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Abstract—Despite the fact that automatic content analysis
has made remarkable progress over the last decade – mainly
due to significant advances in machine learning – interactive
video retrieval is still a very challenging problem, with an
increasing relevance in practical applications. The Video Browser
Showdown (VBS) is an annual evaluation competition that pushes
the limits of interactive video retrieval with state-of-the-art tools,
tasks, data, and evaluation metrics. In this paper, we analyse the
results and outcome of the 8th iteration of the VBS in detail.
We first give an overview of the novel and considerably larger
V3C1 dataset and the tasks that were performed during VBS
2019. We then go on to describe the search systems of the six
international teams in terms of features and performance. And
finally, we perform an in-depth analysis of the per-team success
ratio and relate this to the search strategies that were applied, the
most popular features, and problems that were experienced. A
large part of this analysis was conducted based on logs that were
collected during the competition itself. This analysis gives further
insights into the typical search behavior and differences between
expert and novice users. Our evaluation shows that textual search
and content browsing are the most important aspects in terms
of logged user interactions. Furthermore, we observe a trend
towards deep learning based features, especially in the form of
labels generated by artificial neural networks. But nevertheless,
for some tasks, very specific content-based search features are
still being used. We expect these findings to contribute to future
improvements of interactive video search systems.

Index Terms—Interactive Video Retrieval, Video Browsing,
Video Content Analysis, Content-based Retrieval, Evaluations.

I. INTRODUCTION

Video data has become ubiquitous in our daily lives as its
usage ranges from traditional entertainment and broadcasting
to camera systems used in manufacturing, medicine, smart
cities, transportation, or even wearable devices. This creates
the need for systems that enable efficient and effective storage,
organization and management of video data, while at the same
time allowing users to quickly satisfy a particular information
need on top of large video collections. The different research
aspects in video retrieval, ranging from indexing strategies
to query formulation, and their importance for the field are
outlined in several surveys [1], [2].
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Two particular challenges in video retrieval are the inher-
ent lack of structure in video data and the richness of a
video’s content, especially if compared to still images. Most
importantly, however, the sheer quantity and diversity of col-
lected data keeps challenging video management and retrieval
systems. To address these issues, automatic video analysis
has become a major research field over the last decades,
providing significant enhancements, and aiming at temporal
segmentation [3], concept annotation [4], object and speech
recognition [5], scene captioning and event detection [6]. All
of which can be leveraged to enable efficient video retrieval.

However, despite the recent advances in machine learning,
and especially deep learning, automatic content annotation
can still not match the quality of manual annotation by a
human expert. But even if perfect annotation was achieved,
it fails to solve all potential problems end-users searching in
a collection might encounter. There are several reasons for
this: Firstly, the annotation process itself is context-specific
as well as subjective and the outcome may differ between
multiple users and search contexts (e.g., “is it a medium sized
or a large house?”). Hence, users often fail to correctly infer
automatically assigned labels for a given scene at query time.
Secondly, user-generated queries are often incomplete, since
humans tend to have difficulties expressing their information
need or simply because their memory of a scene may lack the
details required to reconstruct a sufficiently accurate query.
Therefore, even though we may have tens of thousands of
semantic concepts available, users often fail to select the
‘correct one’ to find the desired content when it counts. Finally,
given a sufficiently general query, the number of matching
scenes can potentially clutter the result set, making it difficult
to separate noise from relevant items. All these aspects lead
to a need for a human-computer cooperation, in which users
interactively explore result sets, inspect items, and reformulate
queries or try different search paths or mechanisms in a trial-
and-error fashion.

The Video Browser Showdown (VBS) [7]–[9] – first held
in 2012 – is an annual video search evaluation campaign
that employs a competitive format, which allows participating
teams to evaluate their state-of-the-art interactive video re-
trieval systems in direct comparison to one another. It provides
a fair and live performance assessment of retrieval systems
for the same search tasks, on the same dataset, in the same
environment. The participants have to perform a large number
of varying tasks over several hours, such as visual and textual
known-item search (KIS) and textual Ad-hoc Video Search
(AVS), which are either automatically evaluated by the VBS
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competition server or manually assessed by live judges. After
several sessions and about 8 hours of searching, the team
with the highest number of total points is selected as the
winner. In contrast to TRECVID, which aims at evaluation
of automatic search performance with an inferred ranking-
based measure and a pooled ground-truth, the VBS evaluates
interactive search performance of expert and novice users
with task-specific metrics and an exhaustive assessment of
submissions. Consequently, the two evaluation campaigns can
be seen as complementing each other. This is also why they
collaborate and use the same dataset for AVS with partly
overlapping tasks. A detailed overview and history of the VBS
can be found in [10].

This paper summarizes the evaluation results of the Video
Browser Showdown 2019, which is the 8th iteration of VBS
and the first time it operates on the new V3C1 dataset [11]
– a corpus of over 1000 hours of video data gathered from
the web and designed to be representative of web video. The
videos in the dataset span a wide range of content and visual
styles as well as resolutions, codecs, and frame rates. The
paper performs an in-depth analysis of task results and team
submissions and gives insights into the most thorough and
detailed interaction log analysis ever conducted during a VBS
competition.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of various deep-learning methods
currently in use for video retrieval. Section III describes
the tasks of the Video Browser Showdown and outlines the
specific setting during the 2019 iteration. Section IV continues
with a brief overview of the participating teams, their tools and
strategies. The individual systems are described in more detail
in the referenced publications. Section V then outlines on the
competition results while Section VI goes into further detail
by analyzing the action logs gathered from all participants.
Finally, Section VII summarizes all presented results and
draws conclusions.

II. DEEP-LEARNING METHODS FOR VIDEO RETRIEVAL

Current video retrieval tools rely a lot on deep learning
methods. Therefore, we provide a brief overview of recently
proposed approaches that can be used in this domain. The
descriptions of the participating video search tools presented in
Section IV, and the referenced papers therein, provide further
insights into how VBS 2019 participants make use of specific
deep learning methods.

Deep-learning has influenced the area of video retrieval in
various ways over the past few years. One area where it is read-
ily applied is in the creation of new feature transformations,
which augment or even replace the previously used, manually
engineered features such as the well-known SIFT [12] feature
descriptor. These feature learning approaches have led to
several representations applicable to the visual domain in
general [13], [14], as well as to more specific retrieval tasks,
such as finding videos showing a specific person [15], for
example. These methods produce a wide range of descriptor
sizes, which has also led to the application of deep-learning
methods to the problem of hashing [16] in order to construct

compact representations of the video content. Many of these
methods operate in the visual domain and are often trained
on still images rather than videos. But an increasing number
of approaches explicitly considers multiple modalities, such as
visual, aural and textual information [17]–[19].

In order to improve the retrieval of videos based on vi-
sual sketches, several directions have been considered so far.
While some methods focus on line sketches and perform
transformations that capture both the semantics as well as the
visual appearance of the sketch [20], others aim at spatial-
semantic retrieval [21], [22] based on pixel-wise labelling
using semantic segmentation of images [23], [24] and broader,
colored sketches as an input. Other approaches, such as
GauGAN [25], provide a glimpse at how generative models
can be leveraged to generate realistic video scenes from
user’s sketches. However, generalizing this model to fit with
a complex video dataset containing different types of people,
objects, and activities is still an unsolved problem.

For the support of more traditional text-based queries, sev-
eral deep-learning based approaches exist. The most straight
forward is to automate the semantic annotation of content
– which was often done manually before – by applying
concept, object, and activity detectors to video segments or
individual frames. For concept detection, a very common
network architecture is ResNet [26] with a different num-
ber of layers (ResNet50, ResNet101, ResNet152), trained on
one or several semantically labelled image datasets, such as
ImageNet 1k [27], ImageNet Shuffle [13], TRECVID SIN
Task [28], Research Collection [29], MS COCO [30], and
MIT Places [31]. For object detection and localization, a
currently popular architecture is FasterRCNN [32], commonly
trained on MS COCO or the OpenImage [33] dataset. For
activity detection, networks such as C3D [34] or P3D [35]
can be used, which are commonly trained on different datasets
including Sport1M [36], Kinetics [37], ActivityNet [38] or
EventNet [39]. To generate richer textual descriptions rather
than just a set of simple labels, scene captioning [40] methods
are employed as well.

For text-based querying, embedding the query into the
visual space for matching is also a promising approach.
Consequently, the W2VV [41] and W2VV++ [42] models
proved their potential in the TRECVID-AVS tasks in 2018 and
2019. There even exist extensions to language models such as
BERT [43], which enable visual question answering, visual
commonsense reasoning, referring expressions, and caption-
based retrieval [44].

III. THE VIDEO BROWSER SHOWDOWN

The Video Browser Showdown [7]–[10] is an annual video
retrieval competition – collocated with the International Con-
ference on Multimedia Modelling – where researchers can
evaluate the efficiency and effectiveness of their video retrieval
approaches. The participating teams solve retrieval tasks as
quickly as possible and submit their results to the VBS com-
petition server1, where they are scored based on correctness
and time that has elapsed since the start of the task.

1source code available at https://github.com/klschoef/vbsserver/
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Table I: Textual KIS Tasks used in VBS 2019. During the
competition, the description is being displayed sentence by
sentence, 0, 60 and 120 seconds into the task.

VBS ID Query

Textual2019-10
A slow pan up from a canyon, static shots of a bridge and red rock mountain. A river is visible
at the ground of the canyon. The bridge is a steel bridge, there is a road right to the mountain
in the last shot.

Textual2019-11
A protest camp on a public square, with blue canvas cover, the middle shot shows the statue of
a horseman from below. The last shot shows an improvised library and people reading. Behind
the statue is a building with scaffolding.

Textual2019-12
Inside shot of a church, first moving towards a glass window, then turning left, showing a
golden image of Mary and the Child. Wooden interior, there are flowers on the altar below the
image of Mary. Handheld camera, a golden chandelier is hanging from the ceiling.

Textual2019-13
Interior of a radio studio, host in pink sweater on the left, talking. Guest in the right corner,
in an intermediate shot two further guests are visible. Screens and microphones on the table, a
dark green pin board in the background on the left.

Textual2019-14
Shot from a bike, first along a desert path, then on a street, overtaking riders on a tandem. On
the desert road a plush flamingo sits on the front of the bike. The riders on the street wear
yellow safety vests, first seen from behind, then from the side.

Textual2019-15
Close-up of a blond girl in front of a bookshelf, in between shots of her and elderly men
walking. She wears a green vest, one of the old man wears dark and patterned clothes. In the
final shot they walk off and she turns around.

Textual2019-18 A sequence of three starts with a paraglider, filmed from the view of the pilot. The paraglider
is green/white with a blue stripe in between. In the last shot, the pilot’s shadow is visible.

Textual2019-20 Close-up of hands playing the piano, then of hands using a tablet. The tablet shows musical
score sheets. ’videoblocks’ is superimposed over the shot with the tablet.

The tasks fall into one of three categories: visual known-
item search (visual KIS), for which participants have to find a
unique 20 seconds video sequence within the collection based
on a preview, textual known-item search (textual KIS), for
which participants have to find a unique, 20 seconds video
sequence based on a textual description, and ad-hoc video
search (AVS), where participants are required to find as many
video sequences as possible that satisfy a broader textual
description. The latter task type is equivalent to the TRECVID
Ad-hoc Video Search (AVS) task [45] and has a partial overlap
in the queries that are being used.

All the aforementioned tasks have been created and can
be classified along the taxonomy introduced in [8], which
is based on the expected number of results and the prior
knowledge users have about the scene, resulting in the table
{target, class} × {example, visual, textual, none}. While
the assessment of submissions for tasks of the former two
types require no human input, the submissions for AVS tasks
are assessed manually on site by an independent jury. The
scoring and the rational behind it are described in [8].

A. Competition structure in 2019
Like in previous years, VBS 2019 was split into a private

session, with only the experts participating, and a public
session held in front of an audience during the conference
reception, with both expert and novice tasks. Experts are
users from the participating teams (typically the developers
themselves), while novices are users randomly selected from
the audience, who are likely to have some prior knowledge
of multimedia retrieval, but have no experience in using the
particular tool other than a brief introduction they received
prior to the session. During the public session, only visual
KIS and AVS tasks were being solved, as they tend to be more
entertaining for the audience, while in the private session all
types of tasks were performed. Thus, AVS and visual KIS tasks
were both part of the expert and the novice session. However,
the AVS tasks were slightly adjusted for the novice session
by making the descriptions more specific and therefore the
number of potentially relevant scenes smaller. Therefore, the
results for the AVS tasks with corresponding numbers in the
two sessions cannot be compared directly.

Table II: AVS Tasks used in the VBS 2019 Expert (E) and
Novice (N) sessions.

VBS ID Find shots showing ...
AVS2019-10 E a person jumping with a bike (not motorbike).

AVS2019-10N N a person jumping with a motorbike
(not a bicycle).

AVS2019-11 E bride and groom kissing.
AVS2019-11N N two people kissing who are not bride and groom.
AVS2019-12 E a surfer standing on a surfboard.

AVS2019-12N N a surfer standing on a surfboard, not in the water.
AVS2019-13 E people hiking.

AVS2019-13N N people walking in a gay pride parade.
AVS2019-14 E inside a moving car.

AVS2019-14N N two people talking to each other inside a
moving car.

AVS2019-16 E two or more people talking to each other
(outdoors).

AVS2019-17 E people walking on a city square or street.
AVS2019-17N N people walking across (not down) a street

in a city.
AVS2019-23 E with snow or ice conditions (outdoors).
AVS2019-24 E a single person playing a musical instrument.
AVS2019-25 E electrical power lines.

Compared to VBS 2018 [8], there have been two small
adjustments to the tasks: Firstly, the time to solve textual
KIS tasks has been increased from 7 to 8 minutes to account
for the difficulty of this task type. Secondly, the presentation
of visual KIS tasks has been changed to make them more
challenging. Visual KIS tasks try to mimic the case in which
the searcher can recall a visual representation of the target
scene from memory but does not have a sample at hand to
compare against. To come closer to this scenario, the visual
query clip is now displayed without distortion at first but then
gradually blurred-out as time passes. Eventually, users can
only determine the most salient properties of the scene and
the main objects it depicts.

The 2019 iteration of the VBS competition also saw the
introduction of a new dataset, the V3C1 [11] – the first shard
of the Vimeo Creative Commons Collection (V3C) [46] –
which consists of 1,000 hours of video content as it can be
found in the wild. This new dataset replaces the previously
used IACC.3, which is comprised of videos collected from the
Internet Archive2. The IACC dataset [47] has been available
for several years now and was shown to no longer represent the
kind of video content commonly found on the Internet [48].
The V3C remedies this discrepancy in representativeness while
also introducing videos with more modern content, codecs,
resolutions and frame rates.

B. Tasks

The task selection process for VBS 2019 followed the same
procedure as in earlier years [9]. Table I lists the textual KIS
tasks used during the private session with the expert users.
Each task description consists of three sentences, of which
the first is displayed at the beginning and the other two are
delayed and displayed 60 seconds and 120 seconds into the
task. After 120 seconds, the complete description becomes
visible.

2https://archive.org/
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Table III: Overview of the different functionality implemented
by the participating systems.©: functionality is implemented,
X©: functionality has been used during the competition. Ref-
erences to related work are included where applicable.
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Visual sketch © [55] X© [56] X© X© X© [57]
Motion sketch © [55]
Semantic sketch X© X© X©
Query by image © [55] X© [58] X© X© X© X© [59]
Concept labelling X©3 [60] X© [58] X© X© X© X© [61]
Free text to
concept matching X© [62]

Action labelling
X©

[63], [64]
ASR X©4

OCR X©3

Metadata X© X© X© X© [65]
Multi-modal query X© X© X© X© X©
Temporal query5 X©
Video playback X© X© X© X©
Video preview6 X© X© X©
Shot context7 X© X© X© X© X© X©
Video summary8 X© X© X© X©
Grid sorting9 X© X©
Query history © X©
Result history X©
Custom shots X© [66] X©
Fast submission X© X© X© X© X©
Collaboration X© ©
SQL-Database X©
MongoDB-Database X©
Custom indexing X© X© X© X© X© X©
Overall score 91 86 53 44 43 40

Table II lists the AVS tasks used in the expert and novice
sessions. Due to the new V3C1 dataset, these tasks have been
created specifically for VBS, as no TRECVID AVS tasks
were available for the new collection. In line with the former
TRECVID AVS tasks, the new tasks were designed to be
sufficiently general. However, during the private session with
the experts users it turned out that some of the tasks resulted
in an extremely high number of relevant results, thus for the
novice session, the tasks were rephrased to be more restrictive.

IV. VIDEO SEARCH TOOLS AT VBS 2019

The following section briefly introduces the six different
systems that participated in VBS 2019 and outlines the strate-
gies employed by the teams when using their respective tool.
A summary of the functionality implemented by the various
systems is presented in Table III and Figure 1 gives an
overview of their user interfaces.

3https://cloud.google.com/vision/
4https://cloud.google.com/speech-to-text/
5users describe two (usually different) consecutive frames/shots
6display of a subset of the frames without playback of the actual video
7information about preceding and following shots
8representative frames used to preview a video and enable fast navigation
9results organized in a 2D grid such that similar shots are close

A. vitrivr

1) Overview: vitrivr is an open-source10 multimedia re-
trieval stack [67] with support for content-based retrieval of
several media types [68]–[70]. It supports a wide range of
feature generation techniques, some of which are powered
by various deep learning approaches. The vitrivr stack –
together with its predecessor, the IMOTION system [71] –
has been participating in VBS since 2015 [72]. For video,
vitrivr generates features for (temporal) segments and their
key-frames and it offers several query modes, such as query
by sketch, query by example, as well as textual concept,
caption, OCR and speech transcript search. In 2019, support
for semantic sketch queries was added, in which semantic
concepts are represented by a hand-drawn, colored free-form
area. A detailed description of vitrivr’s capabilities and their
use during VBS 2019 can be found in [49] and [73].

2) Search strategy: The vitrivr team had a slightly different
strategy for each of the three task types, all favoring textual
over sketch-based query formulation. Since search for text-
on-screen and speech transcripts are among the query modes
vitrivr offers that provide the highest selectivity in a time-
sensitive, competitive setting, the team always paid close
attention to on-screen text, dialogue or lyrics in the visual
KIS task target segment. In case no suitable dialog or text was
available within the task, the strategy became the same as for
textual KIS tasks, which predominantly relied on the selection
of distinctive semantic concepts that could be recognized by
one of the available detectors. To increase the selectivity,
several concepts were used in combination where applicable.
Both approaches still resulted in relatively large result sets in
many cases and consequently, browsing was always an integral
part of the search process. For AVS tasks, often only very
few general concepts were used for the query in order to
produce as many results as possible. From these results, the
relevant ones were manually selected, paying attention to not
select too many shots from the same video or shots that were
temporally very close to one another. Redundant submissions
were minimized by synchronizing a list of shots that had
already been submitted across the two system instances. In
a few cases, where the search results of a new query were not
satisfying or the retrieval took longer than expected, the query
history was used to browse through the previously retrieved
results to increase the number of submissions. Since only two
team members were allowed to operate a system instance each
at any given time, the third team member could act as a
coordinator, informing the searching members in case they
were using the same query terms and suggesting alternatives.

B. VIRET

1) Overview: The VIRET tool [50], [66] is a frame-
based, interactive video retrieval system relying on its own
temporal segmentation using a TransNet Deep Convolutional
Network architecture [74]. Query initialization approaches
involve keyword search based on a set of 1243 supported labels
(automatic annotation by retrained NasNet [58]) extended

10source code available at https://github.com/vitrivr
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(a) vitrivr (b) VIRET (c) VIREO

(d) VISIONE (e) ITEC (f) VERGE

Figure 1: Screenshots of the participating tools

by additional hypernyms, query by simple color sketches
(ALL/ANY color queries [56]), semantic sketches (regions
with faces, considering NOT and ALL/ANY specification) and
query by example images (from the result set or an external
server). Each modality supports a second temporal query,
taking into account the content of the nearby temporal context.
The intermediate results of each query modality are filtered to
the top-K results (filters are configurable) and the intersection
of these intermediate results is returned as the overall result
set, sorted by a selected modality. The top ranked frames are
presented in a grid with easy temporal context inspection. By
using the mouse wheel while hovering over a frame with the
cursor, one can play a sequence of preceding/following frames
and show representative context frames in a vertical stripe. In
addition, the tool supports filtering of black & white frames
and filtering by frame brightness, the number of displayed
frames from a shot, and the number of displayed frames from
a video.

2) Search strategy: The search strategy reflected the inter-
face design focusing on multi-modal and temporal queries.
Both users often relied on temporal keyword queries (e.g.,
“canyon” followed by “bridge”), complemented by color/face
sketches and example images. One of the two tool instances
also relied on an external search engine (e.g., Google Images)
that was used to query for suitable example images using
keyword search for subsequent use in an example-based query
within the VIRET system. After the novice session, this feature
was praised by the novice user controlling the tool. Over the
course of the tasks, VIRET tool users inspected the temporal
context of retrieved frames or opened their video summaries.
For AVS tasks, the users collected promising candidates into
a basket and submitted all the verified shots at once.

C. VIREO

1) Overview: VIREO is a concept-based interactive video
search system that has been developed and has participated
in VBS since 2017 [75]. The tool incorporates three retrieval

modalities including query by color-sketch, query by metadata
and query by concept [76]. The core is the query by concept
modality with a concept bank supporting up to 15K concept
labels from the categories human, animals, plants, objects,
places and actions. To enable the fusion of results from
different modalities, a simple weighting scheme is applied.
In addition, a similarity search module is used to look for
semantically similar shots from the video corpus. Furthermore,
the tool supports filtering black-bordered and black & white
shots to refine search results. The browsing interface of the tool
presents the retrieval result in a zig-zag pattern where the more
relevant candidate shots stay in the top rows and relevance
decreases from left to right. Picking a candidate shot from this
interface triggers its context view and video playback. In 2019,
the VIREO team proposed a new browsing interface [77] to
present the hierarchical representations of video shot clusters.
In addition, they integrated a video-to-text module [78], which
maps the textual query and video feature to the same latent
space using a bi-directional GRU for video retrieval.

2) Search strategy: The two VIREO team members used
the same tool with the same configuration in all VBS sessions,
employing similar approaches for the different tasks. For
visual KIS tasks, if the color distribution of the video frame
was clearly discernible and exhibited saturated colors, the
query by color-sketch modality was utilized. In other cases,
they used the same approach as for textual KIS tasks, where
queries with distinctive descriptions of the given topics were
formulated. After that, manually browsing the results and
picking the correct shot played a critical role. During the query
formulation process, one team member focused on using the
query by concept modality, whereas the other mainly used
the video-to-text module. In AVS tasks, the advantages of
the query by concept modality could be leveraged particularly
well. The initial query mostly consisted of a single, distinctive
concept. Once a relevant shot matching the query has been
identified, the similarity search module could be employed to
search for similar items for further investigation.
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D. VISIONE

1) Overview: VISIONE is a content-based video retrieval
system that participated to VBS for the very first time in 2019.
It primarily leverages state-of-the-art artificial intelligence
techniques to analyze the visual content and exploits highly
efficient indexing techniques to ensure scalability. The system
supports query by scene tag, query by object location, query
by color sketch, and visual similarity search. For the scene tag
search, it leverages the image tagging system proposed in [79],
which is able to label images with about 15K concepts. VI-
SIONE also uses YOLOv3 [80], YOLOv3-OpenImages [81],
and YOLO9000 [82] object detectors, with about 9500 object
tags. The R-MAC [83] descriptors are adopted as global
image descriptors for the similarity search functionality. All
descriptors (scene tags, dominant colors, object location, and
visual descriptors) extracted from the video key-frames were
encoded with a surrogate textual representation and efficient
technologies for text retrieval were adopted for the indexing
and searching phases [84]–[86]. The system’s user interface
provides a text box to specify the scene tags and a canvas
for sketching objects and/or colors appearing in the target
scene. The canvas is split into a grid of 7×7 cells, where the
user can draw simple bounding boxes to specify the location
of the desired objects and/or colors. To speed-up drawing,
the most common objects and the colors are grouped into
a palette, from where they can be dragged & dropped onto
the canvas. The user can modify the drawn bounding-boxes
in order to refine the search. Moreover, so as to be more
selective, the user can apply a range of filters, such as limiting
the number of occurrences of specific objects in each of the
results, or retrieving only black & white key-frames. Then,
while browsing through the results, the user can leverage
image similarity to refine the search or group the results
by video to have a different view for inspection. Finally, to
check if the selected key-frame matches the query, it is often
helpful to display all the key-frames of a specific video (key-
frame context) or to play the video starting from the selected
candidate frame. A more detailed description of the VISIONE
system can be found in [52].

2) Search strategy: The first step to initiate a search in
VISIONE, for both KIS and AVS tasks, is to draw one or
more bounding boxes of objects/colors, or to enter some scene
tags. It is also possible to combine these two operations.
We observed that during the competition, the most popular
search strategy to address KIS tasks relied on query by object
locations and scene tags. In contrast, for the AVS tasks, the
image similarity search, query by scene tags, and query by
object locations were mainly employed. Since image similarity
search retrieves key-frames of similar visual content from
different videos, that functionality turned out to be particularly
useful during the AVS task. We also observed that in both the
KIS and AVS tasks, the search by color sketch functionality
was barely used since it seemed less stable and sometimes it
negatively influenced the quality of the results. It is worth
noting that at the time of the competition, the VISIONE
system did not support some relevant functionality like any
way of cooperation between the team members, simultaneous

submissions, or query history. Thus, especially during the AVS
tasks, the performance of the VISIONE system suffered from
redundant submissions and the “slow” submission rate of the
individual instances.

E. ITEC

1) Overview: The ITEC team employed their actively de-
veloped diveXplore system [87] (partly based on findings from
[88]), a shot-based interactive video browser building on the
concept of self-organizing feature maps, i.e., pre-calculated
arrangements of video shots based on certain criteria such
as deep features, colors, faces, text, etc. In addition, the tool
offers several alternate shot retrieval possibilities: keyword-
based search using metadata or tags extracted using a variety
of convolutional neural networks, color-based search via scene
sketching or HSV color filtering and shot similarity search
based on deep features as well as HistMap [89] – a custom-
built, region-based color descriptor. Participating since VBS
2017 [90], diveXplore has constantly been improved over the
years and the version developed for VBS 2019, as detailed
in [87], features an autopilot mode for browsing improvement
and a more refined sketch search.

2) Search strategy: Similarly to other systems, applied
search strategies varied from task to task. While textual KIS
tasks were predominantly approached by textual deep feature
or metadata search potentially combined with similarity search
on retrieved results, visual KIS tasks first were assessed by
their color composition. For color intensive or distinctive shots,
sketch search or specific color feature maps were utilized.
Otherwise, if said task appeared visually expressive, a concept-
specific feature map served as a basis for narrowing the
search space. If unsuccessful for a certain period of time,
the same strategy as for textual KIS tasks was employed.
AVS tasks were almost exclusively solved via keyword search
with subsequent similarity search, where the team paid special
attention to find shots that stem from different videos using
diveXplore’s group-by-video feature so as to to avoid being
penalized by the scoring system. Generally, the two team
members refrained from using the same keywords and tried
to deploy different search strategies throughout the tasks.
Result lists were carefully assessed before trying out different
keywords or strategies. Finally, if the correct video had been
found for any type of KIS task, the frame to submit was
determined in a team effort with the occasional involvement
of helpful bystanders.

F. VERGE

1) Overview: The VERGE tool is an interactive video
search engine that has been participating to VBS since 2012.
VERGE provides a frame-based representation of videos in
a grid-like user interface for video retrieval. The following
indexing and retrieval modules have been integrated into
the VERGE system: concept-based retrieval, visual similarity
search, automatic query formulation and expansion, clustering,
text-based search and multi-modal fusion. On top of these
modules, a re-ranking capability is provided, which allows
the user to combine different modalities and consequently
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Table IV: Overview of the scores for the individual task types
per team (top-2 scores written in bold typeface)
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vitrivr 100 100 80 76 100 91
VIRET 99 38 100 100 91 86
VIREO 69 20 41 45 88 53
VISIONE 52 45 21 67 35 44
ITEC 57 25 23 64 47 43
VERGE 50 55 31 40 22 40

functions as a multi-modal search module. To generate the
visual description of the frames, a selection of visual concepts
is detected for each of them, including the 1000 ImageNet
concepts, 345 TRECVID SIN concepts, 500 event-related
concepts, and 365 place-related concepts. The architectures
used for these concepts are all based on deep convolutional
neural networks. It should be noted that a mapping of free
text to concepts is realized by using the pool of the concepts
existing in the system. Moreover, each frame is globally
represented by using the last pooling layer of a fine-tuned
GoogleNet on 5055 concepts, thus allowing query by example
visual search. Frames can also be globally described using the
MPEG-7 color layout descriptor and by mapping them to an
8-color palette, color-based frame clustering is supported. As
far as the video representation of the dataset is concerned,
three modules are available. The first exploits the video text
metadata, considers online databases (Wordnet, Babelnet) and
replaces terms with their respective semantic concepts, in
order to add versatility to the user query results. The video
textual metadata is also used for topic modeling using Latent
Dirichlet allocation. Finally, each video is represented by a
vector incorporating the top-20 detected concepts and video
similarity comparison is performed by computing the cosine
distance between the videos.

2) Search strategy: The VERGE team members followed
similar approaches in the VBS session, with some variations
depending on the task. In all cases, the initial step was for one
of the team members to search for a characteristic keyword
between the visual concepts and for the other member to look
at the video metadata. For AVS tasks, once results for the
desired concept had been retrieved, the two members started
submitting as many shots as possible, after some internal
coordination to make sure that the two members focused on
different videos. For textual KIS tasks, the results for the
selected concepts were examined and the videos in the result
set were investigated to find the one most similar to the query
description. Finally, for visual KIS tasks, re-ranking by color
and similarity by image have proven to be very useful.

V. COMPETITION RESULTS

This section presents the overall results of the competition
as well as a discussion on the setting under which they
were produced. Table IV lists an overview of the scores the

tL

0

VITRIVR VIRET VIREO VISIONE ITEC VERGE

Visual KIS Textual KIS Visual KIS novices
(1,3,4,2,5)(1,2,3,4,5,6,7,8,9,10)

Figure 2: Time elapsed until the first correct submission per
team for all scoring teams at VBS 2019. The tasks for novices
were the same as for experts, except for their order. Time is
shown on the vertical axis, increasing from bottom to top, the
tasks are ordered horizontally from left to right and grouped
by task type. Figure taken from [66].

teams achieved in the individual task types and highlights the
two highest scores per task type. All task types are scored
independently of one another. The function used to determine
the score S for both visual and textual KIS tasks is given in
Equation 1 where t denotes the time required for the correct
submission and T is the total available time for the task. nws

denotes the number of incorrect submissions made by a team
prior to the correct one in the same task and p designates the
constant penalty for an incorrect submission. The scores are
normalized such that the best team receives 100 points per task
type. The overall score is then determined by mean-averaging
the scores achieved in the individual task types.

S = max

(
0,

⌈
50 + 50 ·

(
1− t

T

)
− (p · nws)

⌉)
(1)

All the scoring functions used are described in more detail
in [8]. When looking at Table IV, one can see that with the
exception of the novice visual KIS task, vitrivr and VIRET
were the two highest scoring teams.

Figure 2 visualizes the time that had elapsed for each team
before the first correct submission was registered. The total
time for visual tasks was 5 minutes and for textual tasks 8
minutes. The large spread in submission times indicates, that
it is still challenging for many teams to find the relevant video
segment within the allotted time limit. We can also observe
a high recall achieved by the VIRET team, which solved all
expert visual KIS tasks and 75% of textual KIS tasks. This
performance was achieved by frequent use of temporal and
multi-modal queries targeting the scenes of interest. The query
interface was also effectively used by the team of novice
users, who were able to localize the target scenes on the
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first page of the result set in four novice tasks (according
to our log analysis). However, in two cases the correct frame
was overlooked. We hypothesize that this was caused by the
larger number of results displayed on a single page (88 or 140,
depending on the tool instance).

The relatively low submission times of the vitrivr team were
achieved by always trying a text-based query first, which has
the lowest time requirement for query formulation and lookup
of all the query modes supported by the system. In many cases,
an early text query capturing a particularly salient aspect of
the target scene was sufficient for the result set to contain the
relevant item with a very low rank. This was especially true,
when screen text or spoken text was involved. We also received
the feedback from our novice user, that the user interface was
very easy to use after just a brief introduction, which explains
the high scores for the novice tasks.

The strategy employed by the VERGE team differs between
the visual and the textual KIS tasks. Specifically, during the
visual KIS task, the successful submissions usually occurred
towards the middle or at the end of the given time limit
since the VERGE team relied on image similarity. Thus,
each relatively similar image lead to a slightly more similar
one until the desired scene was finally found. In contrast,
for the textual KIS task, the team leveraged the search for
concepts and it become clear very quickly whether or not the
required concepts are available or not. Therefore, the correct
submissions either occurred in the first half of the given time
frame or not at all.

VISIONE mainly suffered from a lack of a proper speech-
to-text tools and also missed some of the image captioning
tools used by other teams. The image analysis pipeline em-
ployed was often not powerful enough to solve some tasks,
particularly in the textual KIS category. Furthermore, the user
interface was too simplistic and lacked useful functionality
such as a video preview, easy browsing of the results or a
simple submission process that could cope with the volume of
data produced during AVS tasks.

The VIREO team experienced three shortcomings in their
system. Firstly, the system does not provide text-based retrieval
on video speech, which was one of the keys to solve the visual
KIS task. Secondly, solving the textual KIS task required
tedious browsing activities. The reason is that the temporal
information of the video was omitted, leading to ineffective
retrieval. Thirdly, the user interface design only allows the
user to submit shots within the same video while the scoring
function for ad-hoc video search favors diversity rather than
the number of submissions. Moreover, system errors occurred
in the regular expert session and impaired the engagement of
the one user who was the most experienced. Regardless of
these shortcomings, however, the overall results demonstrate
that this tool can compete with other tools.

Regarding results obtained by the ITEC team, it became
apparent that the multitude of search strategies provided by
their system overall negatively affected its performance. While
for some tasks it was tempting to use strategies such as
feature map browsing and sketch search, these approaches
proved rather time-consuming either leading to large delays
for completing tasks or to not solving them at all. Therefore,

it proved to be more feasible to mainly conduct text-based
retrieval in combination with similarity search. Additionally,
the multitude of functionality provided with the ITEC system
renders it less intuitive to use, which is reflected in its rather
poor performance during the novice session.

VI. LOGGING AND ANALYSIS

During the competition, each team was required to log the
actions performed by the systems and their users in order to
gain additional insights into the search strategies that were
employed by the different teams. This section presents the
acquisition and analysis of these action logs.

A. VBS 2019 Log Format

As in 2018, all participants were required to send a log
of the activities they performed (i.e., user interactions) during
each task together with the results they retrieved to the VBS
competition server, where that data would be stored for future
analysis. Each of these submissions is enriched with basic
information about the submitting team, team member (tool)
and the time of the submission as perceived by the server.

While the log format in 2018 consisted of a simple sequence
of letters, indicating the utilized functionality of a particular
system, it was redesigned in 2019 so as to offer more flexibility
and expressiveness. The new log format is JSON based and
consists of a sequence of objects each describing an action.
Each of these actions is described by five values: timestamp,
category, type, value and attributes, with the latter two being
optional. For the category, there are five possible values –
namely, ‘text’, ‘image’, ‘sketch’, ‘filter’ and ‘browsing’ –
which can be further specified by the type attribute. Each event
belongs to exactly one category but can have multiple types.
The options for the type attribute depend on the selection of
category. For example, possible types for the ‘sketch’ category
would be ‘color’, ‘edge’, ‘motion’ or ‘semantic’, depending on
what the systems support and what the user chooses to employ
in any particular moment. We tried to agree on a controlled
vocabulary to use with this field prior to the VBS competition.
The value field can be used to log the actual content of the
query that was used in a particular instance, for example, the
search string in a text query. The attributes can be used to
encode additional information, such as the number of expected
query results. However, both attributes and value are ignored
in the following analysis.

B. Log Pre-processing

The log pre-processing was started with some basic data
cleaning. We had to normalize the event timestamps, since
different interpretations of the UNIX timestamp format seem
to exist. Most importantly, however, there was a need to
normalize the usage of the fields category and type. Even
though we had agreed on a defined list of possible values
for those fields, there still were some minor deviations from
that standard. Most of these cases could be attributed to typing
errors (e.g., ‘bw’ instead of ‘b/w’) whereas, in a few cases,
teams came up with new terms that had not been included in
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Figure 3: Heatmap of the different action categories over time
for all textual known-item search tasks.

the vocabulary prior to the competition. Based on the feedback
from the individual teams, we decided on a case-by-case basis,
whether the new terms should be incorporated, changed or
dropped.

In a second step, we corrected the timestamps for all
the individual events that were logged. Since the logging
of interactions takes place in the UI and therefore on local
machines using different, local clocks, there was a minor
yet notable shift between the timestamps submitted by the
different team members. These shifts could sometimes make
the difference between an event being counted towards a
particular task or not. In order to correct for these shifts, we
calculated the minimum difference between the submission
time as reported by the server and the submission time logged
by the respective tool and normalized each event timestamp
by that difference. We did that for each combination of team
and tool. The assumption here is, that there is a constant
difference between the local clock of a particular machine and
the server clock. The difference we can measure also includes
other factors, such as delays caused by network transmission.
This is why we chose the minimum value instead of the mean,
so as to approximate this inherent difference as accurately as
possible.

Last but not least, we decided to sample the submitted
actions at a maximum rate of 2Hz. That is, if multiple actions
of the same category and type for the same team and tool
were to be logged within a time window of 500ms, only one
of them would be considered. This reduces the weight of high
frequency logging of certain types of UI interactions that are
triggered by automatic events such as scrolling. From the data
we could tell, that these types of events would otherwise cause
a strong bias towards actions in the ‘browsing’ category.

C. Log Analysis

Based on the timestamps associated with each logged action,
Figures 3, 4 and 5 present the temporal density of actions
with respect to their category for the textual, visual expert and
visual novice known-item search tasks respectively, showing
lower densities in blue and higher densities in red. The
timings for the AVS tasks could not be determined due to an

Figure 4: Heatmap of the different action categories over time
for all expert visual known-item search tasks.

Figure 5: Heatmap of the different action categories over time
for all novice visual known-item search tasks.

overlooked implementation problem in the VBS server. These
tasks are therefore not considered for this analysis.

There are some clear commonalities between the three
figures, most notably the high density of browsing-related
actions. Interestingly, also text actions were very frequent in
comparison to the other modes of query formulation, irrespec-
tive of the type of task. Based on these action densities alone,
it is however not possible to directly infer any differences in
search strategies between the two user groups.

When comparing the action densities of novice users from
Figure 5 to those of the expert users as shown in Figure 4, it
can be seen that the peak of action density occurs a little later
into the task. This is to be expected, since the novice users
were, by design, not familiar with the systems and the details
of the competition.

To illustrate the transitions between action categories, Fig-
ure 6 depicts bi-directional chord diagrams of sequential action
pairs. The outer ring of such a diagram illustrates the fraction
of this action type with respect to all actions, similar to a
pie-chart. The inner ribbons indicate the amount of transitions
between a given pair of actions. Since these are bi-directional
diagrams, the color of the ribbons are not indicative of the
source of a ribbon but rather used to make it easier to
distinguish them. The arc-segment of each ribbon is relative
to the outgoing fraction of an action category, unidirectional
links therefore narrow to a point on one side of the ribbon,
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Figure 6: Bi-directional chord diagram of action bi-grams for
expert (top) and novice (bottom) visual known-item search
tasks.

since there is no link in the opposite direction.
For reasons outlined in Section VI-D, we do not present

a similar analysis on a team and task-type level as such an
analysis cannot be used to compare teams/tools using the
current state of the logs.

When comparing the two diagrams in Figure 6, there is
again little difference between the logged strategies employed
by experts and novices. Users from both groups primarily
alternate between textual queries and browsing, with more
transitions towards browsing.

Figure 7 breaks the action categories down to their in-
dividual sub-types. On this level of detail, there is again
little difference between the aggregated strategies of experts
and novices. Both user groups spend the majority of their

Table V: Last non-browsing action before a successful submis-
sion per team. Please note that several non-browsing action log
records are missing for VIREO and ITEC systems.
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text: metadata 1 1 2
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activities iterating on textual query representations, followed
by the exploration of the retrieved results. These results are
primarily browsed in their relevance-ordered representation,
i.e., a ranked list. The second most common browsing activity
is the exploration of the temporal context of a particular item,
followed by the use of pre-computed video summaries or the
videos themselves. The primary difference between the novice
and the expert user group is that, similarly to what can be
seen in Figures 5 and 4, the latter group makes more use of
specific system functions, such as custom filters and result
fusion instructions.

In summary, we can clearly see from the chord diagrams
that users mainly switch between textual search and browsing,
and typically also start with one of the search features – at least
for KIS tasks.

The presented diagrams do however not directly show what
action generated the results that, when browsed, led to a
successful submission. This information is presented in Table
V, which lists the last non-browsing actions in each task prior
to a successful submission, aggregated by the type of action
and team. The rows in this table refer to the same types of
actions as are depicted in Figure 7. The entry for text: custom
signifies the use of speech transcription for the vitrivr team
whereas the same entry refers to a switch in concept maps
for ITEC. This is due to a bug in the respective logging
subsystems.

In Table V it can be seen that, aggregated over all teams,
the action that led to the most successful submissions was the
textual search for a particular semantic concept, followed by
an image-based search using global features. For example, the
VIRET system often used example images from the result set
or external sources to search for the most similar representative
frames (indicated by “image: globalfeatures”). That example
image could potentially be a part of a more complex temporal
and/or multi-modal query.

D. Discussion

After two years of interaction logging at VBS, we would
like to take a look back and summarize what can and cannot
be achieved with the current logging efforts. Whereas a
first “naive” attempt based on a simple log format in 2018
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Figure 7: Bi-directional chord diagram of action category and
type bi-grams for for expert (top) and novice (bottom) visual
known-item search tasks.

demonstrated that simplified logging is a viable way to get
some insight into the features that have been used during the
competition, this second attempt has led to more thorough
evidence of what actions were performed at a given time.

Provided with a simple, unified JSON based log format and
a controlled vocabulary of action categories further divided
into types, most of the VBS teams were able to integrate
logging mechanisms into their tools to at least some extent.
Hence, as the most remarkable achievement compared to the
VBS era before interaction logging, the high-level statistics

about search time and success rate (presented in Figure 2)
measured on the server side, can be complemented with
evidence of system components and models that have been
used during the search. Hence, log analysis can finally reveal
which models from the tool descriptions actually contribute
to the final results in the competition. For example, it became
very clear that speech transcription was used by the vitrivr
team to successfully solve seven tasks, whereas the new query
by semantic sketch functionality was rarely ever used at all.
In addition, we can also estimate basic transitions between
various modes of interaction during the competition. However,
there are still several issues that prevent a more sophisticated
analysis and comparative evaluation of the tools.

Firstly, despite the unified log format, there is still the
issue of different logging implementations that log specific
cases differently. In particular, the implementations can vary
in how specific instances of implicit or transitive interactions
are logged and what logging frequency is used. For example, a
tool can skip the logging of some interaction type or a longer
stream of consecutive actions of the same type, such as scroll
actions. Another issue is with log records for a sequence of
implicit query processing steps, e.g., search by text followed
by an (implicit) filter to the top 10% of the dataset, where
the tools can either log all steps or just the initial query
formulation step. Some user interfaces also provide a more
complex presentation logic where a single interaction on one
panel may transitively trigger multiple changes, which again
can be logged in different ways as with implicit actions. In
addition, there is always the possibility that teams misunder-
stand (or incorrectly implement) the mapping of some type of
interaction with regard to the list of suggested categories and
types.

Secondly, the logs can be incomplete due to technical
issues and missing log recovery protocols within the tools. For
example, some logged records were lost due to network issues,
while other tools that maintained logs just in main memory
crashed during the competition.

Hence, using the current logging approach, it is not always
possible to fully reconstruct the complete interaction history
and to compare tools in terms of their level of interactivity
and the variability of models that were employed. So far,
the logs help to clarify how one particular task was solved
by a specific team and which actions were used (or, more
specifically, logged) during the competition. However, every
attempt at using the current state of the logs to objectively
and quantitatively assess and compare the efficiency and
effectiveness of the tools would be futile.

Since newly participating tools and teams may also bring
new approaches and may be revealing new issues, we currently
admit that these logs should be thought of as informative in
nature rather than being a means to obtain an exact measure of
a tool’s performance. Detailed comparative interaction studies
require very comprehensive synchronization in the preparation
of participating tools, which is hard to achieve for a larger
event such as VBS. Regardless, in addition to interaction
logging, we plan to introduce a new result set logging for
VBS 2020, which captures the ranked list of results produced
by each tool (i.e., store top k ranked frames and the employed
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query settings). Such logs could be used to additionally
compare the tools in terms of their ranking models as it would
enable us to track the target frame of a task in the provided
result set, e.g., as proposed in [66]. Such additional logs could
provide valuable information on a tool’s effectiveness from
different perspective.

VII. CONCLUSION

In this paper, we presented a detailed analysis of the Video
Browser Showdown 2019. The analysis based on the logged
UI interactions per team as well as the overall scores of
the competition show that there are still multiple approaches
that can be used for efficient and effective, interactive video
retrieval and that no dominating strategy has emerged. It can,
however, also be observed that there is a clear increase in
the use of retrieval approaches that are somehow based on
deep learning methods, such as object recognition or scene
captioning, and that textual input is the preferred method
of query formulation. All participating teams relied, among
other methods, on semantic annotations of various forms.
Other methods based on deep learning approaches, such as
the extraction of features with a high salience that can be
represented as text, e.g., the transcript of a spoken dialog
or text displayed in the video, have also been shown to be
highly effective targets to base queries on. This effectiveness
is probably a consequence of the intuitive and (near) loss-less
query representation. Another promising approach for known-
item search is temporal query formulation [66], for which
users describe two consecutive shots and temporal closeness
of results is taken into account.

Despite this trend, however, each team still spends most
of the time during the competition on browsing the retrieved
results and manually identifying and selecting the relevant
item(s). This leads to the conclusion that it is still not feasible
to efficiently formulate just a single query that is specific
enough for the desired item to be ranked among the very top
results in the list. This is especially true with the increased
collection size of V3C1 and the inherently increased potential
for false positives and noise. The need to go back and forth
between querying and browsing also shows that interactive
exploration and refinement are still a necessary part of the
retrieval process. It is therefore not surprising, that UI/UX
design considerations become important factors for the out-
come of the competition. This can at least be interpreted into
the results for the novice session, in which randomly selected
users operated a tool they were not familiar with. For this
session, the score discrepancies between the different teams
tended to be larger than for the expert session tasks.

Finally, we can conclude that the further formalization and
specification of the logging mechanism, as compared to the
previous iteration of VBS [9] last year, enabled us to conduct a
much more thorough and detailed analysis of user interactions.
We have seen a substantial improvement of data quality and,
hence, only little pre-processing was required. However, there
are still some challenges such as the synchronization of time
across participants as well as modelling the wide range of
different modes of interaction into a common, controlled

vocabulary. While the current logging mechanism already
constitutes an improvement over the one used in 2018, it
still requires further refinement in order to be able to produce
detailed insights into the various search strategies employed by
the teams as well as their relative effectiveness. Furthermore,
it became apparent that complementing the interaction logs
with logs of the results list might be highly beneficial for
future analyses. Consequently, the experience encourages us
to put even more thought and effort into further improving
the logging system prior to next year’s installment of VBS.

Regardless of the substantially larger V3C1 video collection
comprising 1000 hours of video, as compared to the 600 hours
for the previously used IACC.3, two systems still managed
to solve 18 out of 23 evaluated known-item search tasks.
Considering just visual expert known-item search tasks, the
observed success rate was even higher for both systems, which
relied mostly on query (re)formulation. This might also imply
that the current setting used for visual known-item search,
where users observe the “known” scene played in the loop on
a data projector, is too easy to be considered a realistic case.
Future instances of VBS might therefore reconsider the way
in which these search tasks are presented.
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