
Polystore Systems and DBMSs:
Love Marriage or Marriage of Convenience?

Marco Vogt, David Lengweiler, Isabel Geissmann, Nils Hansen,
Marc Hennemann, Cédric Mendelin, Sebastian Philipp, Heiko Schuldt

Databases and Information Systems Research Group
Department of Mathematics and Computer Science, University of Basel, Switzerland

{firstname.lastname}@unibas.ch

Abstract. Polystore systems allow to combine different heterogeneous
data stores in one system and also offer different query languages for ac-
cessing data. While this addresses a large number of requirements espe-
cially when providing access to heterogeneous data in mixed workloads,
most polystore systems are somewhat limited in terms of their function-
ality. In this paper, we make the case to ‘upgrade’ polystore systems
towards full-fledged databases systems, leading to the notion of Poly-
DBMSs. We summarize the features of such PolyDBMSs and exemplify
the implementation on the basis of our PolyDBMS Polypheny-DB.

Keywords: Polystore Systems · Database Management Systems.

1 Introduction

In the last years, polystore systems have become popular as an attempt to bridge
the heterogeneity of data models and to combine the best-of-breed in a single
system – by seamlessly integrating the concepts of multistore databases and
polyglot persistence [3]. A multistore database system combines heterogeneous
data stores and manages data across these stores by offering a single query
interface and a single query language. Polyglot persistence offers different query
languages for accessing data. Most existing polystore systems focus on selected
aspects but do not provide the full-fledged feature set of a database system.

According to a summary given in [2], Ted Codd identified the following func-
tionality a full-fledged database system has to provide: (i) Storage of data (ii) Re-
trieval and update of data (iii) Access support from remote locations (iv) User
accessible metadata catalog or data dictionary (v) Support for transactions and
concurrency (vi) Facilities for recovering the database in case of damage (vii) En-
forcing constraints, and (viii) Support for authorization of access and update of
data. When deploying polystore systems in real world applications, it has turned
out that the full DBMS functionality is required, not (only) the support for het-
erogeneous data stores and different query languages.

In this paper, we make the case for upgrading polystore systems to full-fledged
databases – for which we introduce the term PolyDBMSs – and we discuss the
challenges for the different database functionality. We exemplify this on the basis



2 M. Vogt et al.

of Polypheny-DB [4, 5], the polystore database system we have introduced in our
previous work. Polypheny-DB has been published under an open source license1

and participates in 2021 to the Google Summer of Code (GSoC) program.
The contribution of the paper is twofold: first, we identify the challenges

polystore systems have to meet to provide the features of a full-fledged DBMS.
Second, we exemplify based on Polypheny-DB how these feature can be provided.

2 From Polystore Systems to “PolyDBMSs”

In this section, which is organized along Codd’s DBMS features as summarized
in [2], we discuss the challenges for polystore systems in general, leading to a
novel kind of PolyDBMS, and how they are addressed in Polypheny-DB.

2.1 Storage of Data

PolyDBMSs need to support different data storage engines optimized for various
types of data and workloads. These data stores are internally based on different
data models (relational, documents, wide-columns, key-values, graphs, etc.) and
are queried using different query languages and methods. This is an inevitable
feature all PolyDBMSs have to provide intrinsically.

Polypheny-DB currently supports relational, document, and wide-column
stores and different data sources. The connection to data stores and data sources
is handled by adapters. Data Stores are used as physical storage and execu-
tion engines and are fully maintained by and under exclusive control of Po-
lypheny-DB. In order to be able to guarantee correctness, the stores are only
accessed through Polypheny-DB. Data Sources allow mapping data on (remote)
database systems into the schema of Polypheny-DB. There are also adapters for
querying file systems or CSV files. Data source adapters are less complex than
data store adapters and usually only support a subset of the functionality. Po-
lypheny-DB allows that data sources are queried by other systems in parallel.
Hence, Polypheny-DB does not provide support for constraints or data repli-
cation/partitioning on entities originating from data sources, only for the ones
from data stores. The optimization offered by a storage system can be leveraged
when pushing down a complete query (or at least parts of it) whenever possible.
In order to optimize the data transfers, query results are read on demand.

2.2 Retrieval and Update of Data

PolyDBMSs intrinsically need to support the retrieval of data using multiple
query languages and methods. Furthermore, PolyDBMSs should also offer data
modification queries – which usually goes beyond the feature set of polystores.

Polypheny-DB supports DML and DDL operations. The most mature query
language supported by Polypheny-DB is its own SQL dialect PolySQL. It fea-
tures a common set of operations including JOIN, GROUP BY and HAVING clauses,

1 https://github.com/polypheny/Polypheny-DB



Polystore Systems and DBMSs: Love Marriage or Marriage of Convenience? 3

set operations, inner queries and WITH clauses. Additionally, it provides a large
set of query and aggregation functions 2 and it comes with functions specifi-
cally for media and blob data. Furthermore, Polypheny-DB supports a distance
function for k-NN similarity search. Polypheny-DB also supports the MongoDB
Query Language. Moreover, support for the Contextual Query Language is cur-
rently being added. With the Explore-by-Example interface and the Dynamic
Query Builder, Polypheny-DB also supports two innovative query methods [4].

2.3 Access Support from Remote Locations

PolyDBMSs should offer the query functionality identified in Section 2.2 also
from remote locations by offering appropriate APIs and query interfaces.

The JDBC interface of Polypheny-DB supports the retrieval of meta data and
the control of transactions. It also provides prepared statements and batch inserts
and updates. The REST-based query interface allows accessing and modifying
data using GET, POST, PATCH, and DELETE requests. Results are returned as JSON.

2.4 User Accessible Metadata Catalog or Data Dictionary

In addition to the usual metadata maintained by a DBMS, PolyDBMSs also
need to keep metadata on data distribution across different data stores.

Polypheny-DB comes with a data dictionary that has a browser-based user
interface (Polypheny-UI). It allows to view and alter the schema. and it can be
used to browse and modify the data, manage data stores and data sources, and
execute queries using the supported query methods and languages. In addition to
accessing schema information using Polypheny-UI, it is also possible to retrieve
the schema using the JDBC meta functions provided by our JDBC driver.

2.5 Support for Transactions and Concurrency

PolyDBMSs need to offer transaction support at their interface. This is par-
ticularly relevant when data accessed within an application is internally spread
across several data stores.

Polypheny-DB supports concurrent queries, guaranteeing atomicity and iso-
lation using transactions for data stored on its underlying data stores. For data
stored on data sources, support for transactions can be limited and depends on
the capabilities of the data source. The isolation of concurrent transactions is
ensured on the polystore level. Due to data partitioning and replication, only
the polystore has the necessary information for ensuring the isolated execution
of transactions. Locking on the underlying data stores is deactivated for per-
formance reasons whenever possible. Polypheny-DB uses strong strict two-phase
locking (SS2PL) [1] for the isolation of concurrent transactions. The SS2PL im-
plementation in Polypheny-DB comes with the necessary deadlock detection.

2 https://polypheny.org/documentation/PolySQL/Operators/



4 M. Vogt et al.

2.6 Facilities for Recovering the Database in Case of Damage

PolyDBMSs need to support two types of failure cases: (i) failures of the Poly-
DBMS as a whole and (ii) failures of single data stores / data sources.

Polypheny-DB distinguishes between data recovery in the underlying data
stores, and schema recovery, which includes data placement (i.e., the physical
schema mapping). For data recovery, Polypheny-DB assumes that the selected
underlying data stores work correctly and thus delegates recovery there. For the
data stores integrated in Polypheny-DB (e.g., file store), a proper recovery mech-
anism is implemented in the adapter. Schema recovery is under the responsibility
of Polypheny-DB. It leverages the whole catalog containing the schema informa-
tion which is persistently stored using a transactional storage system featuring a
write-ahead log. On start-up, all persistent placements of an entity are restored.
For entities without a persistent placement, only the schema is restored.

2.7 Enforcing Constraints

PolyDBMSs need to enforce constraints that span two or more data sources, not
just constraints within a single store that are natively enforced there.

Polypheny-DB enforces primary key, foreign key, and uniqueness constraints.
The enforcement is done on the polystore level by extending the query plan. The
major challenge with implementing constraint enforcement on the polystore level
is that constraints need to be enforced even if data is stored on data stores that
do not natively support constraints. Furthermore, data can be partitioned across
multiple data stores which makes the full delegation of constraint enforcement to
the underlying data stores unfeasible. Hence, constraint enforcement may only
(partly) be delegated to underlying stores whenever applicable.

2.8 Support for Authorization of Access and Update of Data

In a PolyDBMSs, each single store is supposed to provide necessary mechanisms
for authorizing accesses. In addition, this support also needs to be provided
globally at the PolyDBMS level.

Polypheny-DB supports basic authentication, but there is not yet a complete
mechanism for a role or user-based authorization of specific actions.

3 Conclusion

Polystore systems combine several distributed and potentially heterogeneous
data stores underneath one or several interfaces. Usually, even though the data
stores might be full-fledged database systems, polystore systems lack one or sev-
eral features of a complete DBMS. In this paper, we make the case to ‘upgrade’
polystore systems to full-fledged DBMSs, leading to the notion of PolyDBMSs.
We have surveyed the requirements at the PolyDBMS level and we have briefly
presented how these challenges have been implemented in Polypheny-DB, which
combines the advantages of a polystore system with the ones of a DBMS.



Polystore Systems and DBMSs: Love Marriage or Marriage of Convenience? 5

Acknowledgments: This work has been partly funded by the Swiss National
Science Foundation, project Polypheny-DB (contract no. 200021 172763).

References

1. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman, Boston, MA, USA (1987)

2. Connolly, T., Begg, C.: Database Systems: A Practical Approach to Design, Imple-
mentation, and Management. Pearson (2014)

3. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling Query Processing
Across Heterogeneous Data Models: A Survey. In: Proceedings of the 2017 IEEE In-
ternational Conference on Big Data (BigData 2017). pp. 3211–3220. IEEE, Boston,
MA, USA (2017). https://doi.org/10.1109/BigData.2017.8258302

4. Vogt, M., Hansen, N., Schönholz, J., Lengweiler, D., Geissmann, I., Philipp, S.,
Stiemer, A., Schuldt, H.: Polypheny-DB: Towards Bridging the Gap Between Poly-
stores and HTAP Systems. In: Heterogeneous Data Management, Polystores, and
Analytics for Healthcare. pp. 25–36. Springer International Publishing (2020).
https://doi.org/10.1007/978-3-030-71055-2 2

5. Vogt, M., Stiemer, A., Schuldt, H.: Polypheny-DB: Towards a Distributed and Self-
Adaptive Polystore. In: 2018 IEEE International Conference on Big Data. pp. 3364–
3373. IEEE (2018). https://doi.org/10.1109/BigData.2018.8622353


