
Towards Archiving-as-a-Service: A Distributed Index for
the Cost-effective Access to Replicated Multi-Version Data

Filip-Martin Brinkmann and Heiko Schuldt
Databases and Information Systems Research Group

University of Basel, Switzerland
{filip.brinkmann | heiko.schuldt}@unibas.ch

ABSTRACT

With the advent of data Clouds that come with nearly un-
limited storage capacity combined with low storage costs,
the well-established update-in-place paradigm for data man-
agement is more and more replaced by a multi-version ap-
proach. Especially in a Cloud environment with several geo-
graphically distributed data centers that act as replica sites,
this allows to keep old versions of data and thus to provide
a rich set of read operations with different semantics (e.g.,
read most recent version, read version not older than, read
data as of, etc.). A combination of multi-version data man-
agement, replication, and partitioning allows to redundantly
store several or even all versions of data items without signif-
icantly impacting each single site. However, in order to avoid
that single sites in such partially replicated data Clouds are
overloaded when processing archive queries that access old
versions, query optimization has to jointly consider version
selection and load balancing (site selection). In this paper,
we introduce ARCTIC, a novel cost-aware index for version
and site selection for a broad range of query types includ-
ing both fresh data and archive data. We describe in detail
the interplay between the different parts of the index and
their implementation. Moreover, we present the results of
the evaluation of the combined version and replica index in
a Cloud environment that shows a significant gain in query
throughput compared to a monolithic index.

Categories and Subject Descriptors

H.2.4 [Systems]: Distributed databases; H.2.2 [Physical
Design]: Access methods

Keywords: Data Archiving, Multi-version Data Manage-
ment, Archiving-as-a-Service, Multi-version Index, Replica-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IDEAS ’15, July 13 - 15, 2015, Yokohama, Japan
c© 2015 ACM 978-1-4503-3414-3/15/07 ...$15.00.

http://dx.doi.org/10.1145/2790755.2790770.

1. INTRODUCTION
Cloud computing comes with the promise of providing lit-

erally unlimited resources, such as CPU cycles or storage
capacity. Together with moderate prices and the pay-as-
you-go model where only the resources that are actually used
have to be paid for, this is a highly attractive environment
for both business and private users. Instead of maintain-
ing their own hardware for data management and/or data
processing, they run their applications in the Cloud.

Data management in the Cloud is governed by the CAP
theorem [6, 10]. In the presence of several geographically dis-
tributed data centers, most Cloud providers focus on a high
degree of data availability by replicating data across sites
and by lazily updating these replicas with the consequence
that consistency is relaxed. Due to the lazy updates, sev-
eral different versions per object might exist at each point in
time at different sites. Hence, the well-established update-
in-place paradigm for data management where old data are
overwritten as soon as changes need to be stored is more
and more replaced by a multi-version approach. In this con-
text, keeping not just some but all versions of an object is a
seamless extension of weak consistency protocols in a repli-
cated data Cloud and can be rather cheaply realized due to
the large available storage capacity combined with the low
storage costs of the Cloud.

With partial replication applied to versions, the additional
storage demands can be shared across sites in the Cloud
without significantly impacting each single site. The only
guarantee needed is that each version is available on a subset
of sites. Hence, no single site needs to store all versions of all
objects while, at the same time, the complete version history
can be kept without a gap in the entire system. With multi-
version data management in the Cloud, a much richer set
of read operations with different semantics can be provided,
compared to the read semantics that can be supported in
a Cloud with update-in-place and eager replication. While
the latter case only allows to access the most recent version
of each object (“freshest” data), the former also supports
archive queries such as “give me objects as of time t”, “give
me objects not older/younger than t”, or “give me some/all
version(s) between t1 and t2”. We refer to an approach that
treats such queries as first class citizens and that is able to
jointly provide access to up-to-date data and to archived
data in the Cloud as Archiving-as-a-Service (AaaS).

When partial replication is used, several sites may qualify
for the execution of these queries. In order to avoid that sin-
gle sites are overloaded, query processing and optimization
has to jointly consider version selection and load balancing

(site selection). An AaaS approach based on multi-version
data management and partial replication thus has to address
the following challenges: where can a particular data item
be found, where are the versions of this data item located,
which versions qualify for a given query, and which site is
able to provide the version specified in a query in the cheap-
est way. The latter should consider the different capabilities
of sites in a Cloud, such as available storage space and mon-
etary costs for data storage, transfer costs, network latency,
query times, etc. Hence, archive queries need to be jointly
optimized across sites and versions.

In this paper, we introduce ARCTIC, a novel cost-aware
index for version and site selection for a broad range of query
types including both fresh data and archive data. We de-
scribe in detail the interplay between the different parts of
the index and their implementation.

Consider, as an example for the use of ARCTIC, a glob-
ally distributed online stock trading website. Users can use
it to look up and track stock quotes as well as buy and sell
them. The website uses replicated and partitioned key/value
(K/V) stores. The data in the K/V stores include stock de-
scriptions, current and past stock quotes, and aggregated
values such as, for instance, the average price per stock dur-
ing the last 12 months. There are three different types of
queries that account for more than 80% of the database load.
i.) What is a stock’s description? – the first query a user
submits when looking up a stock. ii.) What is the current
quote of the stock? – which accesses the most recent ver-
sion. Finally, iii.) How did the quote develop over a specific
timespan? – accesses all versions in a given interval and is
essential for users to analyze stocks. With ARCTIC, users
are able to seamlessly support all types of queries, i.e., a user
should not have to switch between an online system and an
archive in the course of her search.

The contribution of this paper is threefold. First, we intro-
duce a rich query interface tailored to the AaaS environment
which ARCTIC implements. This query interface includes
traditional access to fresh data and in particular various
types for archive data with different read semantics. Sec-
ond, we show how cost-optimized access to partially repli-
cated versions for these AaaS queries can be provided. This
is achieved by the ARCTIC distributed replica and version
index that selects the appropriate version(s) and chooses
the most cost-effective replicas. Third, we provide an im-
plementation of ARCTIC and an evaluation on the basis of
amazon AWS Cloud resources. The evaluation results show
a significant improvement in query throughput of the ARC-
TIC replica and version indexing compared to an integrated,
monolithic indexing approach.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work. The system model is presented
in Section 3. The ARCTIC index is introduced in Section 4
and its implementation and evaluation results are presented
in Section 5. Section 6 concludes.

2. RELATED WORK
For decades, databases have been designed to apply up-

dates in-place. This means that each update of an object
overrides the previous version of this object. In order to cor-
rectly handle failures and aborts of transactions, databases
use write-ahead logging (WAL) protocols such as ARIES [17]
for correctly handling updates in-place. As an alternative to
update in-place, so-called shadow page approaches are used

where each object exists in two versions (a valid one and one
to which an active transaction is applying updates; with the
commit of the update transaction, the later becomes the new
valid version).

Multi-version databases extend the shadow page approach
by keeping the complete version history of each object. The
term multi-version database was coined back in the early
1980s, when the concept of multi-version concurrency con-
trol started to attract increased interest [4, 5]. An early
overview on the different access structures and methods for
multi-version data is provided in [16]. In general, one can
distinguish between tree-based and hashing indexes. Tree-
based indexes allow for range queries (both key and version
ranges) while hashes are mostly used for exact and member-
ship queries.

Temporal databases explicitly consider the time dimen-
sion together with data. Research on temporal databases [23,
12] includes temporal extensions to SQL [24] which have
been incorporated into SQL:2011 [15]. The definition of the
bi-temporal model [13] provides a solid foundation for vari-
ous works regarding temporal databases. This bi-temporal
model distinguishes between valid time (i.e., the time in
which an object has been valid in the real world) and trans-
action time (i.e., the time in which the object stored in the
database was considered true). An approach to structure
and distribute access methods for temporal/multi-version
data is described in [18]. The Log-structured History Access
Method LHAM is a temporal extension of the log-structured
merge tree LSM [19]. It assumes several horizontally or-
dered, independent index structures. The topmost index
structure will sit on the fastest memory in the system, while
the one below will use a slower, but larger storage. The ba-
sic idea is to use rolling merges for transferring entries from
a higher to a lower index structure. Another approach is
to distribute the inner and leaf nodes of a B+ tree between
arbitrary nodes [1, 25]. While this approach is more fine
granular, it needs (mini-)transactions in order to change the
distributed tree structure.

In distributed systems, lazy replication and thus weak con-
sistency following the BASE semantics (Basically Available,
Soft state, Eventual consistency) [20] is more and more re-
placing the strong ACID semantics (Atomicity, Consistency,
Isolation, Durability) [11] of transactions. The lazy prop-
agation of updates to replicas also leads to different ver-
sions of objects and thus to stale data (i.e., versions that
are no longer valid) [7]. It can further be used for trading
freshness against lower replication cost [21, 2]. As a conse-
quence, richer read semantics can be offered by operations
like readNotOlderThan, leading to improved system perfor-
mance while offering freshness guarantees [27].

3. THE ARCTIC SYSTEM MODEL
ARCTIC combines multi-version data management and

partial replication across sites in a Cloud environment. In
ARCTIC, we build on recent approaches to Cloud data man-
agement with weak consistency and consequently keep not
just some version with stale data but all versions, at least
one copy of each version at some site in a distributed system
(optionally also replicas of it on other sites in order to in-
crease the level of availability), to seamlessly combine Cloud
data management and data archiving.

The ARCTIC system consists of n sites and hosts m data
objects. For each object xp, the complete version history

Site n

x1 x2 xm
...

ve
rs

io
ns

objects

...

0
1
2

...

Site 1

x1 x2 xm
...

ve
rs

io
ns

objects

...

0
1
2

...

Site 2
ve

rs
io

ns
objects

...

0
1
2

...

x1 x2
... xm

Figure 1: Partial Replication in ARCTIC

is stored. Each version is associated with a version number;
for each object, the version numbers are assigned in strongly
monotonically increasing order. In what follows, the object
ID (whenever necessary) is used as subscript, the version
number as superscript (i.e., xi

p is the ith version of object

xp). At the same time, each version xi
p of object xp is as-

sociated with an interval [tip,s, t
i
p,e[in which this version has

been valid in the system. In here, tip,s is the time at which

version xi
p has been created, and tip,e is the timestamp at

which version xi
p has become outdated as the next version

xi+1
p of object xp has been produced (tip,e = ti+1

p,s). Hence,
given a timestamp t, the valid version j of an object xp can
be identified by tjp,s ≤ t < tjp,e.

With xi
p[l] we denote a replica of version xi

p at site l. In
ARCTIC, for each object, each version is stored at least at
one site; in order to increase availability and to allow for
optimizing read accesses, usually the replication degree rip
for xi

p s is much higher (1 ≤ rip ≤ n for all objects xp and

all its versions xi
p). However, rip might differ for different

versions of the same object and for different objects. This
allows the system to dynamically decide on the best number
of replicas depending on the access pattern.

Figure 1 shows an overview of the ARCTIC system. The
distributed sites are symbolized by the gray boxes. Each site
stores a partition of the set of versions of all objects in the
form of local replicas. The versions are depicted as boxes
inside the objects x1, . . . , xm. Each version is assigned to
a specific site, which serves as its master copy. This is the
replica site at which this version has been created. Replicas
are inserted at the master, but can be replicated to any other
site as well. The master copies are represented by the dark
boxes, while further copies are shown as light boxes. As
described above, each version is stored at least once in the
form of a replica. Each site contains the same logic and can
be queried by clients. While insert and update operations
must take place at the master, read access is possible at any
site.

Since ARCTIC keeps all versions of all objects, it can offer
a broad spectrum of query types that take into account the
version number and/or the timestamp at which a particular
version has been valid. Hence, queries can be thought of as
arbitrarily shaped areas in the two-dimensional key/version
creation time space. Consider Figure 2 which depicts various
temporal queries. At some point in time t, a data item may
or may not exist in the database. In Figure 2, we assume
that all items exist at all times depicted, i.e., the object iden-
tified by key k exists at time t. A query asking for exactly
this key at exactly this time is denoted as read(k, t) and
depicted as point x0

k in Figure 2. However, not only exact
queries are possible, but also queries specifying intervals,

key

timetβ

kl

tα

kh

x3

x0k

t

x2kh
k kx1

p

Figure 2: Key/Version Creation Time Queries

as mentioned earlier. Generally, all combinations of exact
matches and intervals are possible. Table 1 summarizes the
different query types supported by ARCTIC.

For both creation time t and key k, either a discrete value
or an interval can be used when specifying a query read(k, t).
Intervals may be bounded or unbounded. If an interval
boundary is given, it might be excluded or included. In
Table 1, for reasons of simplicity, we have just provided ex-
amples in which the boundaries are excluded (for instance
R(k, tα < t < tβ) asks for all versions of t older than tβ
and younger than tα). However, R(k, tα ≤ t ≤ tβ) is pos-
sible as well. In this case, the semantics would be “give me
all versions of t as of tα or younger and as of tβ or older”.
Moreover, bounds can also be omitted (which means that
either all valid times or all keys need to be considered), or
intervals may be half-bounded, i.e., only an upper or lower
bound in the key range or time interval is given. In addi-
tion, for version selection, either a timestamp (time interval)
can be specified (as shown in Table 1), or a dedicated ver-
sion number (a version number interval, respectively) can be
specified. Hence, each of the query types listed in Table 1
comes in two different signatures – one with the specification
of valid time, one with the specification of the version(s) –
yet both have the same semantics.

However, we further allow each query to include at least
one (possibly unbounded) time interval to be satisfied with
the return of only one version. This leads to an important
class of queries which allow for accessing possibly stale ver-
sions of data items by relaxing freshness requirements on the
result set. We use uppercase read operations, R(k, t), for
queries which are supposed to return all versions that qual-
ify for the specified key and/or time intervals, and lowercase
read operations, r(k, t), for reads that are satisfied with at
least one version from the specified interval. Previous work
has shown that using freshness of data items as a metric can

time

x1 x2 x3 x4x0

tβ

result set

tα

Figure 3: Freshness Query

Table 1: Version Queries in ARCTIC

Query Semantics Where shown in Figure 2

Discrete values

R(k, t) Returns a version of data item with key k

which has been valid at time t or ...
x0
k

R(k, v) ... that has version number v.

Bounded intervals and

discrete values

R(kl < k < kh, t) Returns all data items with keys between kl
and kh and valid time t (range-timeslice [22]).

Vertical dotted line inside the rectangle
between (kl, tα) and (kh, tβ), e.g., x

0
k.

R(k, tα < t < tβ) Returns all data item versions with key k and
valid in the interval]tα, tβ [.

Horizontal dotted line inside the rectan-
gle between (kl, tα) and (kh, tβ), e.g., x

0
k.

Bounded intervals

R(kl < k < kh, tα < t < tβ) Returns all data item versions with keys be-
tween kl and kh being valid between tα and
tβ .

The rectangle between (kl, tα) and
(kh, tβ), excluding the borders, e.g., x0

k,
but not x2

kh.

Unbounded intervals

R(–, tα < t < tβ) Returns all data item versions with any key
being valid between tα and tβ .

The vertical, light red area excluding its
borders, e.g., x0

k and x3
p.

R(kl < k < kh, –) Returns all data item versions with keys be-
tween kl and kh and any valid time.

The horizontal, dark blue area excluding
its borders, e.g., x0

k and x1
k.

Unbounded intervals and

discrete values

R(k, –) Returns the full version history of data item x

with key k (pure-key in [22]).
{x0

k, x
1
k}

R(–, t) Returns all versions of all data items that
have been valid at time t (known as pure-
timeslice [22]).

{x0
k, x

3
p}

be used to reduce cost of lazy replication [21, 27]. Consider
a set of versions of one data item as depicted in Figure 3, in
which a query asks for a version of data item x with key k in
the time interval [tα, tβ [. If the read semantics is “give me all
versions in this interval”, i.e., R(k, tα ≤ t < tβ), the result
set of a complete query therefore is {x1, x2, x3, x4}. When
the more relaxed query semantics is used “give me at least
one version from this interval”, i.e., r(k, tα ≤ t < tβ), the
requirements on the system are relaxed so that it can return
any result set which meets the freshness requirement. Let
us assume that the system first finds version x2. The query
execution time would be shorter if the system could just
return version x2, assuming that this answer is sufficiently
fresh for the client, thus meets her requirements. Therefore,
any query in Table 1 which contains a (half-)bounded time
interval can be relaxed in this way.

Query optimization thus needs to fulfill the freshness re-
quirements specified by a user. However, optimization may
consider the selection of one or several versions in the spec-
ified interval and the selection of the replica(s) which mate-
rialize these versions.

4. ARCTIC: COST-AWARE MULTI-

VERSION REPLICA INDEX
All the different types of version queries summarized in

Table 1 have in common that the following two tasks need
to be jointly supported:

1. The queries supported by ARCTIC ask for keys, ver-
sions/valid time intervals, or both. Thus, ARCTIC
must be able to answer the question “Which version
represents a specific data item at a specific time or with
a given version number?”, i.e., to select one or several
versions, according to the specification in the query.

2. Since every version can be materialized through mul-
tiple replicas, the site (or sites) that can best serve
this/these version(s) need to be selected. This is im-
portant since we do not consider full replication, hence
not each site is able to process a query locally.

A major feature of ARCTIC is to address both tasks sep-
arately, albeit not independently. This leads to a modular
index structure that consists of two parts: First, a version
index that maintains information on the different versions of
each object, their version numbers and the intervals in which
they have been valid. Second, a replica index that maintains
information on the currently available replication state of
versions. This knowledge is potentially highly volatile, es-
pecially when load balancing takes place and new replicas
are created and/or existing replicas are removed from the
system.

In addition, since we target large Cloud environments with
a large number of data objects and in particular many ver-
sions per data object, especially the replication index may
grow significantly over time. In order to find a good balance

Replica Index
version → (replica, cost)

Version Index
(key, timestamp) → version

Read Optimizer

read(x , 86)

read(x5)

(x, 86) → x5

 (x5[1])

 (x5[1], 10)
 (x5[12], 42)

x5 → { x5[1], x5[12]} c(x5[1]) = 10
c(x5[12])=42

ARCTIC

(2)

 Replica Repository
version → replica

Cost Repository
replica → cost

 2.
(2) 1.

(2) 3.
(2) 4.

(2) 5. (2) 6.

(2) 7.

(2) 8.

Figure 4: ARCTIC Query Execution

between a low maintenance overhead of the replica index
and good performance, the replica index should neither be
kept centrally as this would limit the scalability of the en-
tire system, nor should it be replicated across all sites as this
would create significant effort for keeping all replicas of the
replica index consistent. Therefore, it is important that the
replica index can be partitioned in such a way that neither
its maintenance nor its usage are negatively affected.

4.1 ARCTIC Overview
The execution of a version query in ARCTIC can be bro-

ken down into the following steps: First, given a query con-
taining key and time values or intervals, determine which
versions form the result set of the query. Second, for each
version, determine the access costs. Costs are not restricted
to query latency only, but can include anything that needs
to be optimized for, like network traffic, system load, etc.
The costs depend on the set of actual replicas that are used
to compose the result set. Each replica may have different
costs. Third, among all strategies, each consisting of a set
of replicas, the one with minimal total costs is selected and
returned.

ARCTIC actually consists of two separate data structures,
as illustrated in Figure 4. Consider, as an example, a query
to the ARCTIC index that asks for data item x at timestamp
86, depicted in the upper right corner (1.). The ARCTIC
version index (upper box) holds a mapping from keys and
timestamps/version numbers to versions. In the example,
the identifier x5 stands for the version needed for answering
the query read(x, 86) (2.). Note that in the case of range
queries the answer would be a version set.

The ARCTIC replica index (lower large box) is used to
find the cheapest replica which materializes version x5 (3.,
4.). The index consists of the following structures. A replica
repository (5.) knows all replicas that materialize specific
versions. In the example, these are the replicas {x5[1], x5[12]},
i.e., replicas of of version x5 at the sites 1 and 12. The replica
repository is partitioned among sites, for instance by using
a distributed hashtable, which is what we use in our im-
plementation. Each replica is associated with a cost that
incurs upon its materialization. This mapping is captured
by a cost repository (6.), which returns the costs for each of
the two replicas. In the example, the calculated costs are
c(x5[1]) = 10 and c(x5[12]) = 42. The third component, the

read optimizer (7.), is tightly integrated with the two repos-
itories. Its task is to yield the final cost-minimized result
set. In the example, replica x5[1] yields the lowest cost (10)
and is thus returned (8.).

Figure 5 shows how the two index structures are inte-
grated into ARCTIC. Each site has local materializations of
both index structures. While a complete copy of the version
index is kept on every site, the replica index is partitioned
across all sites. As mentioned earlier, the replica index con-
tains globally unique detailed information about the repli-
cas. Each site, however, keeps local information about its
connectivity to other relevant sites. Currently, this infor-
mation is lazily updated for every other site. However, it is
possible to use heuristics or a centralized metadata repos-
itory in order to relieve a site from the burden of keeping
track of the other sites.

4.2 Version Index
The version index needs to answer the queries in which

a version number or a timestamp is specified. Any known
index structure implementation can be used, since this index
is independent of the replica index. Possibilities include,
but are not limited to, well known index structures like the
Multiversion B-Tree (MVBT) [3], the Snapshot Index [26]
or the Time Index [8].

It should, however, be noted that since ARCTIC addresses
archiving applications which require very long-running sys-
tems, the index structure must be suitable for horizontal
partitioning such that old or less frequently queried version
entries can be pushed to slower storage and/or vertical parti-
tioning for load balancing between sites, for instance accord-
ing to the LHAM [18] index. The actual partitioning scheme
that is used depends on the read/write characteristics of the
workload. Currently, we use a distributed hashmap which
allows for horizontal partitioning while maintaining scala-
bility. The index can, however, be easily replaced by any of
the aforementioned index structures.

It is important to note that instead of creating a single
index structure, we keep the version and the replica index
separated due to the following reasons.

Separation of Concepts: The logical data schema (which
contains versions) is separated from the physical repre-
sentation. If both indices were represented by a single
data structure, physical changes in the network would
be reflected in the index, even if no changes to the
version set were made. We assume that this separa-
tion results in an improved runtime behaviour of the
index, since maintenance of the version index is only
necessary when versions are added.

Improved Partitioning: Two index structures allow for
more flexibility in partitioning. Different partitioning
schemes can be applied to the two indices. In our
current implementation, for example, the version index
is not partitioned while the replica index is.

Global vs. Location-dependent Knowledge: On one
hand, the contents of the version index are globally
valid. On the other hand, some entries in the repli-
cation index are location-dependent. Moreover, the
replica index is much more volatile than the version
index, as we describe in the following section.

Version IndexVersion Index

Replica Index Replica Index

Version Index

Site n

x1 x2 xm
...

ve
rs

io
ns

objects

...

0
1
2

...

Site 2

x1 x2 xm

ve
rs

io
ns

objects

...

0
1
2

...

...

Site 1

x1 x2 xm

ve
rs

io
ns

objects

...

0
1
2

...

...

Replica Index

Replica r42

size: 1kB
type: text

Site 1

load: 1.2
latency: 23ms

Figure 5: Integration of Indexes into ARCTIC

4.3 Replica Index
The replica index contains information about replicas of

versions along with information which allows for calculat-
ing (or at least estimating) their cost. Replicas are spa-
tially separated copies of the same version. When accessing
a replica, different costs incur. Types of costs include time,
network traffic generated, processing cost, storage costs, etc.
The replica index takes as an argument the identifier of a
version and returns the replica with the lowest cost or the
replica set (including operations) which allows for material-
izing the desired version. Therefore, the mapping which the
replica index provides is version 7→ {(replica, cost)∗}.

The index must have access to the full set of replicas
including their individual costs. It is the responsibility of
the replica control mechanism to insert, delete and update
entries in the replica list. The costs associated with each
replica can be computed when the following three types of
information are known: replica metrics, site metrics and
inter-site metrics.

Replica Metrics: Inserting, storing and retrieving a replica
creates costs. In order to compute these costs, specific
metrics of each replica must be taken into account,
e.g., size, computational complexity, availability, etc.

Site Metrics: The aforementioned replica metrics are not
sufficient to compute the costs for managing replicas.
The costs occurring on a highly frequented site may
be higher than on an idle site. Therefore, site metrics
describe site-specific costs. Examples include load, (re-
maining) storage space, types of storage space (main
memory, disks, tapes), uptime costs, etc. Metrics are
regularly exchanged between sites. A centralized site
metric repository would be also possible.

Inter-Site Metrics: The third type of metrics captures
the connection details of sites – more concretely the
paths between nodes. It is potentially much more dy-

namic than the former two types and as well larger.
This is due to the fact that pairwise metrics are needed,
thus giving it a size of O(N2) with N being the num-
ber of sites. This information is collected by a regularly
scheduled bandwidth and latency test between sites.

The replica index consists of three parts. First, the replica
repository contains the information about all active replicas
and the mapping between versions and replicas. Since repli-
cas can be identified by ordered keys, a distributed hashmap
can be used as a data structure, partitioning its informa-
tion among all sites. It also holds further metadata about
replicas, like for instance their size, compression, etc. The
cost repository can be used to look up further cost factors
for each replica, i.e., information and heuristics about the
participating sites holding the replicas and their intercon-
nections. Since the information in the cost repository differs
between sites, each site maintains its own version of the cost
repository. The joint information of cost and replica reposi-
tory is then used by the read optimizer to return the optimal
solution to the version read problem.

4.4 Query Execution in ARCTIC
Each ARCTIC site is able to answer read queries. Upon

arrival of a query, the site’s local version index is used to de-
termine the set of versions that are able to satisfy the query.
For each version, one site holds the partition of the replica
index which can be used to identify the sites which hold the
version’s replicas. Currently, ARCTIC directly calculates
the sites with a hash function executed on the version; how-
ever, this can be easily exchanged with a more adaptable
index structure, if necessary. From the set of resolved repli-
cas and the sites they are stored on, the cheapest strategy
is calculated. This is achieved by taking the replicas’ cost
information like, for instance, size into account as well as
the sites’ current load. When a strategy which satisfies the
query is found, the resulting replica set is downloaded from
the site(s) and returned to the client.

5. ARCTIC IMPLEMENTATION AND

EVALUATION
We implemented ARCTIC on top of PolarDBMS [9], a

Cloud database framework which is currently being devel-
oped at the University of Basel. Since we are interested
in the read performance, we focused our evaluations on the
query response time characteristics of the system.

The dataset we used consists of 46,028 data objects of
which in total 134,574 versions have been created. The tem-
poral distribution of the dataset was given, since we used a
pre-generated TPC-BiH dataset [14] in order to create the
key/value pairs representing the database objects.

5.1 Evaluation Set-up
We deployed the application to eight Amazon Web Service

EC2 m3.medium instances in the same region eu-central-1.
All experiments were set up as follows: we defined a query
mix QM consisting of the three query types i.) read most
recent, ii.) read as of and iii.) read not older than. The
queries that were considered in the evaluation were selected
with a uniform distribution from these query types.

We created 4,000 queries asking for random existing keys
in the key range. For the read as of and read not older
than queries, we selected random timestamps from the data
item’s valid time. We created three replicas of each data
item version with a size of 10 kB, thus leading to a to-
tal dataset size of 403,722 replicas. The replicas were dis-
tributed over all system instances such that each version was
available on three instances.

The general setup was as follows. One of the instances,
which we call the primary instance, is dedicated to answering
queries. All queries were issued from a client application
on this instance. The instance measured the time between
arrival of a query and the moment in which it could deliver
the result. Therefore, the client application speed did not
affect the overall performance.

In order to evaluate the impact of the ARCTIC index, we
conducted three successive experiments. In the first, which
serves as a baseline, no index is available. The second setup
allows for each instance to use the replica index to choose an
instance on which the data item version is available — how-
ever, no further optimization is applied (e.g., the index does
not allow to select the least loaded node hosting a replica of
the data to be accessed). The third setup uses the complete
ARCTIC index and thus also allows for cost-based optimiza-
tion as the system is able to pick the cheapest replica.

Each experiment, consisting of 4,000 queries, was executed
three times in order to avoid anomalies stemming from the
underlying infrastructure.

Since the inter-site latencies are very low (between 0.5
and 3 ms) within the same AWS region, we added artificial
latencies of 20ms to four of the eight nodes. This enables
us to introduce the asymmetry that exists when spreading
data to several data centers. However, since latency vari-
ance is very unpredictable in our experience, we have chosen
this approach in order to be able to model inter-data center
characteristics more precisely and predictably.

Latencies were determined by a process on each site which
regularly pinged all other nodes and computed the average of
the last three ping latencies. The process measured latencies
every 60 seconds.

without index replica index full ARCTIC index

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

re
a
d
 l
a
te

n
c
y
 p

e
r

q
u
e
ry

 (
m

s
)

Figure 6: 4,000 Queries across five simulated data
centers

5.2 Contribution of the different Indexes to
the ARCTIC Performance

In what follows, we present a series of evaluations that
assesses the contributions of the different parts of the ARC-
TIC index to the overall optimization of query execution
time for three types of archive queries.

5.2.1 Baseline Evaluation

When a query comes in, the primary instance translates
the desired key and version combination into a list of repli-
cas that can potentially answer the query. If it does not hold
any of the replicas itself, it picks one of the other sites at ran-
dom which will then be queried. If it can answer the query,
it will deliver its replica. If not, the next random site among
the remaining sites is selected and queried. This procedure
is repeated until the query is successfully answered. The
query response time thus not only contains the time needed
for the delivery of the replica but also the (potentially un-
successful) requests submitted to other sites. Figure 6 shows
the query answer times for all three experiments (baseline,
replica index only, ARCTIC replica and cost index). The
query execution times of the baseline evaluation are sum-
marized by the leftmost whisker box.

The horizontal line inside each box shows the median,
while the upper and lower box limits depict the upper and
lower quartile of all measurements. The dot inside each box
shows the mean value.

In addition, Table 2 provides the exact values for both
the mean and the standard deviation of the query response
times. As one can see, the average query time of the baseline
is around 294.65 ms. 50% of the queries are answered within
approx. 210 to 390 ms. However, approximately 25% of
the queries exceed 390 ms. In all three experiments, the
minimal access time was 82-83 ms which is dominated by
the download time.

Table 2: Query Latency Times (ms) for 4,000
Queries

mean (stdev)

No index 294.65 (11.43)
Replica Index 170.51 (54.17)
Full Index 145.44 (45.87)

Table 3: Query Latency Times (ms) for 4,000
Queries, 4 Regions

Low Load:
mean (stdev)

High Load:
mean (stdev)

Replica Index 711.74 (418.42) 861.68 (587.81)
Full Index 594.12 (439.62) 609.40 (473.36)

5.2.2 Execution Times with Replica Index

For the second experiment, we enabled the replica index,
yet without the cost repository. This allows for the primary
instance to create a list of instances which are able to answer
the incoming query. From this list, a random site is chosen.
This leads to the decreased query execution times as seen in
Figure 6. All queries can now be answered with at most one
inter-instance communication — but without the possibility
to select the cheapest among these replicas. The primary
instance trades the time that is needed for consecutively
trying the other nodes until a matching replica is found for
a much smaller time needed for a lookup in the local replica
index. The mean access time is reduced from 294.65 ms to
170.51 ms.

5.2.3 Execution Times with Full ARCTIC Index

In the final experiment, we enabled the full ARCTIC in-
dex, thus allowing for the system to select the cheapest
replica representing the queried version. The costs were cal-
culated by equally weighting the latency and the bandwidth
of the site holding the desired replica. In our setup, the in-
stances vary in their latency while the bandwidth of each
instance is the same.

The rightmost whisker box in Figure 6 shows how the
overall access times have improved. The mean access latency
has decreased by approx. 15% to 145.44 ms. This shows that
the read optimizer improves the overall access performance,
leading to decreased mean and maximum access latencies.

5.3 Performance Evaluation in Multi-Data
Center Configuration

In order to measure the impact of the cost index in hetero-
geneous environments, we deployed the system across four
AWS regions: eu-central-1 (Frankfurt, Germany), us-east-1
(N. Virginia, USA), us-west-1 (N. California, USA) and ap-
southeast-2 (Sydney, Australia). In each region, we deployed
four instances with the same index configuration and the
same dataset as in the first evaluation series. We selected
four master instances which performed the queries such that
each region contains exactly one master. The same query
mix of 4,000 random queries was chosen. In order to test
the performance of the cost index, we executed a script
which selected one of the non-master instances every 60 sec-
onds. This instance’s network connection and general I/O
was then set under heavy load by downloading and storing
a randomly generated byte stream for approx. one minute
from a machine in the same region. We conducted the exper-
iment in four different configurations. First, we disabled the
cost optimization. This setup was then evaluated under low
load and then under high load by executing the aforemen-
tioned script. The same experiment was then repeated with
the cost optimization being enabled, thus giving the system
access to the full ARCTIC index. It has to be taken into

low load high load low load high load

5
0

0
1

0
0

0
1

5
0

0

re
a

d
 l
a

te
n

c
y
 p

e
r

q
u

e
ry

 (
m

s
)

Full ARCTIC IndexReplica Index

Figure 7: 4,000 queries across four regions

account that query latencies are, due to the global setup,
much higher than in the previous evaluations.

Table 3 shows the average query times for the four pos-
sible configurations. Figure 6 shows the box plots of the
evaluation results. Two observations can be made. First,
the results of the low load scenario show that when cost
optimization is active, query times are significantly lower.
This shows that in a static environment with different replica
costs (e.g., different site latencies and bandwidths), the in-
dex allows for reducing the access costs. The second ob-
servation can be made when comparing the two scenarios
“Replica Index” and “Full ARCTIC Index”. It can be seen
that when the system is set under load, query latencies in
the first scenario increase significantly. In the second sce-
nario with the activated cost optimization, query latencies
stay nearly constant. This demonstrates that the ARCTIC
cost optimization works in highly distributed and dynamic
environments.

6. CONCLUSION
We have introduced ARCTIC, a novel index structure that

is tailored to archive queries in an Archiving-as-a-Service
(AaaS) context in which users may search for different (pos-
sibly outdated) versions of a data item in a partially repli-
cated data Cloud. ARCTIC consists of a version index to
identify one or several versions of a data object specified by
a user, and a replica index which finds the cheapest replica
of these versions in the system. ARCTIC makes use of the
vast number of low-cost storage resources available in the
Cloud by keeping all versions of all data objects and by ap-
plying partial replication of these versions across sites (data
centers) in a data Cloud. This multi-version data manage-
ment approach is a seamless extension of current practices in
data Clouds where due to lazy propagation of updates in the
presence of replication, several versions of objects exist. The
evaluations of ARCTIC have shown the contribution of the
different parts of the ARCTIC index to the optimization of
archive queries. Moreover, ARCTIC has demonstrated that
it selects the cheapest replica even in situations of increased
system load and thus significantly reduces query latency.

In our future work, we will further investigate the effects
of heterogeneous sites (e.g., network latency) on the query
execution time with ARCTIC. Moreover, we will also add

support for incremental version management, i.e., to allow
for some versions only to store the delta compared to a pre-
vious version. Especially for large data items, this will allow
to significantly reduce the volume of storage needed (which
has to be paid for in the Cloud), but it poses additional chal-
lenges for the execution and optimization of a query (e.g.,
local re-creation of a version via deltas vs. remote access to
the materialized version). Since ARCTIC particularly aims
at supporting large Cloud data management infrastructures,
we will evaluate its performance when dealing with increas-
ing amounts of sites, data objects, versions and replicas.
This will allow for us to tune its parts, like for instance ver-
sion and replica index, in order to ensure performance while
maintaining scalability.

7. REFERENCES
[1] M. K. Aguilera, W. Golab, and M. A. Shah. A

practical scalable distributed B-Tree. Proceedings of
the VLDB Endowment, 1(1):598–609, 2008.

[2] F. Akal, C. Türker, H. Schek, Y. Breitbart, T. Grabs,
and L. Veen. Fine-Grained Replication and Scheduling
with Freshness and Correctness Guarantees. In
Proceedings of the 31st International Conference on
Very Large Data Bases, pages 565–576, Trondheim,
Norway, 2005. ACM.

[3] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
b-tree. The VLDB Journal, 5(4):264–275, Dec. 1996.

[4] P. A. Bernstein and N. Goodman. Concurrency
control algorithms for multiversion database systems.
In Proceedings of the first ACM SIGACT-SIGOPS
symposium on Principles of Distributed Computing,
PODC ’82, pages 209–215. ACM, 1982.

[5] P. A. Bernstein and N. Goodman. Multiversion
concurrency control-theory and algorithms. ACM
Trans. Database Syst., 8(4):465–483, Dec. 1983.

[6] E. A. Brewer. Towards robust distributed systems. In
Symposium on Principles of Distributed Computing
(PODC), 2000.

[7] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In ACM Sigmod
Record, volume 29, pages 117–128. ACM, 2000.

[8] R. Elmasri, G. T. J. Wuu, and Y.-J. Kim. The time
index: An access structure for temporal data. In
Proceedings of the 16th International Conference on
Very Large Data Bases, VLDB ’90, pages 1–12, San
Francisco, CA, USA, 1990.

[9] I. Fetai, F. Brinkmann, and H. Schuldt. PolarDBMS:
Towards a cost-effective and policy-based data
management in the Cloud. In Workshops Proc. of the
30th International Conference on Data Engineering
Workshops, pages 170–177, 2014.

[10] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[11] T. Härder and A. Reuter. Principles of
transaction-oriented database recovery. ACM
Compututing Surveys, 15(4):287–317, 1983.

[12] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and
R. T. Snodgrass. A glossary of temporal database
concepts. SIGMOD Rec., 21(3):35–43, Sept. 1992.

[13] C. S. Jensen and R. T. Snodgrass. Semantics of
time-varying information. Information Systems,
21(4):311–352, June 1996.

[14] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and
D. Kossmann. TPC-BiH: A Benchmark for
Bitemporal Databases. In Proceedings of the 5th TPC
Technology Conference on Performance
Characterization and Benchmarking (TPCTC 2013),
pages 16–31, Trento, Italy, Aug. 2013.

[15] K. Kulkarni and J.-E. Michels. Temporal features in
SQL:2011. SIGMOD Rec., 41(3):34–43, Oct. 2012.

[16] D. Lomet and B. Salzberg. Access methods for
multiversion data. In Proceedings of the 1989 ACM
SIGMOD international conference on Management of
data, SIGMOD ’89, pages 315–324, New York, NY,
USA, 1989. ACM.

[17] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh,
and P. M. Schwarz. ARIES: A transaction recovery
method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM
Transactions on Database Systems, 17(1):94–162,
1992.

[18] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The
LHAM log-structured history data access method. The
VLDB Journal, 8(3-4):199–221, Feb. 2000.

[19] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta
Informatica, 33(4):351–385, June 1996.

[20] D. Pritchett. BASE: An ACID Alternative. Queue,
6(3):48–55, May 2008.

[21] U. Röhm, K. Böhm, H. Schek, and H. Schuldt. FAS -
A freshness-sensitive coordination middleware for a
cluster of OLAP components. In Proceedings of the
28th International Conference on Very Large Data
Bases (VLDB 2002), pages 754–765, Hong Kong,
China, Aug. 2002. Morgan Kaufmann.

[22] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Comput. Surv.,
31(2):158–221, June 1999.

[23] R. T. Snodgrass. Temporal databases. IEEE
Computer, 19:35–42, 1986.

[24] R. T. Snodgrass. The TSQL2 temporal query language,
volume 330. Springer Science & Business Media, 1995.

[25] B. Sowell, W. Golab, and M. A. Shah. Minuet: a
scalable distributed multiversion b-tree. Proceedings of
the VLDB Endowment, 5(9):884–895, 2012.

[26] V. J. Tsotras and N. Kangelaris. The snapshot index:
An i/o-optimal access method for timeslice queries.
Information Systems, 20(3):237–260, May 1995.

[27] L. Voicu, H. Schuldt, Y. Breitbart, and H.-J. Schek.
Flexible data access in a cloud based on freshness
requirements. In 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD), pages
180–187, 2010.

