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Abstract—Cloud providers are more and more confronted
with very diverse and heterogeneous requirements their cus-
tomers impose on the management of data. First, these re-
quirements stem from service-level agreements that specify a
desired degree of availability and a guaranteed latency. As a
consequence, Cloud providers replicate data across data centers
or availability zones and/or partition data and place it close
to the location of their customers. Second, the workload at
each Cloud data center or availability zone is diverse and
may significantly change over time – e. g., an OLTP workload
during regular business hours and OLAP analyzes over night.
For this, polystore and multistore databases have recently been
introduced as they are intrinsically able to cope with such
mixed and varying workloads. While the problem of hetero-
geneous requirements on data management in the Cloud is
either addressed at global level by replicating and partitioning
data across data centers or at local level by providing polystore
systems in a Cloud data center, there is no integrated solution
that leverages the benefits of both approaches. In this paper,
we present the Polypheny-DB vision of a distributed polystore
system that seamlessly combines replication and partitioning
with local polystores and that is able to dynamically adapt all
parts of the system when the workload changes. We present
the basic building blocks for both parts of the system and
we discuss open challenges towards the implementation of the
Polypheny-DB vision.
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I. INTRODUCTION

With an increasing number of companies and organiza-
tions moving their entire IT infrastructure to the Cloud, also
the challenges Cloud providers have to cope with become
more and more diverse and demanding. Especially in the
Big Data era, this comes with various requirements on
the data stored in the Cloud and the characteristics when
accessing this data. From a Cloud users’ perspective, these
characteristics are governed by service-level agreements
(SLAs). Usually, SLAs are motivated by legal constraints
and performance expectations and specify the desired level
of availability, consistency, and the accepted latency. In
terms of availability, data is replicated across different data
centers or across availability zones. In terms of consistency
in the presence of replication, usually the level according
to which consistency is relaxed is specified in SLAs. This
is necessary since, according to the CAP theorem [1], one
out of the three properties Consistency, Availability, and
tolerance to network Partitions cannot be enforced in case of

errors [2]; in most cases, a relaxed level of consistency (e. g.,
eventual consistency) is chosen. In terms of latency, Cloud
providers aim at partitioning [3] the data and at moving data
partitions close to their users. Again, this is a property that
cannot be considered in isolation since there is a trade-off
between latency and consistency, as governed by PACELC,
an extension to CAP (“if there is a partition (P), how does
the system trade off availability and consistency (A and C);
else (E), when the system is running normally in the absence
of partitions, how does the system trade off latency (L) and
consistency (C)” [4]). Hence, a joint consideration of all
elements of the SLAs of a Cloud user require to combine
data replication and partitioning (potentially with different
replication degrees for different partitions, as not all data
has the same importance or is not equally often accessed),
and to dynamically adapt either the partitions or the replicas
(number and placement) if the access characteristics change.

While data replication and partitioning are addressed at
global level, across data centers and availability zones, the
additional challenges individual nodes in the Cloud have
to face stem from heterogeneous and changing workloads.
Examples can be found in applications that combine OLTP
workloads during normal business hours and OLAP-style
analyzes during times when business is closed, or in appli-
cations which combine graph data with unstructured data or
data that does not adhere to any schema. According to [5],
such mixed workloads cannot be properly addressed with a
single system. Despite of the fact that the last years have
seen the emergence of several special-purpose databases,
each of these systems alone is not able to address heteroge-
neous, mixed workloads. Therefore, multistore and polystore
databases have become popular as they combine different
specialized database systems and are thus well suited to
cope with heterogeneous workloads. This also allows to offer
different query languages and interfaces and thus to tailor
data management and access to the need of applications and
the characteristics of the data to be accessed.

In order to properly address the requirements of Cloud
users, SLA-based replication and partitioning need to be
applied at global level, while the heterogeneity of the access
workload and the different characteristics of data need
to be addressed at local level, by applying polystores or
multistores at the individual nodes of a Cloud data center or
availability zone, respectively. However, even though several



of these tools and techniques are already used individually
by Cloud providers, to the best of our knowledge, such
combination leveraging the advantages at global Cloud level
and at local data center node level are not yet exploited.

In this paper, we introduce the Polypheny-DB vision of
a distributed and adaptive data management in the Cloud.
Polypheny-DB seamlessly combines cost-based data repli-
cation and partitioning at global level, across data centers,
and polystore databases at local level, i. e., at the individual
Cloud nodes. A particular feature of Polypheny-DB is the
ability to dynamically adopt to changing workloads and user
requirements. At global level, this means that the size of
partitions and their placement is continuously assessed and
changed, if necessary. The same holds for the replication
degree and the location of replicas. At local level, this
includes the selection of database systems available locally,
underneath the polystore deployed at a Cloud node, the
storage medium used, or the placement of data across the
underlying stores of the polystore. In addition, a special fea-
ture of Polypheny-DB is that it also combines vector-space
style similarity queries, especially in multimedia collections
with Boolean queries, for instance on the structured metadata
of such multimedia collections. We identify the necessary
building blocks required for the Polypheny-DB vision, out
of which we have already provided a large share as part
of our previous work and we discuss the open challenges
towards the Polypheny-DB vision.

The contribution of this paper is twofold: first, we intro-
duce the Polypheny-DB vision of a system for distributed
and adaptive data management in the Cloud that combines
cost-based data replication and partitioning in the large with
flexibility by applying polystores in the small and that is
able to automatically adapt, at both levels, to changing
workloads. Second, we identify the building blocks needed
for Polypheny-DB and we discuss the open challenges
stemming from the Polypheny-DB vision.

The remainder of this paper is structured as follows:
Section II presents a sample application that shows the need
to combine flexible data management at both global and
local level in the Cloud. Section III introduces the Poly-
pheny-DB vision and the challenges to be faced at global
level (Section III-A), at local level (Section III-B), and the
cross-level challenges stemming from dynamically changing
workloads (Section III-C). Section IV discusses related work
and Section V concludes and summarizes open challenges
towards the full implementation of the Polypheny-DB vision.

II. MOTIVATING SCENARIO

In this section, we present a scenario that shows the need
for a data management solution that combines SLA-based
replication and partitioning with polystores and that extends
the discussion provided in [6].

Consider, as an example, “Gavel”, a global online auc-
tion house. Originally founded as an auction house for

the European market, Gavel is now present in all major
markets worldwide and has deployed its servers, thanks to
the Cloud, at several locations around the globe. Besides
specific application servers, Gavel also runs database servers
at each of these Cloud locations.

Assume the following business model: Gavel takes 1 %
of the price of each item sold. They apply sophisticated
analyzes of their users’ behavior and other statistics (e. g.,
final auction prices, bidding histories of users, or histories of
visited auctions) to advertise their auctions. The analytical
database queries they run for this purpose always need the
latest data, which makes an offline approach infeasible.

As a consequence, the overall workload of Gavel is
very diverse and contains both transactional and analytical
queries. Gavel wants to use a product recommendation
system which requires parts of the data to be represented as a
graph. They also plan to deploy an application for business
analytics which works on multidimensional OLAP cubes.
Gavel therefore requires a DBMS being capable of storing
and retrieving the data based on different data models at the
same time and to be queried using different query languages.

Besides the different data models, Gavel also requires
the database system to support advanced features such as
location-based queries to support functions like searching
for auctions within a certain distance to the address of the
customer. Another more advanced database feature is the
support for handling temporal data. Because of legal reasons,
Gavel has to store, for instance, all versions of auction
descriptions in case they are edited.

Another feature Gavel would like to implemented in their
online platform is similarity search for images. This should
allow customers to upload a picture and find auctions which
offer a (visually) similar product. Gavel therefore requires a
database system being able to deal with this type of data and
providing support for similarity search in image collections.

Not all data stored in the Gavel database is of equal
importance. While customer data, auctions, and bids are
of high importance and have to be stored in a redundant
and consistent way, other data like the access logs of user
requests can be partitioned and do not need to be stored
multiple times on different Cloud nodes.

It is a characteristic feature of auctions that they are
most interesting just before they end. This results in soon
ending auctions being significantly more frequently queried
than other auctions. This should be leveraged for storing
such frequently queried auctions in main memory and old
auctions on slow archive storage and eventually lead to both
an increase of the performance and a reduction of the costs.

Due to shipping costs, language barriers, and different
time zones, most customers only bid on auctions in their
local Gavel shop. This results in a subset of the data nearly
always being updated and deleted at the same location while
other parts of the data are used at all locations equally. There
is also data which is nearly never updated but heavily read
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Figure 1. Logical view of Polypheny-DB. Data is physically distributed over more regions. Every region contains one or multiple availability zones (AZ).
Every availability zone contains one Polypheny-DB instance (PDB) which has one or multiple underlying data stores on which the data is actually stored.

(e. g., categories). This circumstance should be used to make
Gavel more robust against network partitioning.

At every data center location, Gavel operates multiple
database servers which are placed in different availability
zones. While the availability zones of a data center are
interconnected quite well, there are huge differences in the
available bandwidths and the latencies between data centers.
A distributed DBMS has to take this into account by being
able to dynamically react to changes.

However, besides the financial and technical aspects (per-
formance, latency) there are also legal aspects which have
to be considered. Because of the General Data Protection
Regulation (GDPR) (or other similar regulations), for in-
stance, Gavel is not allowed to store sensitive data in other
countries outside of the EU. Furthermore, there are legal
regulations regarding data safety which, for instance, require
some portions of the data to be replicated.

Gavel’s research on user behavior has shown that there is
a direct correlation between the performance of the web ap-
plication and the number of biddings. Therefore, Gavel has
an interest in an autonomous cost-based optimization and
adaption of the database system at runtime to achieve both:
high performance under high workload and low resource
costs in times of low workload.

Such heterogeneous and diverse requirements are nei-
ther addressed with a single off-the-shelf database system
nor with standard techniques already available from Cloud
providers and thus necessitate a holistic solution addressing
global data replication and partitioning with several local
databases combined in a flexible way.

III. POLYPHENY-DB

The key idea behind Polypheny-DB is to combine the
flexibility of self-adaptive and data model agnostic poly-
stores (see Figure 1) with the power of adaptive data
management protocols. With this, we will bridge the gap
between optimization “in the small” and “in the large” to get

higher throughput, lower latency, and a larger set of features
at minimal costs – compared to both optimizations alone.

A. Cost-based Data Partitioning and Replication

At the global level, Polypheny-DB will be organized as
a cluster of sites of equal importance. The Polypheny-DB
cluster has no dedicated master and follows a read-anywhere
and update-anywhere [7] approach.

In contrast to NoSQL systems favoring availability over
data consistency [8], Polypheny-DB will, like NewSQL
systems [9], provide ACID guarantees [10], [11]. This comes
with challenges like the proper synchronization and propaga-
tion of updates while still keeping the throughput as high as
possible. This coordination can be done using coordination
protocols like the two-phase commit (2PC) [12] or three-
phase commit (3PC) [13] protocol, or by using consensus
protocols like Paxos [14] or Raft [15] [16]. Polypheny-DB
will use the 2PC protocol for coordination since it requires
less messages compared to 3PC or Paxos knowing the
drawback of the blocking behavior for failure cases.

The following subsections discuss Polypheny-DB’s cost-
based data partitioning and replication pipeline.

1) Data Partitioning: In the need of dealing with the
“volume” of Big Data [17], data partitioning (a.k.a. data
fragmentation or data sharding) is able to distribute the data
across several sites. Additionally, if partitioned in a proper
way, data partitioning balances the load on the sites and
increases the overall throughput by reducing the number of
distributed transactions.

The actual partitioning of the data can be done horizon-
tally (e. g., by distributing records), vertically (e. g., by dis-
tributing attributes), or in a hybrid way, i. e., a combination
of horizontal and vertical partitioning.

In addition, different approaches for building the data
partitions exist: partitions can be build, for example, by
using value ranges of attributes, by using graph partitioning
algorithms by first organizing transactions or the workload as



a graph (e. g., Schism [18]), or by building an affinity matrix
encoding the “connection” of transactions to attributes or tu-
ples (e. g., AutoStore [19]). Recently, also machine learning
approaches have been proposed (e. g., GridFormation [20]).

Based on our previous work on Cumulus [21], Poly-
pheny-DB will be able to partition data explicitly based
on user-defined flags on attributes resulting in horizontal
partitions based on value ranges, or implicitly by collecting
access patterns of the workload occurring on the Poly-
pheny-DB sites resulting in hybrid partitions aiming on the
minimization of the overall query response latency.

2) Data Replication: The second step is the identification
of partitions which are subject to replication. This can have
several reasons: First, if the workload analysis identified a
partition which is mostly read from, load balancing can be
exploited by replicating this partition. Second, requirements
may exist demanding a certain availability for a specific
data partition. Such demands are typically raised by high
availability applications or for data safety reasons (keeping
a certain number of copies).

However, replicating a partition comes at the cost of ad-
ditional overhead for update transactions since the partitions
have to be kept consistent. To ensure this data correctness,
it is important that the set of sites participating in a read
transactions intersect with the set of sites participating in a
write transaction. This intersection property [22] is required
for having the possibility to get the latest data. However, note
that this also depends on the applied concurrency control
model. These sets of sites are called quorums and various
quorum protocols exist: Read-One-Write-All (ROWA) [23],
Weighted Voting [24] and its instance Majority Quorum [25],
Tree-based [26], and Grid-based Quorum protocols [27].

Polypheny-DB will be able to choose from a variety
of replication protocols to select the best option satisfying
the requirements. Partitions will be replicated autonomously
if it can exploit the benefits of load balancing or they
will be replicated based on user or application preference
(e. g., minimum amount of copies). Further and based on
our previous work on QuAD [28], Polypheny-DB will use
novel adaptive replication protocols supporting changing
requirements and dynamic environments.

3) Data Allocation: The third and final step of the
pipeline in the large is the allocation of data to the Poly-
pheny-DB sites. The allocation step focuses primarily on
load balancing, storage capacities, network distances, and
further policies. In general, the allocation step again tries
to minimize the overall query response latency without vio-
lating constrains introduced by the system, its environment,
SLAs, or policies.

In a first version, Polypheny-DB will use a static allo-
cation technique; yet, because of the dynamic environment,
further versions of Polypheny-DB will use a dynamic allo-
cation strategy.

4) Cost-based Data Management: All three techniques of
the data management pipeline in the large presented above
are driven by an underlying cost model. This model attempts
to reflect the benefits and drawbacks of each technique:
For example, the cost model for data replication considers
the increasing coordination overhead for each added replica
versus the increase of the availability of a data partition.

For Polypheny-DB, we will extend the BEOWULF cost
model introduced in [29] which combines two replication
protocols with a data partitioning protocol to a comprehen-
sive cost model integrating all three pipeline steps, namely
data partitioning, data replication, and data allocation.

Further, the cost model contains parameters reflecting
the Service Level Objectives (SLOs) derived from SLAs,
like the desired availability, maximum monetary costs, or
minimum throughput. To do so, a translation from SLAs to
SLOs is required like the approach introduced in [30].

B. Polystore

This section focuses on the actual storage and retrieval
of data on the individual instances of Polypheny-DB. In the
following, we use the taxonomy introduced in [31].

The idea of polyglot persistence is to choose the right
tool (query language) for a concrete use case: when storing
data used by different types of applications, it is beneficial
to also use different languages for retrieving the data. This
idea has its roots in the concept of polyglot programming,
which takes advantage of the fact that different languages are
suitable for solving different problems. According to [31], a
polyglot system uses a set of homogeneous data stores and
exposes multiple query interfaces and languages.

Multistore systems are systems which manage data across
heterogeneous data stores. All data is accessed through one
single query interface which supports one query language.

The idea of a polystore is to combine the advantages of
polyglot persistence and multistore database systems.

As depicted in Figure 2, in Polypheny-DB, clients submit
queries using different query languages. In addition, Poly-
pheny-DB stores data in a set of heterogeneous data stores.

In the following we will have a closer look into the most
important parts of the local data management within the
Polypheny-DB vision.

1) Query Interfaces: Building a database system with a
maximal degree of flexibility already starts at the level of
the supported query languages. Polypheny-DB will support
a wide range of different query languages based on different
data models and through different query interfaces. A key
feature of Polypheny-DB is that all data is available through
all query interfaces and using all supported query languages.
Polypheny-DB will feature at least one SQL dialect and a
simple Create, Read, Update, Delete (CRUD) [32] query
language, but also other query languages such as a graph-
based query language like openCypher [33] are planned. For
this, incoming queries are translated into an algebraic tree
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Figure 2. Query interfaces used to communicate with Polypheny-DB from outside and interfaces within the system.

representation, for instance following [34] which introduces
a mathematical model unifying sets (SQL), graphs (NoSQL),
and matrices (NewSQL) based on associative arrays.

2) Data Storage: Based on the assumption that some
data stores are better suited for a specific scenario than
others, we build Polypheny-DB in a polystore manner by
combining multiple heterogeneous data stores with different
characteristics. We even go a step further and create a pool of
very specialized data store connectors which can be loaded
and unloaded at runtime.

In our previous work [6], we have introduced a mul-
tistore which connects to different relational, SQL-based
data stores. With Polypheny-DB we will extend the set of
supported data stores by adding document stores and graph
stores. The idea is to support as many specialized database
systems as possible. As depicted in Figure 3, the data stores
can either be located on the same physical node as the
Polypheny-DB instance itself or on another node within
the same availability zone. This allows to easily scale the
capacity of the logical Polypheny-DB instance by adding
additional physical nodes.

Depending on the type of data store, it can be deployed
using different types of storage media, as the latter have
a strong influence on the performance of a data store.
Because there are significant differences w.r.t. the costs of a
slow spinning disk and fast main memory, cost models will
address this trade-off by storing the frequently used (hot)
data items in stores running on fast (but expensive) storage
and the only rarely queried (cold) data items on data stores
running on slow but rather cheap storage. This is especially
important when Polypheny-DB is deployed in a Cloud with
a pay-as-you-go model. Furthermore, it also depends on the
constraints by the user if the system is allowed to store data
only on volatile memory.

As depicted in Figure 3, there is one special store located
within Polypheny-DB. This store deals with one of the major
drawbacks of this kind of polystore (see [6]): short-running
and simple transactional queries. While the additional over-
head introduced by the polystore is not significant for long

running queries, it can be for short-running transactional
queries. Hence, this is addressed by having a data store
which stores frequently used data and which is integrated
into Polypheny-DB.

Because the underlying data stores require the query
to be expressed using different query languages and are
based on different internal data models, Polypheny-DB has
to translate from its algebraic query representation into
the native query languages of the underlying data stores,
including translations between different SQL dialects [6] and
mapping between different data models.

The available pool of specialized data stores will allow Po-
lypheny-DB to deal with a wide range of possible workloads.
Furthermore, the possibility to add and remove data stores
at runtime will allow to adapt Polypheny-DB to changes in
the workload. Besides a manual configuration, we also plan
in a second step to enable Polypheny-DB to automatically
adapt itself by adding and removing data stores.

3) Adaptive Data Placement: A key element of Poly-
pheny-DB is the dynamic placement of data items across the
underlying data stores based on the workload. This can either
be done by placing all data on all stores (e. g., Icarus [6])
or only on one store (e. g., MuSQLE [35]).

A benefit of storing all data on all stores is the possibility
to decide for every query which store has the best char-
acteristics for executing it. While this is a good approach
for scenarios with no or only a small amount of data
manipulation queries, it has massive drawbacks for scenarios
which include frequent changes of the data due to the
required overhead for keeping all data stores consistent.
Also, the redundant data storage results in massive waste
of storage space, especially in big data scenarios. In such
scenarios, we further have the problem that the smallest data
store defines the maximum capacity of the database system.

Storing data only on one store solves these problems.
However, this comes with several other drawbacks: while
in a fully-replicated environment the system can always
choose a data store which supports all required features and
is expected to be well suited for this type of query, this is
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Figure 3. Possible deployment of a Polypheny-DB instance. While there is one data store which is tiddly integrated into Polypheny-DB, the other
underlying data stores are either located on the same physical node as Polypheny-DB or on another physical node in the same availability zone.

not possible anymore when storing data just on one store.
Hence, a combination of partitioning and replication

of data is also required at the local polystore level of
Polypheny-DB. In general, we can distinguish between
partitioning the database (distributing whole entities) and
partitioning the table (distributing parts of an entity). For
the latter, we can furthermore distinguish between vertical
partitioning (distributing the attributes of an entity) and
horizontal partitioning (splitting the set of items of an entity).
Polypheny-DB will adaptively combine both approaches
depending on the specified requirements and the observed
and predicted workload.

This allows those data items of an entity which are
frequently requested to be stored in main memory while
the items which are only rarely requested in transactional
workloads are stored on a data store optimized for OLAP
queries running on cheaper storage. Furthermore, the system
can statically replicate relatively small entities which are
often used in combination with other data (e. g., the category
table in the Gavel scenario).

4) Temporal Data Management: Updates can be done in-
place or by storing several versions of the same data item.
For the latter, the locations where these new versions are
stored are relevant. The decision whether to update in-place
or to store several versions strongly depends on the expected
queries, storage layout, and the frequency of updates.

In previous work, we have introduced ARCTIC [36], an
index structure tailored to archive queries which allows to
search for different versions of data items in a partially
replicated environment. In Polypheny-DB we plan to inte-
grate temporal data management as integral part of the data
placement.

This enables Polypheny-DB to decide on the level of data
items whether the current version should be stored on all

stores which hold versions of this data item or only on a
subset of these stores. The latter results in stores which only
hold some outdated versions of the data. These stores can for
instance be updated periodically or in times of low workload.

In Polypheny-DB, clients will have the option to provide
an “acceptable” freshness for each database transaction [37].
This allows to use “outdated” data stores for instance to
execute queries where data freshness is not that important (or
where an acceptable freshness level is specified explicitly).

5) Multimedia Data: A special focus of Polypheny-DB
is on supporting retrieval tasks within large multimedia
collections. Due to the enormous data size of multimedia
collections and due to the complexity of their associated
metadata, this introduces new and interesting problems. In
our previous work, we have introduced ADAMpro [38], a
combined database and information retrieval system that
is tailored to big multimedia collections and used together
with our multimedia retrieval engine vitrivr [39]. With Poly-
pheny-DB we want to go a step further by building a holistic
system which jointly supports business typical applications
and multimedia retrieval. This allows to handle scenarios
like the similarity search for auction photos introduced in
Section II.

6) Indexes: While indexes allow to speed-up read
queries, they introduce an overhead for data manipulation
queries [40]. Furthermore, they consume additional memory
and storage space. Therefore, while an index potentially
improves the overall performance of the database system,
it also increases the costs.

In general, Polypheny-DB distinguishes between two
kinds of indexes: in-store indexes and polystore indexes.

In-Store Indexes: are indexes which are created on one
of the underlying data stores. This allows the system to
create indexes which are beneficial for the usual workload
of a specific data store. The drawback of in-store indexes is



that they are not available on other data stores.
Polystore Indexes: are indexes being created and main-

tained on the level of Polypheny-DB. They are accessed by
the query engine to simplify the query before its execution.

An interesting body of research concerns the strategy
which controls the index generation in a polystore environ-
ment. To decide weather or not it is beneficial to create a
polystore index or an in-store index on the subset of the
underlying data stores (if they support indexes) requires
a sophisticated control logic. The reason for this is the
separation between Polypheny-DB and its underlying data
stores. The polystore index can only be used to simplify
the queries sent to the underlying data stores. But this is
only feasible if the set of results from the index look-up is
not too large since otherwise we end up with extremely large
queries. Therefore, the combination of a polystore index and
an in-store index on some stores might be beneficial.

Index support in Polypheny-DB will be implemented in a
modular manner which allows to support different types of
indexes at the same time. Hence, special index types (e. g.,
similarity indexes for the multimedia data) can be added.

7) Query Planning: When Polypheny-DB receives an in-
coming query, the planner analyzes the query and estimates
its execution time. It does so by analyzing the operators
used and by comparing it with the execution time of other
queries which are similar in structure, entities, functions, and
operators [6]. This very rough estimation is used to limit the
time for the following more detailed analyzes and query plan
generation. The idea is to invest more time for (potentially)
long-running queries than for short-running queries.

First, the planner generates a set of viable query plans.
The process of creating new query plans stops when the
previously determined time is over and there is at least one
viable query plan. For creating a query plan, Polypheny-DB
will try different methods including splitting the query into
sub-queries and executing them on different data stores,
replacing query functions not available on a data store with
an equivalent statement, and copying data to another store.

In a second step, the query planer assigns costs to every
query plan. It therefore considers the current workload on
the involved data stores, the availability of indexes, and data
freshness. Furthermore, it considers the estimated runtime of
the query based on the execution time of previous queries
which had the same structure (as described in [6]).

Finally, the planner selects the query plan with the lowest
costs and sends it to the execution engine which executes it.

C. Self-Adaptiveness

A key feature of Polypheny-DB will be its ability to
adjust itself according to the current and predicted workload.
Polypheny-DB achieves this by continuously adjusting its
own configuration by, for instance, adding and removing
underlying data stores and by creating and dropping indexes.

Furthermore, an automated resource management will
make sure that Polypheny-DB is always well-prepared for
processing the current workload. Especially if deployed
in the Cloud, this feature allows Polypheny-DB to au-
tonomously add and remove resources (physical storage,
compute nodes, Cloud DBs and analytic services) at runtime.

To define the space in which the system will be able
to adapt itself, Polypheny-DB allows the user to define re-
quirements the system has to fulfill. These requirements can
include aspects like the required level of data persistence,
support for special query functions, and the required level
of data freshness. Furthermore, it will be possible to specify
the required level of data consistency which influences which
data stores can be used by the system.

With these requirements the system has a lower bound
which it is not allowed to break and therefore defines, to-
gether with a cost model, the space in which Polypheny-DB
can adapt itself to the current and predicted workload.
Additionally, it will be possible to provide additional re-
quirements or override existing ones on a per transaction-
level (e. g., overriding the required level of data freshness).

Such self-adaptiveness requires a good estimation of the
current and future workload to proactively address the neces-
sary changes. Polypheny-DB will rely on previous work on
workload prediction in Cumulus [21] and BEOWULF [29].

Other events Polypheny-DB has to react on are, for
instance, changes in the network latency or bandwidth which
might require a reorganization of the data allocation. This is
also the case for schema changes initiated by the user.

D. Discussion

The previous subsections have introduced the two levels
of data management in Polypheny-DB (data center-wide
replication and partitioning, and inter-center polystores) and
the additional capability to automatically adapt both layers
to changing workloads. However, these aspects discussed
before do not cover all the major challenges to be addressed
by a system like Polypheny-DB, especially regarding the
interactions between both levels and topics that are relevant
at both levels. Therefore, in what follows, we extend our
discussion to these additional challenges.

1) Inter-level Dependencies in Polypheny-DB: An intrin-
sic feature of Polypheny-DB is the consideration of two lev-
els of abstraction for the optimization of data management
and data access. Hence, many aspects need to be considered
at both levels. In addition to concurrency control, this also
includes the replication and partitioning of data. The global
level determines the sites at which replicas or partitions
need to be stored. Then, within each site, replication and
partitioning in the small is under control of each local poly-
store. Hence, two replica sites (at global Cloud level) can
independently decide to have completely different patterns
for partitioning or replicating their data across data stores,
based on the different, site-specific workloads or on different



SLA-based requirements of the local users. Therefore, a
major challenge in Polypheny-DB is to give both levels the
necessary autonomy for these decisions while avoiding that
the combination of the chosen allocation and replication
scheme is adverse (i. e., that the decision at one levels
negatively impacts a decision made at the other level). This
is particularly important in the presence of Polypheny-DB’s
self-adaptiveness, since the decision to migrate, replicate,
or relocated large volumes of data needs to be coordinated
across both layers.

2) Concurrency Control: The concurrency control
model (CCM) applied is a requirement for data consistency.
CCMs reach from strong session one-copy serializabil-
ity (SS1SR) [41] over one-copy serializability (1SR) [42],
distributed snapshot isolation (DSI) [43], causal consis-
tency (CC) [44] to eventual consistency (EC) [45]. Note that
the stronger data consistency is, the more synchronization
overhead it requires and the more it reduces the overall
latency compared to weaker data consistency levels.

Based on our previous work on C3 [46], Polypheny-DB
will include a meta-CCM allowing the system to dynami-
cally switch between various consistency models (e. g., 1SR,
Session Consistency, EC) based on a dedicated cost model.

At the polystore level, the multiple versions of data
items that are kept locally will be leveraged by applying
multiversion concurrency control [47].

Following the ideas of multi-level transaction manage-
ment [48], concurrency control in Polypheny-DB is applied
at global level and within the local polystores separately,
albeit not independently.

3) Data Freshness: If applications do not request the
most recent version of a data item, the inconsistencies
caused by weaker CCMs can be leveraged by allowing the
result having older versions implicitly created by weaker
CCM. Further, the temporal data management feature of
Polypheny-DB can be used to allow clients to query outdated
data. However, this necessitates that applications are able
to express their constraints on data freshness [37] or the
allowed level of “outdatedness” which then also has to be
propagated down to the local stores of Polypheny-DB.

4) Data Migration: The dynamic creation of partitions
or replicas requires (large) volumes of data to be moved
between sites within the Cloud and between stores. For the
actual data migration, two approaches exist: in the offline
approach, the system halts for user interaction, migrates
the data, and starts again. While this has consequences on
the overall performance, it avoids problems regarding data
consistency which may occur when data that is subject to
migration is updated in parallel. The online approach can
either be done in background while the system is operating
normally, or it can leverage user queries to migrate the data,
i. e., to materialize the query results on another site / store.
Polypheny-DB will focus be on the online migration, both
at global level and within the local polystores.

IV. RELATED WORK

The last years have seen a vast proliferation of different
types of poly- and multistore database systems [31]. In con-
trast to Polypheny-DB and to our best knowledge, none of
the existing systems combines data management techniques
at global (Cloud) level with techniques combining different
data stores at the local level. In this section we compare
Polypheny-DB with these systems and argue why none of
these systems existing systems provides a holistic solution.

In BigDAWG [49], heterogeneous data stores are orga-
nized into “islands” (e. g., relational or array islands). Every
island has an associated query language and data model.
Inter-island queries are resolved by migrating data between
the islands. In contrast to Polypheny-DB which provides a
query language independent access to the whole data and
takes care of required data migrations, BigDAWG requires
this to be specified by the user.

The CloudMdsQL multistore system [50] is an SQL-like
engine and language which together are able to integrate
data from relational, unstructured, and big data data stores.
Subqueries can take advantage of the processing frameworks
of the connected data stores. Similar to Polypheny-DB,
CloudMdsQL’s query engine follows the wrapper approach
preserving the autonomy of the underlying data stores.
However, Polypheny-DB allows its clients to chose from a
variety of query interfaces making application development
more comfortable, since application developers can continue
using their respective data model.

The AWESOME [51] polystore solves the problem of the
initial assignment of data to the appropriate data store by
using a decision table that maps the data model of the data
source to a specific data store. Further, [51] introduces the
data declaration language ADIL together with inference rules
mapping ADIL onto data stores. Compared to Polypheny-
DB and the other polystores introduced before, AWESOME
has its main focus on data investigation and analytics.

Hybrid.poly [52] is a main memory polystore using sev-
eral data models (e. g., a relational, an array, and a JSON
model) that are stored in memory. To query Hybrid.poly,
an extension of SQL is used to allow complex analytical
queries on the combination of non-relational and relational
data. In contrast, Polypheny-DB will offer different query
interfaces and Polypheny-DB is also not limited to holding
the data exclusively in main memory.

QUEPA, introduced in [53], allows the augmentation and
exploration of the data stored in a polystore. It enriches the
query results with further information and links to connected
data being stored in other data sources which have not been
queried in the original query. QUEPA can be easily built on
top of Polypheny-DB by implementing a DBMS connector.
This would allow the exploration and augmentation of the
data stored in Polypheny-DB.



V. CONCLUSION AND OUTLOOK

In this paper, we have presented the Polypheny-DB vision
of a globally distributed, adaptive polystore in the Cloud.
The main feature of Polypheny-DB is the combination of
i.) global data partitioning and replication in the Cloud,
based on user requirements and the resource optimization
of Cloud providers and ii.) local polystores at individual
Cloud data centers that leverage the strengths of different
data models, data stores, and storage media. In addition,
as most decisions at both levels are based on the actual
workload, both global and local level data management is
subject to dynamic adaptations. We expect this combination
to holistically address a very broad range of current and
forthcoming challenging on managing large and heteroge-
neous collections of data.

While both approaches (global data replication and parti-
tioning, and local polystores) already exist, the originality of
Polypheny-DB is the seamless combination of both layers
and advanced features such as the support for multimedia
retrieval, temporal data management, and different levels of
data freshness.

Although the paper’s focus is on the presentation of the
Polypheny-DB vision, most building blocks, both at global
and local level, already exist. In our future work, we aim at
extending and combining them, with particular attention to
the interactions and dependencies between both levels.
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