment is to
show that SO-1SR is able to optimally balance the load and
outperform other load balancing strategies even in an envi-
ronment with mixed workload types. For this experiment,
we have used four replicas and four clients (i.e., a Cloud
environment that guarantees an even higher degree of avail-
ability compared to the previous setup). Each client is at-
tached to one of the replicas and will send transactions to
that replica. The workload is generated according to the fol-
lowing specification. The first client generates an alternate
fix workload with EB range [50 . . . 100]. The second and the
third client generate also alternate fix workload, but with
EB range of [20 . . . 50] and 5 . . . 10], whereas the fourth one
generates transactions according to the staircase workload
with EB range [5 . . . 10]. Like in the previous experiment,
this evaluation has also been conducted for different priority
ratios.

Figure 6: Mixed Workload: SO-1SR vs. T-1SR-R and T-
1SR-LL for different priority ratios (100% Prio1, 80% Prio
0 - 20% Prio1, 50% Prio0 - 50% Prio 1)

The results are depicted in Figure 6. The results show
that in case of all transactions having priority 1, the SO-
1SR TransactionManager is able to considerably reduce the
response time by effectively balancing the load between the
available replicas. In the case of mixed transaction priori-
ties, SO-1SR will reduce the response time by balancing the
load by giving precedence to the transactions with priority
1. In the case of 100% priority 1 ratio, SO-1SR reduces
the average response by 60% to 70% compared to the T-
1SR load balancing approaches. In case of 80%-20% ratio,
the average response time of priority 1 transactions is re-
duced by 77%-80%, whereas for the 50%-50% ratio we have
achieved a reduction of 80%-84%. The overall reduction by
also taking priority 0 transactions into account is at about
50%. Executing this same scenario with a higher number
of clients (e.g, 8 or 16) would lead to an increased load at
replicas. Even in that case, SO-1SR would be able to bal-
ance the load and decrease response time of transactions,
even though these numbers are beyond the number of data
centers of current Cloud providers.

6. CONCLUSION AND OUTLOOK
Users deploy their applications in the Cloud in order to

take advantage of its highly available and scalable infras-



tructure. Additionally, the Cloud provides a very attrac-
tive pay-as-you-go cost model. Databases are an important
part of the applications deployed in the Cloud and signifi-
cantly impact the overall system scalability in the presence
of replication (which, in turn, is necessary for reasons of
availability). Current DBMSs provided by Cloud providers
(e.g., simpleDB, S3, etc.) provide only relaxed consistency
guarantees and thus increase the complexity of the applica-
tion design. Other existing solutions providing strong con-
sistency guarantees use strategies that work well for one ap-
plication type, but fail to satisfy others. With our SO-1SR
approach, we follow the goal towards incorporating differ-
ent user-defined and system parameter into an optimization
model and thus providing a highly scalable, dynamic and
adaptive framework that is able to guarantee 1SR. In this
paper, we have identified important parameters which in-
fluence the transaction execution and we have presented a
dynamic and adaptive load balancing schema.

In our future work, we will address the optimization of
the other phases of transaction execution in a replicated
Cloud environment and the interdependencies between these
phases. Our goal is to identify the parameters which influ-
ence the (eager) transaction commit (e.g., data popularity,
replica popularity) and the refresh / propagation of changes
for lazily updated replicas. Again, the idea is not to as-
sign a fixed strategy but to decide dynamically, based on
the extended optimization model. First ideas go into the di-
rection of building consistency views. Inside the same con-
sistency view, all replicas are updated in synchronous man-
ner, whereas the update between the views is done asyn-
chronously. This leads to the situation in which replicas
have different consistency states. However, since our SO-
1SR protocol should guarantee 1SR, each transaction must
be executed on an update replica. Thus, the load balancer
may be restricted to balance the load inside a consistency
view, which may not be optimal, or use any replica for bal-
ancing the load. In the second case, an outdated replica
must actively refresh its data (additional overhead). The
main challenge is to define a model which finds the opti-
mal size and optimal members (replicas) of the consistency
views so that, at the same time, the commit costs and load
balancing are optimized.
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