
Location-based Queries and Query
Representation in Lifelog Retrieval

Bachelor thesis

Faculty of Science of the University of Basel
Department of Mathematics and Computer Science
Databases and Information Systems Group (DBIS)

https://dbis.dmi.unibas.ch/

Examiner: Prof. Dr. Heiko Schuldt
Supervisor: Silvan Heller, MSc.

Sanja Popovic
sanja.popovic@stud.unibas.ch

18-054-593

28.07.2021

https://dbis.dmi.unibas.ch/


Acknowledgments

First of all, I would like to thank Prof. Dr. Heiko Schuldt for the opportunity to write my
Bachelor thesis in the Databases and Information Systems Group. I also want to thank my
supervisor Silvan Heller for his support throughout this thesis. Last but not least, I am
thankful for the willingness of the participants who took part in the evaluation and those
who reviewed my thesis.



Abstract

Today’s technology allows modern devices to offer high storage capacity that is nowadays
more affordable compared to only few years ago. Together with low-cost sensoring devices,
all kinds of data accumulate over time which poses a challenge to multimedia retrieval.
The annual Lifelog Search Challenge (LSC) is a competition which addresses this problem.
The competition gathers multimedia retrieval systems which compete against each other in
finding a sought image which is described in words. All systems work on the same dataset
which stems from a lifelogger who continuously took images over multiple months. One of
the systems that participates each year in the LSC is vitrivr, a multi-modal retrieval system.
Since image descriptions in LSC tasks often include spatial information, the idea was to ex-
tend vitrivr by a new modality, i.e., location-based search. In this thesis, vitrivr is extended
by a new location-based query formulation and presentation. The thesis also discusses the
applied concepts and evaluates the user experience which finally led to encouraging results.



Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1
1.1 Multimedia Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lifelog Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3
2.1 vitrivr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Lifelog Search Challenge Participants 2020 . . . . . . . . . . . . . . . . . . . . 5
2.3 City-Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Location-based Query 8
3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Correspondence Function and Scoring . . . . . . . . . . . . . . . . . . 9
3.1.4 Result Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Location-based Query Formulation . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Location-based Result Presentation . . . . . . . . . . . . . . . . . . . 12

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Autocomplete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Data Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.5 Map Feature Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Evaluation 17
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Table of Contents v

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 21
5.1 Improvement Ideas of Evaluation Participants . . . . . . . . . . . . . . . . . . 22
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Bibliography 24

Appendix A User Evaluation 26



1
Introduction

Today’s technology is developing fast. The storage capacity in devices grows, becomes more
affordable and huge collections of images, videos, audio files and more can be accumulated
over time. Searching for a specific item, e.g., an image, inside a large collection is inherently
difficult and arises a challenge to multimedia retrieval systems.

1.1 Multimedia Retrieval
Multimedia retrieval is concerned with finding a specific document (e.g., image, video) in
a multimedia collection. The question is how the data should be saved, compared and re-
trieved. A document counts as unstructured data and is rather difficult to retrieve from
a collection. Given the description of a document, the task is to propose documents that
match the description as closely as possible. In order to find a document in a collection, the
properties of the sought document and the properties of the stored ones must be compared.
This is inherently difficult because a document can be described in many different ways.
Structured data, on the other hand, is easy to retrieve because it has defined domains and
can be stored in a relational database.

Some multimedia systems provide various modalities (e.g., Query-by-Example, Query-by-
Sketch) to the user so that they can describe the sought document as accurately as possible.
The various modalities can be combined into one query. With this, the sought document
can be more accurately described. One possible modality would deal with spatial informa-
tion. Location annotations often come with the metadata of an image. When searching,
documents might often be linked by the user to locations where they were captured, which
would be a helpful tool for retrieving.

vitrivr1 is a multi-modal multimedia retrieval system. It offers querying for an image or
a video by combining different types of query terms (e.g., Query-by-Example, Query-by-
Sketch, Query-by-Tag). A query can consist of one to many query terms. Each query term

1 https://vitrivr.org/



Introduction 2

has one or more feature modules assigned which will each retrieve results that are the most
similar regarding the feature. The results will be fused into a final result list and returned
to the user.

1.2 Lifelog Dataset
For this thesis, a particular dataset (multimedia collection) is used. The dataset consists of
191’439 images taken by one lifelogger [6]. Thus, it is a large collection of images and per-
fectly suitable and advantageous for testing, developing and improving multimedia retrieval
systems. In addition, metadata for each image is provided. It contains information such as
timestamps, activities, location names, GPS coordinates, calories, speed, etc. The purpose
of the metadata will be explained in later chapters.

The dataset stems from the annual Lifelog Search Challenge (LSC). In this competition,
multimedia retrieval systems compete against each other. Expert and novice users have to
solve time-limited tasks on the systems. The team whose system delivers the best results in
terms of speed and accuracy wins.
All teams work with the same dataset. The task is to find an image with the help of textual
descriptions. Each 30 seconds, one further part of the description is revealed. The following
is a task from the LSC in 2018 as shown in [5]:
“I was waiting for the train in Dublin city after walking to the station from a sushi restau-
rant where I had dinner and beer by candlelight. It was on a Tuesday night and I ate in a
restaurant called Yamamori.”

1.3 Goal
The goal of this thesis is to extend the existing vitrivr system by a location-based query term
and result presentation where the query term can be formulated on a map and the results
are also shown on a map. The new extension to vitrivr has also to be evaluated. Another
goal is to contribute to vitrivr’s conference paper for LSC 2021 and for this purpose, the
papers of all participating systems at LSC 2020 need to be reviewed.

1.4 Outline
This thesis is structured as follows: Chapter 2 presents different works that embed spatial
information. In Chapter 3, my contribution is presented by first explaining the conceptual
level, the final user interface and then the implementation. The result thereof is evaluated
in chapter 4 and the thesis is finally concluded in chapter 5.



2
Related Work

Section 2.1 explains the vitrivr system in more detail. The systems at LSC have different
approaches regarding query formulation and result presentation which is interesting to take
a look at in Section 2.2. In Section 2.3, a mobile application that uses one part of vitrivr is
shown.

2.1 vitrivr

vitrivr is a multi-modal content-based multimedia retrieval system that makes it possible to
find an image or a video in a large pool of documents. It consists of three layers: Cottontail-
DB, Cineast and vitrivr-ng. Together they build a stack where each layer has a particular
functionality which is illustrated in Figure 2.1. Cottontail-DB is the storage layer, Cineast
is the retrieval engine and vitrivr-ng is the web-based user interface [8]. With the help of
the vitrivr system, a document can be described and similar documents will be retrieved.

Figure 2.1: The vitrivr system and the three components. [9]

vitrivr-ng is the user interface where the user can create a query. It offers various combinable
modalities to describe a sought image. Figure 2.1 shows a selection of possible query terms



Related Work 4

that can be combined into one query, i.e., Query-by-Sketch, Query-by-Example and more.
Cineast receives the query via its API. To find documents whose properties are as similar
as possible to the sought one’s, the query object and the documents in the database must
be compared. In Cottontail, in addition to the document itself, its representation as feature
vectors is stored as well. In order to compare a query to stored documents, the query must
also be transformed to feature vectors. This is done by Cineast’s feature modules. Feature
vectors are important because they hold information about a document’s specific feature
such as the global color, average color, spatial information and much more. Depending on
the modalities, different feature modules get activated and generate different vectors.
In order to compare feature vectors, a distance measure has to be introduced. Cineast’s fea-
ture modules have specific distance measures assigned (e.g., Haversine, Euclidean, Minkowski).
Since we compare vectors, vitrivr performs comparisons in vector space. For each fea-
ture vector that is generated from the query object, a k nearest neighbor (kNN) search in
Cottontail-DB is initiated. Cottontail-DB returns results for each vector together with the
distance to the original feature vector. Cottontail-DB calculates the distance between the
original vector and each returned vector in vector space using the specified distance measure.
To express similarity instead of dissimilarity, a correspondence function is applied so that
the distance is mapped to the interval [0,1]. The similarity value is called the score. A
score of zero means no similarity and a score close to one means high similarity between
two documents regarding the feature specified by the feature vectors. Cineast scores and
fuses the results of each vector generated from the query and returns the final result set to
vitrivr-ng. This retrieval process happens in Cineast’s online mode.
Cineast has also an offline mode. This mode is activate when a new document is added to
the database. As mentioned before, a representation of a document in form of vectors is
generated and saved in the database. It is therewith necessary to generate vectors from a
new document which is called feature extraction.

LSC Dataset Import: vitrivr imports the LSC dataset into Cottontail-DB in offline
mode. vitrivr was initially designed for video retrieval, but the LSC dataset consists of
images. Therefore, the images that were taken within a day are bundled into so-called
multimedia objects [7]. A multimedia object consists of at least one segment, i.e., an image.
With this concept, all images taken within a day are the frames of a video. In the feature
extraction process, the feature modules generate vectors for each segment.



Related Work 5

2.2 Lifelog Search Challenge Participants 2020
Each team that participates at LSC, writes a paper which explains their system. As part of
my thesis, I contributed to the conference paper of vitrivr [9] for the LSC 2021. I had the
chance to review other systems in the Related Work part of the paper.
This chapter introduces some of the approaches of other multimedia retrieval systems that
participated at the LSC in 2020. The focus will lie on systems that embedded visualization
of spatial context regarding query formulation or result presentation.
LSC is a competition in which the fastest and most precise system wins. Since the sys-
tems will be tested by expert and novice users, it is important for the user interface not
to be complicated and to provide different methods to describe the sought image. There-
fore, the developers focused on embedding various query modalities and informative result
presentations in their system.
Three systems provide a visualization of spatial context on a map: Myscéal [13], LifeSeeker
[11] and the system of Chu et al. [3].

Myscéal Myscéal enables the user to query for a region by drawing a rectangle on the
map as visible in Figure 2.2. In addition to that, specific location names such as The Sisters
Home and regions such as London can be textually queried. This feature is helpful in case
the user doesn’t know where a specific location or a city is exactly located. If the user enters
a normal text query visible on the top of Figure 2.2, the results will be shown on a map
by default. After executing a query, hovering over the pins in the map will highlight the
respective images to the left of the map and the other way around. The map is displayed
as part of the result presentation and can be removed if not needed and again added to the
view. Besides drawing on the map, the user can create text queries where information such

Figure 2.2: The user interface of the Myscéal system. [13]

as date, time, location and objects are automatically extracted by the system. Similar to
vitrivr, Myscéal also offers expressing temporal queries. It is possible to explain an image



Related Work 6

that was taken before and after the sought image and to set the time interval in hours. On
the top of Figure 2.2, 2 further text boxes are available where a previous event and a later
event can be described. For the result presentation, always three events are bundled. The
triple shows the temporal relation, i.e, the first event happened first, the second event is the
actual sought one and the third event is the last that happened. An event is a summary of
similar images.

Figure 2.3: Location-based graph of
LifeSeeker. [11]

LifeSeeker LifeSeeker visualizes spatio-temporal
information with the help of a graph. The
graph consists of vertices and directed edges
which represent a location and the movement
patterns of the lifelogger as presented in Fig-
ure 2.3. It has three granularity levels where
users can choose between country, location and
area [11]. Le et al. explain in [11] that the
finest granularity level, i.e., area, shows for ex-
ample in which room of the lifelogger’s home
the image was taken. In this case, the second
granularity level, i.e location, would be Home.
Figure 2.3 shows how the second granularity
level looks like. When the user selects a ver-
tex, the outgoing and incoming arrows will be

highlighted in red as illustrated in Figure 2.3. The user can further select another vertex that
a red edge points to such as Oslo Aiport-Norway and therewith express a spatio-temporal
query. Such as Myscéal, LifeSeeker supports freetext queries. After executing the query, the
user can choose an image and upon this, further images taken before and after the chosen
image appear. With this, temporal information is embedded within the result presentation.

Figure 2.4: Resulting pins after retrieval. [3]

Chu et al. The system of
Chu et al. incorporated a vi-
sualization of spatial informa-
tion only in the result pre-
sentation which can be seen
in Figure 2.4. The focus lies
on displaying locations on the
map that have been visited by
the lifelogger. Therewith, it
is not possible to indicate lo-
cations on the map but it is
possible to search for a loca-
tion as keyword. Besides text

queries, a location, date and time filter is provided to exclude irrelevant images.



Related Work 7

2.3 City-Stories

Figure 2.5: The user interface of City-Stories.
[2]

This section discusses a mobile location-
based multimedia retrieval system called
City-Stories [2]. The mobile applica-
tion makes it possible to retrieve im-
ages. It includes temporal search, spatial
search, Query-by-Example and Query-
by-Sketch. The query modes can be com-
bined in any way. Moreover, it is possible
to take images which are automatically
annotated with metadata and saved in
the database. The metadata holds the
GPS information, i.e., the place and time
the image is taken. Figure 2.5 shows the
user interface with the results (bottom
right), the map (top right), the timeline (top left) and the canvas (bottom left). In the
canvas section, the user can sketch an image (Query-by-Sketch) or insert an existing image
(Query-by-Example). With the top left section, the user can create a temporal query by
adding a purple point in the timeline and the nearest results will be displayed in the section
itself and in the section bottom right. To query by spatial information, a purple marker can
be created at the desired location and the nearest results will be displayed as markers on
the map and on the bottom right as images.
Cineast is used in order to support the different query modalities. As explained in Section
2.1, Cineast has two modes of operation: offline and online mode.
When a new image is taken, Cineast processes the image by applying feature extraction and
saves those features in the database which is the offline mode.
The retrieval happens in online mode where the query object is transformed into feature
vectors by the respective feature modules. A kNN search is initiated for each generated
vector. The distance between the generated vector and the retrieved feature vectors is cal-
culated. Two feature modules were added to Cineast, one for spatial similarity and one
for temporal similarity. When the user performs a spatial query, a linear correspondence
function is applied to the distances and will be further explained in Subsection 3.1.3. In the
case of City-Stories, if the distance between two vectors is greater than 1000m, the simi-
larity score of zero is assigned. When the user performs a temporal query, the hyperbolic
correspondence function is used to assign a score which will be explained more precisely
in Subsection 3.1.3. An example in [2] is given which shows how the hyperbolic function
scores in City-Stories: 100% = 0ms, 90% = 13h20min, 50% = 5 days, 10% = 45 days. 100%
means a score of 1 and this would mean that the image was taken at the exact time the user
queried for. Images with a small score are more distant in terms of time.
City-Stories is conceptually the same as vitrivr, the only difference being that City-Stories
works as a mobile app. This is important, as it allows the user to retrieve images conve-
niently. Using a phone enables taking images and interacting with the environment.



3
Location-based Query

This chapter starts with explaining concepts of multimedia retrieval that are important for
this thesis. Then, the final user interface is presented and lastly the implementation is
discussed.

3.1 Concepts
This section is based on Section 2.1 which explains the functionality of vitrivr. The following
four subsections explain the applied concepts needed for the specific location-based retrieval
and general retrieval.

3.1.1 Transformation
When the user formulates a map-based query and then executes the search, the GPS data
from the user input is collected and then forwarded to Cineast, where the retrieval takes
place. To goal is to extract information from the query object to make it comparable to
other documents in the vector repository. In our case, a document would be an image and a
vector repository the database. The feature module is responsible for retrieval and therefore
transforms the query object into vectors. A map-based query holds one to many GPS points
that are dividable in latitude and longitude which indicate the location on a sphere. A GPS
point could therefore be transformed into a two-dimensional vector in the form of:

−→vi =

[
latitudei

longitudei

]
where i indicates ith vector generated by the feature module. (3.1)

Now, the vectors describe the query and we can compare the generated vectors to others in
the vector repository (in our case the database) by calculating the pairwise distances.

3.1.2 Distance
The distance is showing the dissimilarity between two vectors in a vector space. Depending
on the feature module, a different distance measure is used. In case of GPS points, the
Haversine distance is used since the great-circle distance (the shortest path on a sphere) has



Location-based Query 9

to be calculated. Figure 3.1 shows two points A and B on a sphere and the shortest path
between them. Equation 3.2 [4] shows how the distance dA,B between the two GPS points
is calculated where r is the radius of the sphere.
If we take a look at the Euclidean distance defined in Equation 3.3 [12], it is clear that this
distance measure is not suitable for a great-circle distance problem since it calculates the
distance by considering a straight line between two points. As visible in Figure 3.1, the
distance between A and B is not a straight line but a curved one. Equation 3.3 applies to
the general case of a n-dimensional vector. In our case, we have a two-dimensional vector
and hence n = 2.

Figure 3.1: The great-circle distance between two points on a sphere. [1].

dA,B = 2 · arcsin

(√
sin2

(
λB − λA

2

)
+ cos(λA)cos(λB)sin2(

µB − µA

2
)

)
· r (3.2)

d(
−→
X,
−→
Y ) = 2

√√√√ n∑
i=1

(xi − yi)2 (3.3)

3.1.3 Correspondence Function and Scoring
Instead of showing the dissimilarity of two vectors, we want to show the similarity by map-
ping the distance to [0,1]. This is done by applying a correspondence function. With the
correspondence function, each vector receives a score and therewith a scored list of result can
be presented, where a similarity of 0 means no similarity at all and a similarity of 1 means
total equality regarding the vectors. Two types of correspondence functions are covered in
this thesis: linear and hyperbolic correspondence functions.

The linear correspondence function is defined as C(x) = clamp(1 − x
xmax

) where x is the
calculated distance (3.1.2) and xmax is the elimination criteria from which on the score is
zero. In Figure 3.2, the linear correspondence function is illustrated with different xmax

values. So for example, if we want to retrieve images taken within a circle, the score of
an image will be zero if the location of the image lies outside the circle and therewith the



Location-based Query 10

distance to the circle center is greater than the radius of the circle. In this case, the radius
of the circle is the xmax value. It is also visible in Figure 3.2 that with a smaller x value,
i.e. distance, the score increases. This correspondence function is suitable for location-based
image retrieval since the function is monotonically decreasing and zero from the xmax value
on. From this point on, the C(x) values would be negative but due to the clamp function
as defined in 3.4 [12], C(x) values smaller than zero will be rounded up to zero.

Figure 3.2: Linear correspondence function with different xmax values being the limit
where within the score is greater zero. [12]

clamp(x) =


0 x <0

x 0 ≤ x ≤ 1

1 x >1

(3.4)

The hyperbolic correspondence function C(x) = clamp( 1
1+ x

d
) is illustrated in Figure 3.3,

where x is the distance and d is the parameter which influences the slope. A smaller d value
leads to having less results with a high score. A property of the hyperbolic function is that
it will never be zero. Another property is that at the x value of x = d, the value of the
function is 0.5. This correspondence function is suitable for cases where no limit is available,
where we can say that from this limit, the score is zero as in the case of a location-based
query.



Location-based Query 11

Figure 3.3: Hyperbolic correspondence function with different d values influencing the
slope. [12]

3.1.4 Result Fusion
The vectors retrieved by different feature modules have to be combined into a final result
list so that each document appears once with a score. To achieve this, the vectors undergo
a two-step weighted score-based late fusion, as explained in [12].

In the first fusion step, retrieval results of each feature module f ∈ F that belong to a
specific feature category F are fused into one list. Feature modules are bundled into a cat-
egory based on the information the feature modules work on. An example might be the
feature category GlobalColor which is composed of different feature modules such as Aver-
ageColor, MedianColor, etc. The feature modules are also differently weighted within the
category.
For every distinct element i (i.e., document) that is contained in the set of all elements
retrieved in F , the fused score Si is calculated by first multiplying the weight wf of the
module f with the score si,f of the element itself in f for each module. Then, the results
are summed up. The mathematical formulation can be seen in Equation 3.5 [12]. With
this formula, the score of one element over all feature modules within a feature category is
calculated. If an element i is not present in one f ∈ F , then si,f = 0 [12].

Si =
∑
f∈F

wf · si,f (3.5)

0 ≤ Si ≤ 1, 0 ≤ Si,f ≤ 1 ∀i ∈ I, ∀f ∈ F (3.6)∑
f∈F

wf
!
= 1 (3.7)

The properties in 3.6 [12] show that the final score Si of each element must be in [0,1]. Since
the weights wf are user-defined, the weights first have to be L1-normalized as in Equation
3.7 [12] to ensure the properties in 3.6.



Location-based Query 12

Now that we have a list of scored and distinct elements on a feature category level, the
second step is to further fuse the elements into a final result list. The process in step
one has to be repeated but now instead of feature modules, we are bringing elements from
different feature categories together.

3.2 User Interface
This section shows the final user interface. First, it is explained how the location-based
query formulation works and how a location-based query can be expressed. Then, the
location-based result presentation is described.

3.2.1 Location-based Query Formulation
The user interface deals with capturing the information from the user input. The map query
term provides two ways of how a location can be expressed. Images in a vague region or
at a specific location can be searched for by drawing a circle or by entering a name such as
Home.
Figure 3.4 shows how a location-based query can be formulated. The red circle expresses
the desire to search for all images taken within that circle. The pin on the map shows up
when a specific location, i.e, in this case The sisters home, is entered in the search field. For
this, an autocomplete list is provided where the user can choose from available locations.
The entries in this list are locations that have been visited by the lifeloggers. Images that
were taken within the circle around Dublin or at The sisters home will be in the result set.
Right next to the map, a list of tags is provided which references to the circle and to the
pin in the map. Deleting a tag results in deleting a circle or a pin depending on what it
references to. In the map, there are four icons that have different functionalities. With the
two upper buttons, the user can zoom in and out of the map. The button below makes it
possible to draw a circle and with the fourth button with the bin icon, it is possible to delete
single circles/pins or everything at once.

3.2.2 Location-based Result Presentation
After executing the query (Dublin or at The Sisters Home) shown in Figure 3.4, the scored
images will be returned to vitrivr-ng and presented in the new view. The new view as
displayed in Figure 3.5 focuses on displaying pins on a map referencing to images taken
within a day. The user can use the slider to go through each day (chronologically ordered)
and the images taken that day will be displayed below the slider. Only days where the
images from the result set originate from will be considered for the slider and the pins will
be updated by day change. As example, the visible images in Figure 3.5 are taken on the
11th September of 2016.
In some cases, a movement pattern can be recognized from the arrangement of the pins
as in Figure 3.5. The images below the slider are not sorted by score but by timestamp.
The first image in the result set is the first image taken that day. It is possible to find



Location-based Query 13

Figure 3.4: Map-based query formulation in vitrivr-ng.

the corresponding pin of an image. When hovering over an image, a small button appears.
Clicking on this button results in emphasizing the corresponding pin on the map. It is
therewith possible to see where a journey started or ended on the map. It also works the
other way around: The user can press a pin and the corresponding image(s) in the result set
will be highlighted with red color. Images that have the same GPS coordinates are bundled
into one pin. The score is visualized by the green color that frames each image. High color
opacity means a higher score and a low one otherwise.

Figure 3.5: Map-based query presentation in vitrivr-ng.



Location-based Query 14

3.3 Implementation
vitrivr-ng was developed in the Angular2 framework using TypeScript and Cineast was
developed in Java. Most of the implementation was done in vitrivr-ng. As described in the
previous section, the new map query term must support a map which had to be embedded
into the existing system and support drawing circles and creating pins. Furthermore, a new
result view must have been added to present the results on a map. The following subsections
will explain what had to be done to achieve the current user interface shown in 3.2.

3.3.1 Map
For query formulation and result presentation, the open-source library Leaflet3 is used. The
library provides an editable map. Numerous plugins for editing the map are provided such
as creating and deleting different shapes (e.g., circles, pins, rectangles, polylines, polygons),
adding popups and much more.

3.3.2 Data Structure
Drawing an area or indicating a specific location produce similar information. Both times
GPS coordinates are produced divided in latitude and longitude. Compared to indicating
a specific location, surrounding an area additionally generates a distance, i.e., the radius of
the circle. With this radius, we say that only images within this radius are accepted as a
result.
A very interesting part of the implementation is the data structure that captures the query
formulation. When the user enters a specific location (e.g., The Sisters Home) or surrounds
an area (e.g., circle around Dublin), the GPS coordinates are saved in the same data struc-
ture as shown in 3.1. To distinguish between the two, the type variable defines if it is a
drawn circle or a specific location. In case the user surrounds an area, the circle contains a
radius and a latitude and longitude of the center point. These are then saved in the data
structure.

Listing 3.1: Circle Data Structure

export i n t e r f a c e C i r c l e {
type : s t r i n g ;
l a t : number ;
lon : number ;
rad ? : number ;
semantic_name : s t r i n g ;

}

When the user selects a specific location from the proposed locations list, then a pin is
generated on the map and the latitude and longitude can be extracted from the pin and

2 https://angular.io
3 https://leafletjs.com/

https://angular.io
https://leafletjs.com/


Location-based Query 15

saved in the same data structure Circle. That’s why the rad variable is optional since the
pin doesn’t have this attribute.

3.3.3 Autocomplete
In order to query for a specific location, a list of locations visited by the lifelogger has to be
provided. Figure 3.6 shows how a user can look for available locations. An autocomplete list
suggests places that match the letters entered. The proposed location names come together
with their GPS coordinates. If the user chooses Dublin City University (DCU) (0), then
the GPS data is saved in the data structure shown in Listing 3.1 and a pin with the same
GPS coordinates is shown on the map. Images with GPS coordinates not further than 200m
from the coordinates of Dublin City University (DCU) (0) will be presented after executing

Figure 3.6: The user enters dub and multiple
suggestions appear.

the search.
We have to consider special cases, for
instance, that the lifelogger might have
moved to another place and kept naming
their residence Home. Hence, we would
have images labelled with Home but with
different GPS coordinates. The procedure
of the import is explained in 3.3.4. That’s
why each element of the autocomplete list
has a number at the end. For example,
there are currently four homes (Home (0),
Home (1), Home (2), Home (3)) available
in the dataset, because the GPS data is
too widely spread. One reason for the high

frequency of homes might be false annotations in the metadata.

3.3.4 Data Import
To connect to the Cottontail-DB and to create a table, a Python client4 is used. There-
with a Python script was written which creates a new table cineast_distinctlocations in
Cottontail-DB and inserts data from a CSV into the database.
To have access to all places the lifelogger went to, a CSV file containing the LSC metadata
must be inserted into the database. Since we are only interested in the location names and
the GPS coordinates, only these columns will be considered.

Figure 3.7: Excerpt of the CSV containing the LSC metadata.

Figure 3.7 shows an excerpt of the LSC metadata CSV file which contains 164’160 rows.

4 https://github.com/Spiess/cottontaildb-python-client

https://github.com/Spiess/cottontaildb-python-client


Location-based Query 16

The rows contain information such as the physical activity, the GPS coordinates (latitude
and longitude) and more for a given timestamp. To enable autocomplete, three columns had
to be considered: semantic_name, lat, lon. The semantic_name column contains names
of locations and the lat and lon (abbrev. for latitude and longitude) indicate where this
location lies. For example, the two rows in Figure 3.7 show that the lifelogger was at a
location called Home which has a latitude of 53.3892 and a longitude of -6.15827.
The metadata CSV contains multiple rows with same value for semantic_name. For ex-
ample, the value Home appears 71’551 times. The goal is to insert all distinct location
names in the cineast_distinctlocations table, such that the location names are unique. If
all rows which have the same location name have the same GPS coordinates, then there
is no problem. The problem occurs when at least two rows with the same value for the
semantic_name have slightly different GPS coordinates. There are numerous rows which
contain the value Home for semantic_name but different GPS information. Therefore, the
closest locations (within three km) were bundled and numberings were added to the location
names so that the property of uniqueness is established. Locations with the name Home
(for example) which are too widely spread, will have different numberings.

3.3.5 Map Feature Module
Cineast had to be extended by a new feature module, in order to support the new location-
based query. As explained in Section 3.1, feature modules are responsible for transforming
the query into feature vector(s). Before sending the data via an API to Cineast, the data
saved in Listing 3.1 is parsed into a JSON. In Cineast, a class called MapQueryContainer is
instantiated when the received data originates from the map query term. This class parses
the JSON into one to many Circle objects and saves them in a list. The Circle class in
Cineast corresponds to the Circle class in vitrivr-ng. Afterwards, the map feature module
(MapSearch class) accesses the list of Circle objects and creates a vector for each element
of the list. For each vector, a kNN search is executed in Cottontail-DB. Depending on the
type of the circle, defined by the type variable in Listing 3.1, a maximal distance is set.
If it is a circle drawn by the user, then the radius of the circle will be considered and the
returned images that lie outside the radius will be scored with zero. If it is a pin created by
the user, then the predefined maximal distance setting of 200m is considered. Images that
lie outside that radius will be scored with zero. The results of all kNN searches are collected
into a result list such that each image appears only once. If the same image is contained in
multiple partial results, then the image with the highest score is taken.



4
Evaluation

This chapter focuses on the evaluation of the location-based query formulation and result
presentation. The setup, the goal and the results will be shown.

4.1 Setup
The evaluation was held virtually. Cottontail-DB, Cineast and vitrivr-ng were set up on a
server provided by the University of Basel. The participants could access the server with
a given IP address and therefore had to activate their VPN client. When the user enters
the IP address in the browser, the vitrivr-ng website will be visible, where queries can be
formulated. The evaluation was created with Google Forms5 and could be therefore filled out
online. The evaluation was performed with each participant separately and the participants
were kindly asked to share their screen where I could see their interaction with the system.
People were invited to the evaluation regardless of their prior knowledge and finally eleven
people participated.

4.2 User Evaluation
The main goal is to evaluate the user experience. We want to evaluate how simple, user-
friendly and time-efficient querying with the new query formulation and result presentation
is. The participants get specific tasks to solve and then get respective questions about
the simplicity to answer. Letting the participants solve tasks and really work with the
new user interface will result in useful feedback on what they would improve. Since the
screen is shared, improvement ideas could also be collected. Participants were allowed to
ask questions and we would also point out when a task was totally misunderstood to get
the participants on the right track. The whole survey can be found in Appendix A.

The evaluation starts with an introductory question: Have you already worked with Vit-
rivr NG? Since in LSC expert and novice users solve tasks with the system, it would be

5 https://www.google.com/forms/about/



Evaluation 18

an advantage if people participate who do and don’t know the system. From now on, the
questionnaire consists of two parts.

First Part: In the first part, participants had to solve six small tasks and afterwards fill
out questions. The tasks were constructed in a way, such that the participants could get to
know the map query formulation and result presentation of vitrivr. The even Likert-Scale
[10] is used and the possible answer options were Disagreement, Slight Disagreement, Slight
Agreement and Agreement. No Neutral option is offered. At the end of part 1, a freetext
box is offered in which feedback and possible improvements can be suggested.

Second Part: In the second part, two tasks were given which resemble the tasks at LSC.
The goal of the tasks is to find an image that fully meets the image description in the task.
The first task is easier and a time limit of four minutes is given whereas the second task is
more difficult and has a time limit of eight minutes.
vitrivr-ng in its final form has five query term types. To make sure that the participants
will test the extension and not work with other query terms or result views, only two were
enabled: map query term and tag query term. In addition to that, many novice users
participated in the evaluation and it might have been overwhelming and difficult to choose
from five query terms.

4.3 Results
Just over half of the participants (54.5%) classified themselves as users with prior knowledge
that already know vitrivr-ng and the concept of it by affirming the introductory question:
Have you already worked with Vitrivr NG?.

Part 1 Figure 4.1 shows the participants’ impressions on how simple it is to work with the
map query term and result presentation. All in all, it was mostly classified as simple and
easy to do. However, the two slider-related questions have more negative feedback (slight
Disagreement).
An interesting part is the freetext section at the end where participants proposed different
approaches to improve the user experience of the map query term and result presentation.
Participants suggest to add ticks to the slider to show how far the bar has to be moved to
reach the next day. It is mentioned that the slider is lagging and it needs some time to
load all the images within that day. Participants further suggest to replace the slider with
something similar to a calendar, where users can pick a date. Hence, the problem with the
ticks and the lagging would be solved.
It is furthermore proposed to make the circle adjustable so that it can be resized and moved
after drawing it on the map. Among some participants, drawing the circle was experienced
as counterintuitive, since they started to draw the circle from one corner and not from the
center. It was also suggested to exchange the circle with other shapes such as rectangles or
free-form shapes.



Evaluation 19

Figure 4.1: Part 1 of the questionnaire with the questions and the ratings.

Figure 4.2: Part 2 of the questionnaire with the questions and the ratings.

Part 2 In part two, the usability seems to be high. Many participants experienced the
map query term and result presentation helpful when solving the tasks. The participants’
opinion about how simple it is to find the sought image with the new result presentation is
distinct.
In the freetext feedback section, participants commented that it would be more helpful, if
the highlighted images belonging to a selected pin were more noticeable. The red highlighted
images are hard to find in the images pool.
Another suggestion is that when the user clicks on a pin, a popup opens above the pin with



Evaluation 20

the thumbnail of the image that was taken there. In case a pin references to multiple images,
the image with the highest score could be taken.
It was further proposed to enable searching for cities and countries. This would speed up the
map query term process if the user doesn’t know where a location exactly is. An interesting
suggestion is to draw a path between single markers to emphasize the lifelogger’s movement
pattern.
Two participants tried to solve task two with two temporal query containers. This was rather
impractical because the time between two query containers is only adjustable in seconds.
Longer distances would require minutes or hours.



5
Conclusion

One goal of this thesis was to acquire knowledge about the concepts of multimedia retrieval
and to extend vitrivr so that formulating spatial queries on a map is possible and that the
result presentation is also map-based. This goal was successfully accomplished by providing
a location-based query formulation and location-based result presentation. With the new
query term, the user can now search for images in vague areas by directly drawing circles
on the map. The user can also search for images that were taken at specific places such as
Home, Work, etc. To enable this, a Python script was written which processes and imports
the metadata from the lifelog dataset into Cottontail-DB. The locations of the images in
the result set are visualized on a map using pins. A slider is provided where the user can go
through different dates. The movement pattern of the lifelogger is visible from the pins on
the map. Tools were added to help the user reference between images and pins.
To enable the query formulation and result presentation, work had to be done on Cineast.
Cineast was extended by a new feature module which handles the input of the map query
and retrieves images that are spatially close by evaluating distances and applying a corre-
spondence function.

Another goal was to obtain an overview over other multimedia retrieval systems and to
contribute to the conference paper of vitrivr [9] for the LSC 2021 which was successfully
submitted. Background knowledge was acquired by reading and summarizing all of the LSC
2020 papers. Since this was the first task in this thesis, many ideas for possible query for-
mulations and presentations could be collected.

Moreover, this thesis provides insights into different multimedia retrieval systems and their
approaches. The vitrivr system which was extended is explained in more detail by presenting
the functionality and the applied multimedia concepts. Afterwards, the required multimedia
concepts to realize a map-based query formulation and presentation are discussed. The final
user interface is illustrated, the most important parts of the implementation are explained
and the applied theoretical concepts are presented. The evaluation shows how the extended
user interface is rated among novice and expert participants. The results were remarkably
positive and lots of helpful improvement ideas could be collected.



Conclusion 22

5.1 Improvement Ideas of Evaluation Participants
The map-based query formulation and presentation proved to be helpful, but there are still
some shortcomings that should be remedied.

Temporal Query Container: Currently, the temporal query containers only allows to set
the time interval in seconds. In case of spatio-temporal queries, it would be necessary to
extend the time unit to minutes and hours. If we search for images where the lifelogger
moved from one location to another location and the travel took him multiple hours,
it is rather impractical to adjust the time in seconds.

Shape: One participant suggested exchanging the circle shape with a rectangle or a polygon
shape. This would be a helpful improvement if the user wants to surround more
stretched areas, although multiple circles could also be used for this purpose.

Slider: The slider in the result presentation has to be replaced. Since the LSC dataset is
large, the loading takes longer. The problem is, that the slider is loading each day
between the start till the date the slider is moved to. The amount of images loading
should be restricted and only further loaded, if the user scrolls down to search for
more images in that day. It is also criticized that the slider has no ticks or labels. The
width of the slider stays the same even if two or ten dates are available. The jumps
become bigger and this confused the users.
It is suggested to replace the slider with a calendar. This approach would be good but
the user would have to go through each month and the day coverage is rather sparse.
Another idea would be to place the dates below the map as tags. The user could select
one tag and images taken that day will appear.

Image Highlight: In the result presentation, all images per day are shown and the day
is adjustable. Taking a look at an example where the user chooses a date where lots
of images were taken. If they select a pin on the map and then want to find the red
highlighted image in the result set, they might loose the overview. This case occurred
in the evaluation and it is suggested to intensify the highlight. One idea would be to
immediately let the container, where the images of the day are located in, move down
to the image after selecting a pin. Another idea would be to size up the highlighted
image(s).

General Location Search: It results from the evaluation that the participants missed a
feature where they could search for general locations similar to Google Maps6. The
participants were searching for a long time for the location Donegal Bay in task two
(part two of the evaluation).

6 https://www.google.ch/maps/

https://www.google.ch/maps/


Conclusion 23

5.2 Future Work
The current location-based query formulation and presentation can be conceptually further
extended and used with different types of multimedia data.

Sequential Queries: The current map-based query is expandable to a sequential query.
For example, the user could look for images that were taken when the lifelogger was
going from home to work. The result set would finally contain images that were taken
on the way. The temporal aspect should also be taken into account. The result set then
only includes images where the lifelogger moved in the right direction, i.e., from home
to work and not vice versa. A challenge would also be to visualize the spatio-temporal
property of images on a map more clearly.

Video Retrieval: The map-based query formulation and result presentation might be a
helpful modality for the Video Browser Showdown (VBS). VBS is similar to LSC but
the dataset consists of videos. Since temporal queries are important for video retrieval,
the previously mentioned sequential query would also be helpful in finding the sought
video.



Bibliography

[1] Orthodrome. https://de.wikipedia.org/wiki/Orthodrome#Streckenberechnung. Ac-
cessed: 2021-07-23.

[2] Lukas Beck and Heiko Schuldt. City-Stories: A Spatio-Temporal Mobile Multimedia
Search System. In IEEE International Symposium on Multimedia (ISM), 2016.

[3] Tai-Te Chu, Chia-Chun Chang, An-Zi Yen, Hen-Hsen Huang, and Hsin-Hsi Chen. Mul-
timodal Retrieval through Relations between Subjects and Objects in Lifelog Images.
In Proceedings of the Third Annual Workshop on the Lifelog Search Challenge (LSC
’20). ACM, 2020.

[4] Kenneth Gade. A non-singular horizontal position representation. Journal of Naviga-
tion, 63(3):395–417, 2010. doi: 10.1017/S0373463309990415.

[5] Cathal Gurrin, Klaus Schoeffmann, Hideo Joho, Andreas Leibetseder, Liting Zhou,
Aaron Duane, Duc-Tien Dang-Nguyen, Michael Riegler, Luca Piras, Minh-Triet Tran,
Jakub Lokoč, and Wolfgang Hürst. Comparing Approaches to Interactive Lifelog Search
at the Lifelog Search Challenge (LSC2018). ITE Transactions on Media Technology and
Applications, 7(2), 2019.

[6] Cathal Gurrin, Tu-Khiem Le, Van-Tu Ninh, Duc-Tien Dang-Nguyen, Björn Þór Jóns-
son, Jakub Lokoč, Wolfgang Hürst, Minh-Triet Tran, and Klaus Schoeffmann. An
Introduction to the Third Annual Lifelog Search Challenge, LSC’20. In International
Conference on Multimedia Retrieval. ACM, 2020.

[7] Silvan Heller, Mahnaz Amiri Parian, Ralph Gasser, Loris Sauter, and Heiko Schuldt.
Interactive Lifelog Retrieval with vitrivr. In Proceedings of the Third Annual Workshop
on Lifelog Search Challenge, 2020.

[8] Silvan Heller, Loris Sauter, Heiko Schuldt, and Luca Rossetto. Multi-Stage Queries
and Temporal Scoring in Vitrivr. In 2020 IEEE International Conference on Multi-
media Expo Workshops (ICMEW), pages 1–5, 2020. doi: 10.1109/ICMEW46912.2020.
9105954.

[9] Silvan Heller, Ralph Gasser, Mahnaz Parian-Scherb, Sanja Popovic, Luca Rossetto,
Loris Sauter, Florian Spiess, and Heiko Schuldt. Interactive Multimodal Lifelog Re-
trieval with vitrivr at LSC 2021. In Proceedings of the 4th Annual Lifelog Search
Challenge (LSC’21), 2021.

https://de.wikipedia.org/wiki/Orthodrome#Streckenberechnung


Bibliography 25

[10] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. Likert scale: Explored
and Explained. British Journal of Applied Science & Technology, 7(4):396, 2015.

[11] Tu-Khiem Le, Van-Tu Ninh, Minh-Triet Tran, Thanh-An Nguyen, Hai-Dang Nguyen,
Liting Zhou, Graham Healy, and Cathal Gurrin. LifeSeeker 2.0 : Interactive Lifelog
Search Engine at LSC 2020. In Proceedings of the Third Annual Workshop on the Lifelog
Search Challenge (LSC ’20). ACM, 2020.

[12] Luca Rosetto. Multi-Modal Video Retrieval. PhD dissertation, Natural Science Faculty
of the University of Basel, 2018.

[13] Ly-Duyen Tran, Manh-Duy Nguyen, Nguyen Thanh Binh, Hyowon Lee, and Cathal
Gurrin. Myscéal: An Experimental Interactive Lifelog Retrieval System for LSC’20. In
Proceedings of the Third Annual Workshop on Lifelog Search Challenge, 2020.



A
User Evaluation



User Evaluation 27



User Evaluation 28



User Evaluation 29



User Evaluation 30



User Evaluation 31



Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Sanja Popovic

Matriculation number — Matrikelnummer

18-054-593

Title of work — Titel der Arbeit

Location-based Queries and Query Representation in Lifelog Retrieval

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 28.07.2021

Signature — Unterschrift


	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Multimedia Retrieval
	1.2 Lifelog Dataset
	1.3 Goal
	1.4 Outline

	2 Related Work
	2.1 vitrivr
	2.2 Lifelog Search Challenge Participants 2020
	2.3 City-Stories

	3 Location-based Query
	3.1 Concepts
	3.1.1 Transformation
	3.1.2 Distance
	3.1.3 Correspondence Function and Scoring
	3.1.4 Result Fusion

	3.2 User Interface
	3.2.1 Location-based Query Formulation
	3.2.2 Location-based Result Presentation

	3.3 Implementation
	3.3.1 Map
	3.3.2 Data Structure
	3.3.3 Autocomplete
	3.3.4 Data Import
	3.3.5 Map Feature Module


	4 Evaluation
	4.1 Setup
	4.2 User Evaluation
	4.3 Results

	5 Conclusion
	5.1 Improvement Ideas of Evaluation Participants
	5.2 Future Work

	Bibliography
	A User Evaluation

