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Abstract—The proliferation of Cloud computing has attracted
a large variety of applications which are completely deployed on
resources of Cloud providers. As data management is an essential
part of these applications, Cloud providers have to deal with many
different requirements for data management, depending on the
characteristics and guarantees these applications are supposed
to have. The objective of a Cloud provider is to support these
diverse requirements with a basic set of customizable modules
and protocols that can be (dynamically) combined. With the
pay-as-you-go cost model of the Cloud, literally each user action
and resource usage has a price tag attached to it. Thus, for
the application providers, it is essential that the needs of their
applications are provided in a cost-optimized manner. In this
paper, we present the work in progress PolarDBMS, a flexible
and dynamically adaptable system for managing data in the
Cloud. PolarDBMS derives policies from application and service
objectives. Based on these policies, it will automatically deploy
the most efficient and cost-optimized set of modules and protocols
and monitor their compliance. If necessary, the modules and/or
their customization is changed dynamically at run-time. Several
modules and protocols that have already been developed are
presented. Additionally, we discuss the challenges that have to
be met to fully implement PolarDBMS.

I. INTRODUCTION

Clouds are very attractive environments for deploying
different types of applications. They feature great advantages
compared to traditional environments, mainly due to their
highly available, scalable and elastic infrastructures based on
a pay-as-you-go cost model.

Data management is an essential part of applications de-
ployed in the Cloud. Applications have different requirements
towards data management properties such as data availability,
data consistency, or data preservation, to name just a few.
These properties, in turn, might be realized with different
guarantees like, for instance, different availability degrees or
different consistency models. Such a guarantee can again
have different implementations — e.g., [1], [2] for One-Copy-
Serializability (1SR). Existing database management systems
(DBMS) [3]-[6] usually provide only specific and especially
fixed data management solutions for each of these properties,
thus they are not able to dynamically change them at run-time.

Some existing DBMS (e.g., [3], [4]) provide weak con-
sistency in order to increase scalability and availability (as a
consequence of the CAP theorem [7]), whereas most tradi-
tional DBMSs provide strong data consistency and thus take
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limited scalability and availability into account [8]. This leads
to overcustomized and earmarked DBMSs which focus on a
very specific scenario without being able to adapt to diverging
requirements of different scenarios. The client has no means of
influencing the system’s behaviour and is thus forced to either
adapt his applications or build his own DBMS.

In the Cloud, each action has a price tag associated with
it. In general, the stronger the requirements a client demands,
the higher are the costs that incur. By costs we mean both the
overhead and the monetary costs generated for providing the
guarantees. On one hand, cost can be reduced by selecting
the best suited implementation which delivers the desired
guarantees. On the other hand, the client should be able to
reduce his cost by having the possibility to exactly specify
what he wants (e.g., by requiring less than provided) — and
also getting it. From the above we can conclude that there are
three main aspects which lead to unnecessary costs. First, the
inability of the client to specify exactly what it needs may lead
to a situation, in which the client gets too much or too less —
both generating unnecessary costs. In the first case, the client
has to pay for the over-provisioning. In the second case, costs



are generated due to a degraded functionality and are expressed
in form of penalty or business loss. Second, even in the case
the client gets exactly what it needs, the desired guarantees
may be delivered by different, possibly suboptimal, system
implementations. Third, the Cloud provider being unable to
deliver tailored services on a per client basis leads to the
necessity of over-provisioning in order to satisfy all clients
(leading to increased cost). Both aspects arise from the missing
communication link between the involved parties, although the
means to communicate are existing and well-established in
form of Service-Level-Agreements (SLAs).

A. Communication Cycle

An optimal communication cycle between clients and
Cloud providers in a business interaction is depicted in Fig-
ure 1. A client using a Cloud service specifies her requirements
towards the service in form of an Service Level Objectives
(SLOs). Table I contains a list of SLOs we use throughout
this paper. For example, a client might define a lower bound
of availability that has to be guaranteed by the service:
SLO availability > 0.95. The system providing the
service transforms all SLOs of a client to internal objective
representation called policies.

Since the service may be used by many different clients,
their SLOs may lead to potentially conflicting policies. Thus,
in a next step, the policy conflicts have to be resolved.
At this stage the system has conflict-free policies, which
form the basis of an evaluation process of different possible
system configurations. Moreover, in a multi-tenant environ-
ment such as the Cloud, the evaluation process has to take
SLOs (SLAs) of different clients into account. At the end
of this process, the best possible configuration is chosen
and transformed into Service Level Guarantees (SLGs). An
SLG is a commitment of the provider on the fulfilment of
an SLO: SLG : availability > 0.99. It might however
be that the provided SLG does not fulfil the corresponding
availability SLO (SLO : awailability > 0.95), for example
SLG : availability > 0.9. In that case, the client has the
possibility to adapt its SLOs or decide to use another service
provider. An adaptation of the SLOs leads to the restart of the
entire cycle. Additionally, the cycle may be re-started later at
any point in time and at any phase. For example, a change in
the underlying infrastructure may lead to a reduced level of
availability, which needs to be reflected in the corresponding
SLGs. Again, the customer may decide to adapt its SLOs or
change the service provider.

B. Modular DBMS

The communication cycle in Figure 1 defines a dynamic
and generic negotiation process between clients and a provider,

which gives the clients the possibility to precisely specify their
objectives. For requirements regarding data management in
the Cloud, the underlying DBMS has to be highly modular
so as to allow the Cloud provider to host a large variety of
different applications (with potentially heterogeneous client
objectives) on top of the same infrastructure. The feasibility
of modularizing data management functionality has been anal-
ysed in different works, like for example [9]. However, it is
important to mention that the generic communication cycle in
Figure 1 is architecture agnostic and applies to both modular
and monolithic systems. The only difference is the problem
of finding the optimal configuration (dashed box in Figure 1).
In a monolithic system, the problem is restricted to optimally
configuring it, while in the modular case, the problem space
is extended to i.) finding the optimal combination of modules,
ii.) configuring, and iii.) continuously monitoring and possibly
replacing them.

In this paper, we present our work in progress system
PolarDBMS (Policy-based and modular DBMS for the Cloud).
PolarDBMS is based on a modular architecture. A module
is a functional unit providing certain data management func-
tionality (e.g., data replication, consensus protocols, atomic
commitment, etc.).

The main objective of PolarDBMS is to automatically
select (and, if necessary, dynamically adapt) the module com-
bination and configuration that best provides the desired data
management guarantees by incorporating the incurring costs,
the client objectives and the capabilities of the underlying
system.

This allows to individually combine the modules that best
fit the clients’ objectives and thus overcomes the drawbacks
of monolithic DBMSs [10]. Obviously, modules are not in-
dependent from each other, and the disambiguation of client
SLOs is part of the system design and deployment process.
The separation of client objectives and policies from concrete
mechanisms (modules) is in line with well established design
principles in areas like operating system design [11], [12]. The
use of a high level language allows clients to easily specify
the requirements of their applications and shields details of
the underlying DBMS. One goal is to dynamically remove
or replace parts of PolarDBMS when objectives or system
parameters change, thus to let the system incrementally evolve.

The contribution of this paper is twofold. First, we provide
a complete analysis of an optimal negotiation cycle between
clients and Cloud providers with the objective of providing
cost-optimized services. The Cloud provider obtains a DBMS
which is able to cope with different client requirements
and thus increases profit by reducing the overhead (e.g.,
set-up, configuration, etc.). Additionally, we derive DBMS
characteristics and behaviour out of SLAs. The knowledge

[ SLO [ Description |
availability Defines the desired degree of availability.
maxBudget Defines the maximum budget that can be spent for providing the desired guarantees.

upperBoundAccessLatency

Defines the desired upper bound of access latency.

minimizeTrxCost (inconsistency cost)
overall transaction cost.

Based on the defined inconsistency cost, the policy leads to the choice of the consistency model which minimizes

maxTTL

Defines the maximum time-to-live for a data object.

TABLE I: Summary of SLOs
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contained in SLAs combined with a modular DBMS, such as
PolarDBMS, enables Cloud providers to offer tailored services
to its clients. As a consequence, more clients can be attracted
to move into the Cloud. Second, we provide an analysis of the
most prominent data management properties for applications
deployed in the Cloud, namely availability, consistency and
archiving, together with a set of concrete modules we have
already developed and evaluated.

The paper is organized as follows: Section II motivates
the PolarDBMS idea. In Section III, we discuss and analyze
in detail the different phases of the communication cycle,
from the specification of the client objectives to the choice
of the optimal PolarDBMS composition and configuration.
Section IV describes concrete contributions achieved so far in
the PolarDBMS context. Section V summarizes related work.
Section VI lists main challenges towards a full PolarDBMS
implementation and concludes.

II. MOTIVATION

In what follows we will illustrate the policy cycle depicted
in Figure 1 based on interactions between end customers
and service providers in a concrete scenario. As depicted
in Figure 2, various end customers use the MyShoeShop
to search for and eventually buy shoes. While Charlie only
browses the shop without intending to order any shoes, Bob
does both. Alice, on the other hand, just changes the delivery
address of a previous order. Inside the shop system, several
subsystems are responsible for the different actions. While
the shop system is responsible for displaying the product
catalogue, the order processing system handles orders
and shipping. The application provider who runs the shop does
not host the infrastructure for her application. In fact, the latter
relies on two different service providers: a provider specializ-
ing in logistics offers a shipment tracking service
and another service provider hosts a payment service.
Both services are used by the order processing system of the
application provider. None of the service providers directly
hosts a database. Instead, they both rely on (possibly different)
cloud DBMSs (e.g., NoSQL and NewSQL systems [13]).
Obviously, an action that is launched by an end user is,
automatically and transparently to the client, broken down
to several different organizations and systems. Since each of
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the participants offers and/or uses services, bilateral agree-
ments exist which specify various aspects of the services.
For example, the end users agree to the terms and conditions
(ToC) of the online shop provider as soon as they place an
order. The application provider and the service providers can
rely on SLAs, consisting of SLOs and SLGs, to specify the
details of the bilateral relationship. This applies also for the
interaction between the service providers and the Cloud DBMS
provider(s).

Furthermore, the aforementioned ToCs and SLAs are de-
fined independently of each other and may thus be contradic-
tory. This results in a complex set of dependencies leading to a
non-transparent system w.r.t. the guarantees provided towards
the end user. Furthermore, as today’s businesses are rapidly
evolving, a dynamic adaptation to changing requirements is
necessary. The MyShoeShop provider in the scenario may,
for instance, request different degrees of availability. She may
require either an increased availability due to changed legal
regulations or an expected peak load — or a reduced availability
in order to save money, since higher availability implies
higher cost. Today’s Cloud services and applications come
with a predefined and fixed set of characteristics. This leads to
rigid systems that are difficult to adapt to changing business
and technical needs. This urgently demands a dynamically
adaptable system which, as a consequence, allows for a flexible
interaction between SLOs and SLGs as depicted in the cycle
in Figure 1. Furthermore, a means for mapping objectives and
constraints to a system configuration is needed together with a
mechanism for monitoring the satisfiability of both objectives
and constraints.

I1I. POLAR DBMS

As described in the previous Section, today’s information
systems in the Cloud are intrinsically complex, with many dif-
ferent actors involved. Actors can be end-users and providers,
but also specific systems or components. During an interaction,
actors can play different roles: a client consumes services,
whereas a server provides them. Hence, on the one hand it
is of utmost importance that each client is able to specify
her individual requirements towards the server. On the other
hand, the server has specific capabilities and may constrain
the way its resources are used. Hence, a formal description
for both client requirements and server capabilities is needed.
These formal descriptions are expressed via SLOs, which
define the clients’ requirements, and SLGs which represent the
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corresponding guarantees given by the system. As depicted
in Figure 3, different clients specify their SLOs and submit
them to PolarDBMS. As part of phase a)., the submitted
SLOs are integrated with the existing system capabilities. In
a concrete example that runs on PolarDBMS, a client may
define her desired data availability with the following SLO:
availability > 99.995%. Additionally, the client may require
the data to be stored only in the EU. Let us however assume
that the provider runs data centers only within the US. This
is a sort of a business constraint, which, along with possible
legal or other organizational constraints, defines the system
capabilities. In the aforementioned example the integrator is,
already at phase a.) (Figure 3), able to decide that the desired
SLO cannot be satisfied. Assuming that the system capabilities
do not prevent the satisfiability of the SLOs, the next step is to
express the combined SLOs and system capabilities in form of
policies — phase b.) in Figure 3. For example, the availability
is mapped to a policy, which consists of various parameters,
including the number of machines data has to be replicated to:
#replicas (phase b)). High availability, thus high #replicas
leads to higher costs. The relationship between #replicas and
cost is reflected in another policy. This needs to be taken into
account in case the client wants to limit the cost per billing
period (SLO: maxzBudget < 1000%). This implies that the
system already has information about its (estimated) runtime
characteristics (such as average cost per replica). Initially, the
system starts with default values derived from a cost model.

As already mentioned, the availability is also impacted by
#replicas. This parameter can be estimated without involving
the capabilities of the concrete functional building blocks of
PolarDBMS, which are represented by modules. However, the
final decision on the fulfilment of the desired availability can
only be made in collaboration with the underlying modules.
This means that concrete objectives are provided to the mod-
ules as part of phase c). This step initiates the so called
negotiation process between policies and modules. This ne-
gotiation process is actually an optimization problem with the
goal of finding the optimal combination of modules together
with their configurations (see dashed box in Figure 1). There
may be multiple modules implementing different replication
approaches leading to different availability levels. As part of
the module selection, the best replication approach is chosen.
Additionally, the replication approach may also be influenced
by policies related to other data management properties such
as the data consistency (CAP theorem [7]). This implies the
necessity of finding the optimal module set.

The first step in the negotiation process (phase c.)) is
the transformation of policies into suitable module objectives.
These express functional and non-functional requirements
towards the modules. In our example, the policies related
to availability and cost are expressed by means of module
objectives (#replicas, maxBudget). In the next step, the
main challenge is to find the optimal set of modules and
their configuration, which deliver the best module guarantees
w.r.t. the objectives. In our example, the modules will provide
the expected budget (expBudget) they need for fulfilling
the objectives. The guarantees are then transformed back to
policies as part of phase d.). The validity of existing policies
must not be violated by the new guarantees (expBudget <
mazxBudget). At this point, the negotiation process is finished
and the policies are transformed into client SLGs (phase e.))
(expAvailability). The contrast between the originally defined
SLOs and the offered SLGs (phase f.)) may lead to the client
choosing another provider or to the adaptation of the SLOs,
if e.g., expAvailability < availability. In the second case,
the client may modify its desired availability requirement. This
leads to the adjustment of the entire communication flow.

The different phases of the the communication flow de-
picted in Figure 3, are represented by the following ar-
chitectural entities (Figure 4). i.) The integrator forms the
interface between clients and policies. ii.) The policy control is
responsible for the policy management. iii.) The selection and
the configuration of the modules is carried out by the module
control. Additionally, it is responsible for the management of
the different available modules, namely active and inactive
ones.

IV. POLICY-BASED DATA MANAGEMENT

In the following sections, we provide a more detailed
discussion of selected data management properties, namely
availability, consistency and preservation. This list is by far not
complete; other essential properties used are briefly discussed
in Section VI.

A. Data Availability

Data availability describes the requirement to ensure that
data continues to be available even in case of server crashes
or disastrous events. In many applications, a high degree of
availability is necessary to guarantee that data is never lost
(e.g., banking or insurance applications) and to be able to
operate even if complete parts (data centers) of the entire
infrastructure fail. Additionally, data availability is also used
to describe data access performance, i.e., that data should
be available for processing with a low or no latency at
all (“always-on” experience [4]). According to Amazon, a
slowdown of just one second per page request could cost them
about $1.6 billion each year [14]. Similar results were reported
by Google, which say that if their search results are slowed-
down by just four tenths of a second they could loose at
about 8 million searches per day [14]. Cloud infrastructures
are usually built with the objective of providing a high degree
of availability. The most common solution to high availability
is to host several copies (replicas) of data at different data
centers, to avoid that data gets lost in case of crashes when
replicated only within one data center [15], [16].



Inconsistency cost Which is the

cheapest
consistency?

Fig. 5: C3

The best level of availability (and thus the optimal number
of replicas) depends on the context of a concrete application
and should be individually specified by means of client objec-
tives, rather than pre-set by the Cloud provider. The same also
applies to access latency to data, which also depends on the
number (and placement) of replicas.

Based on the desired availability degree PolarDBMS will
identify the required number of replicas and the best module
able to optimally manage the replicas. As already described in
Section III, the client objectives and the system capabilities
need to be integrated. For example, the client may have
requested an availability level of 99.999% which implies a
maximum downtime of approx. 5 minutes/year, but the system
is capable of providing only an availability level of 99.9%
(maximum downtime of approx. 9 hours/year). Then the client
objectives and the system capabilities have to be integrated and
disambiguated, leading to an availability specification that can
actually be enforced.

In addition to the availability requirement, a client may
also specify an upper bound for the access latency to data
(upper BoundAccessLatency). Assume that the client also
expresses the maximum monetary budget for a specific period
(maxBudget) which specifies that the requested availability
level has to be provided within the budget constraints. In
summary, PolarDBMS needs to take all client objectives
and the system capabilities into account in order to select,
customize and deploy the best suited modules and configure
them optimally.

Depending on the consistency requirements of the data and
the workload type (read-only, mostly read-only, or update),
replication may also increase system performance by using the
additional processing capabilities (e.g., parallelism, location-
aware request processing, etc.). Replication can be imple-
mented statically (using pre-defined numbers and locations
of replicas) or dynamically where replicas are created, de-
stroyed and/or re-located at runtime, based on an optimization
model [17]. Current approaches however only take system
parameters into account, such as distance between replicas,
number of replicas, etc. and do not involve the client (and its
individual requirements) into the decision process. PolarDBMS
dynamically identifies the optimal number of replicas and
their location to satisfy the availability and access latency
requirements of the client and minimizes, at the same time,
the costs that incur for data management.

B. Data Consistency

In every distributed system, there is a trade-off between
data consistency, availability, and partition tolerance. Accord-
ing to the CAP-theorem, it is not possible to provide all three
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properties at the same time. As partition tolerance is a must in
a networked system, this means that systems can additionally
either guarantee consistency or provide a high degree of avail-
ability — but not both at the same time. Cloud infrastructures
are built with virtually infinite capacity and scalability in mind.
For this, new cloud DBMS solutions have been developed
which only provide weak consistency [18], [19]. However,
while this nicely serves several novel types of applications, it
has turned out that it is very challenging to develop traditional
applications on top of weakly consistent DBMSs [20]. The
complexity arises from the necessity of compensating the
missing consistency guarantees at application level.

In a Cloud environment with its pay-as-you-go cost model
where each resource and each action literally come with a
price tag, the consideration of costs is an essential complement
to the trade-off between availability and consistency. While
strong consistency generates high infrastructure costs, weak
consistency in turn may generate high penalty (inconsistency)
costs for compensating access to stale data (e.g., book over-
sells) [21]-[23].

Data consistency in replicated system can be characterized
by two properties: concurrency control (transaction isolation)
and replica consistency. The former defines the level of iso-
lation between concurrent transactions. The latter controls the
allowed divergence of replicas in comparison to the most re-
cent data (i.e., the site where the most recent update operation
has been executed).

The stronger both properties are, the stronger is the con-
sistency, the lower the scalability and the higher the costs
that incur [8], [21]-[23]. One-Copy-Serializability (1SR) is the
desired consistency level for replicated data. It provides a se-
rializable execution of concurrent transactions and a one-copy
view on replicated data. Existing approaches are committed
to either support strong or weak consistency [2], [24]-[27],
but not both. Moreover, they do not take dynamic adaptation
and optimization into account, based on a specification of the
desired system behaviour by means of objectives — especially
not on the basis of the costs that incur.

In what follows we will describe data consistency mod-
ules we have developed and evaluated in the context of
PolarDBMS.

1) C3: Cost-Based Consistency Control: In our recent
work [22], we have developed C3, a modular consistency
framework which is able to adjust data consistency (switch
between different consistency models) at runtime with the goal



of minimizing overall costs. C* provides different consistency
models (1SR, One-Copy Snapshot Isolation, and Eventual
Consistency, see Figure 5) and is able to choose the best
one based on the consistency and inconsistency costs. The
operational costs are generated by the Cloud resources which
need to be used for achieving a certain consistency level. The
inconsistency costs are application specific costs and reflect
the additional work which needs to be done in order to com-
pensate the effects of inconsistent data (e.g., for compensating
oversold books or tickets). The client can specify a concrete
inconsistency cost value in the minimizeTrzCost SLO and
let the framework decide on the best consistency model or
explicitly select a dedicated consistency model.

2) SO-1SR: Self-Optimizing 1SR Protocol: In addition to
the cost-based selection of consistency model and proto-
col in C?, also the behaviour of concrete protocols can
be dynamically influenced by means of client SLOs and
system capabilities (Figure 1). If the client has specified
that she desires 1SR (e.g., by specifying a high inconsis-
tency cost in the minimizeTrxCost SLO), then the con-
crete 1SR protocol should take other client objectives (e.g.,
upper BoundAccessLatency) and system capabilities into
account for further optimization. It is clear that with stronger
consistency it is increasingly difficult to guarantee the desired
response time of transactions. Hence, a from a list of modules
providing 1SR guarantees the optimal one should be chosen.
SO-1SR (self-optimizing 1SR depicted in Figure 6) [28] is
our approach to provide efficient and cost-optimized 1SR
guarantees. Essentially, SO-1SR is able to optimize differ-
ent phases of the transaction life-cycle, namely transaction
processing and commit separately yet not independently. It
uses sophisticated load balancing techniques for optimizing
transaction processing by taking the optimization overhead
(network) and system capability into account (e.g., replica
load and capacity). Additionally, SO-1SR reduces the (eager)
commit overhead based on a dynamic commit strategy by
taking the requirements of the transaction processing phase
and system capabilities into account.

Both modules (C® and SO-1SR) decide on the best strat-
egy based on policies derived out of SLOs. The evaluations
conducted [22], [28] prove the feasibility of both approaches
and show that they are able to fulfil client objectives and thus
outperform traditional approaches.

C. Data Preservation

Clients often need to preserve data for extended periods
of time. This necessity arises from various factors, like for
instance legal regulations, data analysis and mining, data re-
covery, etc. This requirement is even more important when data
is no longer managed under full control of (and in the systems
managed by) the clients but in a Cloud environment. An
archiving system in the Cloud should thus provide seamless,
fully transparent, and policy-based preservation and access to
archived data to the client.

During the lifetime of an object, an archiving system needs
policy support in order to decide how the system shall handle
the object (e.g., whether or not to materialize a version, when
to delete it, etc.). In the archive, each data object may exist
in different versions. The most straightforward approach to

data archiving in the Cloud is to keep each and every version,
potentially in several replicas (for reasons of availability).
However, this generates extremely high data management
costs, especially with data that are subject to high update
rates. Most importantly, this is in sharp contrast to the overall
objective of optimizing the overall costs that incur for data
management in the Cloud.

The PolarDBMS approach to archiving does not require
all versions to be materialized. Rather, it allows gaps in the
version history. The idea is to keep log information for the
versions that are not materialized (which usually consumes
much less space than the actual object and is thus cheaper
to achieve) so that they can be dynamically re-produced, if
requested. The decision whether to keep the entire object in
the archive or only log information is done dynamically, based
on a cost model that takes the specified SLOs (in particular the
available budget and the overall storage capacity) into account.
At query time, PolarDBMS decides, based on its knowledge of
the location of logs and data object versions, how to efficiently
restore the desired data object(s).

Let us assume that a client provides a per-data object
budget for archiving, maxrBudget = 0.05$. Further, let us
assume that the budget SLO has been translated to an archiving
duration of 8 years (mazTTL = 8y). However, according to
legal regulations, accounting data must be archived for at least
10 years. In this case, these contradicting objectives must be
resolved by creating a suitable policy, based on weights. In the
concrete example, the legal regulation has a higher weight and
must therefore override the budget objective. The new duration
policy still needs to be supported with the available budget.

It is important to mention that existing policies defined in
the context of other data management SLOs, e.g., data security,
may also influence the archiving behavior (possibly with other
weights). If, for example, the lifetime of a data object has
reached its end or if the deletion of the archived object is
explicitly requested, the data object needs to be removed
from the system by also taking security (access authorization)
policies into account.

Archiving is only one aspect of data preservation. Its main
focus is the long-term storage of data and its efficient retrieval.
However, especially in the context of scientific applications,
not only the data, but also the processes (operations) that
created the data are very important. This aspect is part of
ongoing research in the area of data provenance and briefly
described in Section VI.

V. RELATED WORK

During the last years, many approaches and protocols
for optimizing data management in distributed environments,
especially in the Cloud, have been proposed. This includes
approaches in the area of data consistency with the goal of opti-
mizing existing data consistency models [2], or proposing new
data consistency models [25]-[27], [29]-[31]. In both cases,
scalability has been the driving force. However, approaches
from either direction are limited to certain use cases and are
not able to adapt to ever changing client requirements. Dealing
with these dynamic requirements is one of the main objectives
of PolarDBMS.



Existing traditional DBMSs have been built to support
many applications which feature different characteristics and
requirements — this is also known as “one size fits all” ap-
proach [32]. According to [33], traditional DBMS architectures
do not work well for data warehouse applications (OLAP) as
they were initially optimized for OLTP workloads. [32] lists
possible reasons which led to the development of “one size fits
all” DBMSs which are no longer applicable to the database
market. Rather, it is foreseen that specialized DBMSs will
evolve as a result of new application types and their specific
requirements. PolarDBMS actually goes in the same direction
and we do also argue that different application types, especially
in the Cloud context, have widely different characteristics
and requirements towards the underlying DBMSs. However,
PolarDBMS follows the approach of having a thin DBMS
framework, which will manage the concrete functionality im-
plemented as modules instead of having many different and
possibly specialized DBMSs. Additionally, PolarDBMS treats
clients as first class citizens by giving them the possibility
to directly influence the DBMS composition through a fully
transparent communication cycle as depicted in Figure 3.
Each different composition corresponds to what [32] calls a
“specialized engine”. However, our approach has the advantage
of creating such “specialized engines” inside the same highly
optimized and common system and code structure, without the
necessity of reinventing the wheel over and over again.

OctopusDB [34] is a DBMS that allows to choose the
suitable data model (row stores, column stores, etc.) depending
on the application characteristics. OctopusDB fits very well in
the overall PolarDBMS approach, however the choice of the
best suited data model is only a subset of the objectives that
PolarDBMS dynamically considers. [35] introduces Cloudy, a
modular DBMS for the Cloud which also allows for dynamic
optimization and customization. However, in contrast to Po-
larDBMS, it does not provide a means of specifying client
requirements based on SLAs.

A modular DBMSs with the capability of exchanging
modules at runtime has been proposed in [36]. However,
their approach does not analyse on how clients can eas-
ily specify their requirements. Additionally, [36] targets the
modularization of one specific DBMS type, namely relational
databases. Similar to [36], PolarDBMS also follows the goal
of being adaptable at runtime; however PolarDBMS provides a
modular system that includes a wide variety of different data
management properties and is thus not being limited to one
DBMS type.

The necessity and the advantages of modular-based
database systems has been thoroughly analysed in [9]. Po-
larDBMS also has a modular architecture. Our approach
however does take a holistic view on the communication
cycle incorporating the client, her requirements and the system
capabilities into the process of finding the optimal module
composition and configurations.

Recently, [37] has proposed an interesting DBMS develop-
ment principle based on co-design of the DBMS and operating
systems. The approach opens interesting opportunities for
providing a highly optimized system by building the DBMS
to fully exploit the underlying operating system and, vice
versa, by building the operating system based on the DBMS
requirements. Similarly, [38] has proposed a solution in which

the entire DBMS functionality is fully implemented in the
hardware.

In [39] the authors present a transactional “database-as-a-
service” called Relational Cloud. The goal of the Relational
Cloud is to reduce the configuration effort for users and oper-
ators by overcoming the following challenges: efficient multi-
tenancy, elastic scalability and database privacy. The approach
in [39] is able to adapt to workload changes by monitoring the
query and data access patterns. Our PolarDBMS goes one step
further by taking a holistic view on different data management
aspects and not focusing only on the workload characteristics.

VI. CONCLUSION AND OUTLOOK

In this paper we have introduced the concepts of our work
in progress system PolarDBMS, a novel DBMS following a
modular architecture based on customizable modules that are
dynamically adapted at run-time based on client objectives
and system capabilities. Since one of the main optimization
criteria for the selection, configuration, and combination of
modules are the costs that incur at run-time due to the use of
underlying resources, PolarDBMS is highly suitable for Cloud
environments. Hence, PolarDBMS is expected to provide many
advantages compared to existing DBMSs by allowing the client
to specify her requirements in an easy and understandable way
and by choosing, continuously monitoring and automatically
adapting the best available modules for satisfying client re-
quirements in a fully transparent way. The implementation of
PolarDBMS and its modules is an ongoing effort, with main
focus on data availability (dynamic replication), data consis-
tency (concurrency control and replica consistency), and data
preservation (archiving). However, there are many challenges
that have to be met for reaching the goal of providing an
adaptable, policy-based DBMS. The main challenges we have
identified so far are summarized below.

Policy related challenges: One of the main challenges
is to extract and derive policies out of existing information such
as SLAs, ToCs, etc.) — and, vice versa, to derive SLGs out of
a set of policies in an automatic or at least a semi-automatic
way. The goals of this transformation process are twofold: first,
it must lead to well-defined policy and SLO/SLG languages.
Second, it must be able to disambiguate contradictory and in-
complete policies. Moreover, the users need to be supported by
suitable user interfaces that help in the process of creating and
handling SLOs and SLGs. As already described in Section III,
the definition of the integrator component is necessary, which
will generate integrated and unambiguous policies. A policy
mechanism should also answer questions on the behaviour of
the system if the client has not provided all necessary SLOs,
thus leading to incomplete policies.

System design and architecture: The modular architec-
ture of PolarDBMS implies the necessity of a clear API for
the cooperation between the PolarDBMS framework and its
modules. A module repository is needed for the proper module
management. It should support a formal description of the
behaviour of each of the modules. Even if modules providing
similar behaviour may coexist, PolarDBMS should be able to
choose the “right” one for satisfying the client objectives.

Existing models and formal languages, like the Web Ser-
vice Modelling Ontology and Web Service Modelling Lan-



guage [40], can be used and if necessary extended to formally
describe module capabilities. With regards to the module
selection a.k.a resource matching, different existing approaches
[41], [42] can be used in the context of PolarDBMS.

Operation and Maintenance: PolarDBMS aims at sup-
porting the dynamic reconfiguration at runtime without or with
a low system interruption. This imposes new challenges w.r.t.
to the management and operation of modules.

Analysis and integration of additional data manage-
ment properties: As part of this work, we have proposed
solutions for data availability, consistency, and preservation.
However, data management has also other very important
properties, like for example data security, data models, data
integration, etc. The analysis and the integration of these addi-
tional properties increases the problem space and introduces
additional dependencies that need to be considered. Addi-
tionally, inside the same data management property, different
aspects need to be analyzed. For example, data preservation,
in addition to archiving, includes also data provenance [43]
as a concrete functionality. The workload type of applications
(OLTP, OLAP or mixed) has a strong impact on the choice of
the best data model (row-stores, column-stores, etc.). Hence,
PolarDBMS should be able to dynamically adapt its data
model by taking workload type and other characteristics of
applications into account.
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