
Óðinn: A Framework for Large-Scale
Wordlist Analysis and Structure-Based

Password Guessing
Master’s Thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science

Databases and Information Systems Group
https://dbis.dmi.unibas.ch

Examiner: Prof. Dr. Heiko Schuldt
Supervisor: Silvan Heller, MSc.

Sein Coray

September 3rd, 2019

https://dbis.dmi.unibas.ch

Abstract

In the last years, many websites were breached, compromising personal information of bil-
lions of users, often including their passwords. These collected credentials provide insights
about used passwords. Analysis tools may provide information about the structure and
common patterns of passwords, helping to understand the typical process followed by a
human when choosing a password. Current state-of-the-art tools only allow the statistical
analysis of the password length or characters used. While there exist approaches to further
explore structures of passwords, they usually were not made to work with large-scale lists
of passwords and are computationally too expensive.

This thesis introduces Óðinn: a tool exploring additional possibilities of analysis aiming
at understanding human structures of passwords. We present an approach to split them
into their essential components, and classifying them according to their semantic meaning.
Furthermore, we show that these analysis results can be visualized and used to conclude
about the quality of a password list, for example, when there are entries which most likely
are not real passwords. Additionally, the analysis results can be used to guess new password
candidates using observed combinations and patterns. We evaluate these new guessing
methods against other state-of-the-art tools, and we find that our approaches create better
candidates when benchmarking against difficult-to-guess passwords.

Table of Contents

Abstract ii

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 2
1.3 Outline . 3

2 Foundations 4
2.1 Password Recovery . 4
2.2 Password Analysis . 6
2.3 Hashtopolis . 6
2.4 Terminology . 6

3 Related Work 9
3.1 Wordlist Analysis . 9
3.2 Word Splitting . 10
3.3 Semantic Analysis . 10
3.4 Preprocessors . 11

4 Architecture 13
4.1 Analysis . 14

4.1.1 Filtering . 14
4.1.2 Modules . 15
4.1.3 Results Data Model . 15

4.2 Visualization and Reporting . 17
4.2.1 Modules . 17

4.3 Guesser . 18
4.3.1 Fragment Prepend/Append . 18
4.3.2 Fragment Mixer . 18
4.3.3 Semantic . 19
4.3.4 Bi-Fragment Mixer . 19

4.4 Preprocessor . 20

5 Implementation 22

Table of Contents iv

5.1 Filtering Modules . 22
5.1.1 Email Filter . 22
5.1.2 Length Filter . 23
5.1.3 Mask Filter . 23
5.1.4 Fragment Count Length Filter . 23
5.1.5 Semantic Filter . 23

5.2 Analysis Modules . 23
5.2.1 Simple Splitter (Processor) . 24
5.2.2 Full Splitter (Processor) . 24
5.2.3 Semantic Analysis (Collector) . 25

5.2.3.1 WordNet Classification . 26
5.2.3.2 Class Dictionaries & Functions 27

5.2.4 Fragment Counter . 27
5.2.5 Bi-Fragment Counter . 28

5.3 Visualization Modules . 28
5.3.1 Fragment Count Distribution . 28
5.3.2 Fragment-Heatmap . 29

5.4 Guesser . 30
5.4.1 Semantic Guesser . 30
5.4.2 Bi-Fragment Mixer . 30

5.5 Hashtopolis Preprocessors . 31
5.5.1 Integration . 31
5.5.2 Limitations . 31

6 Evaluation / Results 33
6.1 Analysis . 33

6.1.1 Full Splitter Module . 33
6.1.2 Language Detection Module . 35
6.1.3 Semantic Analysis Module . 35

6.2 Visualization and Reports . 37
6.2.1 Length Distribution Module . 38
6.2.2 Fragment Distribution Module . 39
6.2.3 Fragment Heatmap Module . 40

6.3 Guessing . 41
6.3.1 Comparison on Password Leaks . 41
6.3.2 Comparison on Left Hashes . 48
6.3.3 Generated Rules . 49

6.4 Preprocessor Integration . 50

7 Conclusion 52
7.1 Results Discussion . 52
7.2 Future Work . 53

Table of Contents v

Bibliography 54

Appendix A Odinn Usage 57
A.1 Analysis . 57
A.2 Filtering . 58
A.3 Generate Report . 59
A.4 Show Plots . 60
A.5 Bi-Fragment Analysis . 60
A.6 Bi-Fragment Guessing . 60
A.7 Semantic Guessing . 61

Appendix B Additional Plots 63
B.1 Analysis Plots . 63
B.2 Comparison with 100m Guesses . 64
B.3 Comparison with Unique Matches . 65

1
Introduction

Nowadays, it is well known that a strong password should be chosen and ideally, a password
manager should be used in order to secure an (online) account properly, enforcing different
randomly chosen passwords for each service. Still, many people are using outdated tech-
niques to create their passwords, including personal information, names, years, and even
worse, reuse their passwords for multiple services. There are many reasons for this, e.g.
laziness or too complicated password managers.

Wang et al. [22] recently looked at the passwords of an extensive collection of breaches
from the last few years. They show that many passwords are still constructed with simple
structures and heavily reused. Based on this dataset and the research of Wang et al.,
Dashlane listed top passwords used based on topics in their blog1 which shows the most used
weak techniques for password creation. This user behavior still allows guessing a password,
based on knowledge about the person who constructed the password, and creating lists with
the most common passwords based on collected data. Not to use strong passwords is a risk
for users, as this allows hackers to steal data and potentially steal money or harm people in
other ways. Beside hackers, weak passwords can also allow the recovery of a password in a
legal scenario (e.g. as presented in the next section).

Typically passwords are put through an irreversible process (hashing) prior to saving
them. Therefore they can not be reversed from this state (still, the process often wrongly
is called decrypting/reversing/dehashing2). The typical approach of recovering a password
is made by trying many combinations which are put through the same irreversible process
as well and then compared to the searched output. This process is called brute-forcing. If
the output of a tested combination matches the searched one, the password is cracked as it
is now known which candidate produced it.

Today’s modern hardware allows password reconstruction efficiently. Single Graphics
Processing Units (GPUs) up to clusters of many GPUs can be used to run different kinds
of attacks to try to find the original combination. Depending on the hashing method used,
complex passwords can be recovered even in seconds.

1 https://blog.dashlane.com/virginia-tech-passwords-study/
2 https://www.techsolvency.com/passwords/dehashing-reversing-decrypting/

https://blog.dashlane.com/virginia-tech-passwords-study/
https://www.techsolvency.com/passwords/dehashing-reversing-decrypting/

Introduction 2

1.1 Motivation
Every person owning a computer and actively using Internet services needs passwords,

according to Dashlane3 on average a user has 90 online accounts. Depending on how a
user manages their passwords, it is more or less challenging to recover them (e.g. if they
used a password manager with randomly generated passwords). It can be an issue in case
someone dies unexpectedly. If the user did not note some vital information about individual
passwords/accesses anywhere, it could be difficult to access data that might be needed.

As a scenario, we assume a close relative died unexpectedly and did not leave any infor-
mation about passwords used. The personal computer is using Full Disk Encryption which
makes it impossible to take out the hard disk and directly extract data. In order to get
access to the data on the hard disk and also to get access to potential online passwords
stored in the browser storage, the goal is to recover the password used for the hard disk
encryption.

Cracking an encrypted disk is typically a slow process. Therefore we need to optimize our
guesses to have the most probable ones first. As the password needs to be entered manually
every time the system is booted, we assume that a non-random password was used (otherwise
it would be hard to remember and written down), potentially containing some information
connected to the relative who died. We want to analyze existing password wordlists and
filter out the most probable ones and then be able to construct typical passwords containing
personal information which might be used in the password.

Figure 1.1 shows the high-level abstraction part of the newly created tool which should
help to guess the person’s password efficiently. Based on analyzed password structures and
personal information, we will be able to create the best password guesses in decreasing
order of probability in order to decrypt the hard disk. These analyzed structures should be
determined using different aspects of passwords in order to cover a broad range of possible
password construction methods and patterns. The acquisition of personal information is
not in scope of this thesis. Instead of using personal information, it is also possible to use
frequently used words which are popular in general.

1.2 Contribution
The contribution of this thesis is fourfold: First, we present new approaches of structural

analysis of large-scale wordlists and implement these. Second, we show possible conclusions
which can be drawn from analysis results. Third, we evaluate different approaches to use
the analysis results to guess passwords. Doing this, we also present a comparison between
other state-of-the-art guessing tools. Fourth, we integrate the candidate guessing into a
large-scale password recovery tool.

3 https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/

https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/

Introduction 3

Architecture - Big Picture

5

Password
Construction
Methods

Guessing Password
Candidates

Personal
Information

Figure 1.1: High-level abstraction of guessing a password of the person.

1.3 Outline
The application developed and presented in this thesis is named Óðinn (from the Ice-

landic spelling) as from the Scandinavian Mythology. There, the god Odin is said to be
wise and always in search of wisdom. The document is structured in the following way: In
Chapter 2 we provide a short introduction in the basics of password recovery. Chapter 3
covers the current state-of-the-art and related work in the field of password analysis and
guessing. In Chapter 4 we present the architectural structure of Óðinn and in Chapter
5 we deepen some implementation-specific topics. We present and discuss our evaluation
results in Chapter 6. Chapter 7 concludes the achieved outcome and shows possible future
work. In Appendix A we list usage examples for Óðinn and additional plots are presented
in Appendix B.

2
Foundations

This chapter provides a simple introduction into password cracking, the typically used ex-
pressions and related topics to hashes. It provides the basics needed to be able to follow this
thesis further for a non-experienced reader in this field. A list of terminology for specifically
used terms can be found in Section 2.4.

2.1 Password Recovery
User passwords should not be stored in plain text on a website or computer as this might

reveal it to other persons such as administrators, developers, and hackers in case they get
access to the database where they are stored. In order to protect the password, a so-called
hashing is applied. Hashing is done by applying a specific one-way function to the string.
This algorithm typically produces a fixed-length output which is the so-called hash of the
password. A well-known and simple hash algorithm is MD5. It produces a 128-bit hash,
usually represented in a hexadecimal string:

md5(password)→ 5f4dcc3b5aa765d61d8327deb882cf99

Hash functions usually have the following properties:

• The resulting hash changes completely, even on only small changes in the input (e.g.
appending a character).

• They are collision-resistant. It means that though theoretically possible (as the input
set is larger than the output set), in practice it is not feasible to find two inputs for a
hash function that produce the same hash.

• They always produce the same output for the same input.

The third property makes it possible to use hashes for password verification for users on
authentication. The input from the user is hashed with the same algorithm and the output
then is compared to the stored one. If they match, the input was identical, and the user
therefore entered the correct password.

Foundations 5

There exists a large number of hash functions, not all of them should be used for password
hashing, either because they have another use case or they are broken due to cryptographic
weaknesses (including MD5). Additional security can be added by the use of so-called
salts to make it harder to attack lists containing multiple hashes. Each password has an
associated salt which is for example pre- or appended to the password before hashing, leading
to different hashes for different users, even if they have an identical password. For example,
appending a random eight-character salt and hash it with MD5:

salt = JHge6hgd

md5(password+ salt)→ f6bb8786fa275ee22e7b164c8829a3f4

The salt is then stored in plain together with the hash (or included in the hash represen-
tation). It is then used again to verify the password. An example of a hash which includes
the salt inside the hash is bcrypt:

salt = aaaaaaaaaaaaaaaaaaaaa

bcrypt(password+ salt)→ $2y$12$aaaaaaaaaaaaaaaaaaaaaOC...rab3VFz7lFq

Thanks to the one-way property, it is not feasible in practice to retrieve the password
from the hash directly. The only way to find an input that produces a given hash is by
hashing input candidates and test if they produce the targeted hash. This process can be
called password recovery, hashcracking or password cracking. Typically, this process is done
in a highly parallel system like GPUs. The hash algorithm which was used to hash the
password affects the speed of the guesses which can be calculated per second (e.g. bcrypt is
much slower than MD5 because it uses a high number of iterations of hashing).

So-called attacks which can be run against a hash, might be of the following variants:

Brute-Force Attack Testing all possible combinations of a specific charset, e.g. length 6
with all lowercase letters (aaaaaa - zzzzzz). This attack also is called Mask Attack4.

Dictionary Attack Testing each line of the dictionary/wordlist. It can be a list of common
words from a language or contain known other passwords.

Dictonary + Rule Attack As an extension to a dictionary attack, so-called mangling
rules can be applied to each word from the dictionary which changes some characters,
append something, etc. (e.g. a common rule is to append numbers, a typical pattern
in passwords)5.

There exist further variations (hybrids) as combinations of the above mentioned attacks
or similar ones6.

4 https://hashcat.net/wiki/doku.php?id=mask_attack
5 https://hashcat.net/wiki/doku.php?id=rule_based_attack
6 https://hashcat.net/wiki/doku.php?id=hybrid_attack and https://hashcat.net/wiki/doku.php?id=

combinator_attack

https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://hashcat.net/wiki/doku.php?id=hybrid_attack
https://hashcat.net/wiki/doku.php?id=combinator_attack
https://hashcat.net/wiki/doku.php?id=combinator_attack

Foundations 6

2.2 Password Analysis
In most cases, there is only a little or no knowledge present about the password which

needs to be recovered. At that point, the question is, what kind of attacks should be
executed. The typical approach is to try more probable password candidates first and then
more complex attacks or candidates with a lower success rate. Brute-Force attacks are often
very costly and therefore rarely used. There exist wordlists in different sizes that contain the
most common passwords7 which are suitable to test if a common password was used. This
approach gets especially important when only a few guesses can be tried in a reasonable
time, for example when a bcrypt hash is attacked instead of a MD5 hash (speed difference
of >1GH/s on MD5 vs. 1kH/s on bcrypt).

The straight-forward approach of creating such wordlists is by collecting data about
used passwords (mostly recovered from leaks) and order them by their overall frequency.
Depending on the use case, there might be more sophisticated approaches to create efficient
wordlists and produce guesses more likely to crack the searched password. For this, wordlists
can be analyzed, also to find out what kind of words a large wordlist contains. The current
state-of-the-art of wordlist analysis is described in Section 3.1. In Section 4.1, we describe
how the password analysis component is integrated into the project.

2.3 Hashtopolis
Depending on the executed password recovery task, the time needed to complete is

too long to be completed with one GPU. In order to have more capabilities, more GPUs
can be added to be used with Hashcat. At some point, a (hardware) limitation of the
maximum number of GPUs is reached where it cannot be scaled further without using
multiple machines. When using Hashcat on more than one computer, manual handling of
the tasks becomes tedious.

At this point, Hashtopolis8 comes into play. It allows the distribution of Hashcat tasks to
a large number of nodes by splitting the provided task into chunks. This way, long-running
tasks can be completed faster than just running them on a single node. Hashtopolis can be
used in local cluster environments as well as over the internet.

The strengths of Hashtopolis are that it can run on a broad spectrum of systems as long
as they support Hashcat itself and that it already supports a very flexible way to create
tasks and run attacks. Still, there is room for improvement to extend its functionality and
support to more stability.

2.4 Terminology
Wordlist In the password recovery field, every list of words or strings can be used as

a wordlist. In this thesis, we only focus on the case of wordlists containing real-
world passwords. Therefore, we use the term wordlist denoting a list of passwords. A

7 e.g. https://github.com/berzerk0/Probable-Wordlists
8 https://github.com/s3inlc/hashtopolis

https://github.com/berzerk0/Probable-Wordlists
https://github.com/s3inlc/hashtopolis

Foundations 7

commonly used wordlist is Rockyou9, which was dumped from the website unencrypted
and therefore also contains long and difficult passwords.

Hashcat Hashcat10 is the most used password recovery program. It is able either to use
GPUs or CPUs to run different types of attacks against more than 200 different hashing
algorithms.

Hashes/second (H/s) When recovering password hashes, the cracking speed is typically
determined by how many hash calculations (and comparisons) can be done per second.
This measurement gives the hashes/second ratio in which the capabilities of a system
are measured. For larger numbers, the notations kH/s (103), MH/s (106), GH/s (109),
etc. are used.

Full Disk Encryption (FDE) In order to prevent offline read access to a hard disk and
its stored content, full disk encryption is used either at software or hardware level to
encrypt all of the system and user files. Typically, a password is required during the
boot procedure to unlock and decrypt the disk to start the system. Commonly used
applications are Truecrypt11(even if officially deprecated) or its successor Veracrypt12.

Leak The term leak describes a hashlist/wordlist/SQL dump which was extracted from
an online service and made available online. When conducting research, typically the
sensitive data gets stripped out (e.g. emails, usernames, and other personal data),
and only the hashes/passwords are used, either as a source for passwords (on plaintext
dumps) or as a benchmark to check the efficiency of a password guesser. A well-known
leak which is often used in research due to its size and worldwide coverage is Linkedin,
which was breached in 2012 and contained ∼110 million user accounts.

Mask A mask is used to denote a certain structure of passwords regarding the used charac-
ters. There are two different notations of masks used in this thesis. The first one con-
sists of using the classes string, digit, special to denote one or more chars of this group.
For example, password123 is included in the mask stringdigit. The second mask variant
is more detailed, as it provides a class for each position and also knows more different
classes (e.g. ?l for lowercase characters, ?u for uppercase characters, ?d for digits and
more). For example, password123 is included in the mask ?l?l?l?l?l?l?l?l?d?d?d. This
notation also is used in Hashcat to set the covered keyspace in a brute-force attack.

Rules So-called mangling rules are a way to generate further candidates from a wordlist.
The rule syntax used by Hashcat13 and John the Ripper14 provides possibilities of
modifying the given input (e.g. appending a character). These single actions can be
combined to be applied after each other (e.g. $1$2$3 appends 123 to the input).

9 Originally retrieved by the breach of Rockyou.com in 2009 it is nowadays commonly used as wordlist
and is also present in the security Linux distribution Kali. Download: https://wiki.skullsecurity.org/
Passwords#Leaked_passwords

10 https://hashcat.net
11 http://truecrypt.sourceforge.net
12 https://www.veracrypt.fr
13 https://hashcat.net/wiki/doku.php?id=rule_based_attack
14 https://www.openwall.com/john/doc/RULES.shtml

Rockyou.com
https://wiki.skullsecurity.org/Passwords#Leaked_passwords
https://wiki.skullsecurity.org/Passwords#Leaked_passwords
https://hashcat.net
http://truecrypt.sourceforge.net
https://www.veracrypt.fr
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://www.openwall.com/john/doc/RULES.shtml

Foundations 8

Rule files then contain one such rule per line. Each of the rules then is applied to
each of the lines of the wordlist which will produce #of lines in wordlist ∗
#of rules in rule file candidates in total.

Specifically for Hashtopolis there are further terms which we use.

Agent An agent is a node running a client binary which connects to the Hashtopolis API
of the server to retrieve and run tasks.

Task A task sets a certain attack (e.g. with certain wordlists, rules) to be executed on a
hashlist (defined below). This task is then distributed, which means it will be split
and sent to all available agents.

Chunk To distribute each task, they are split into smaller pieces that can be completed
in a pre-defined time by the agents. These resulting parts are called chunks and are
defined by a skip and a length value.

Hashlist All tasks target a specific hashlist with a specific hash algorithm. A hashlist can
consist of a single hash or several, but are produced by the same hash function. Hash-
topolis cares about storing all hashes and their corresponding plaintexts (if recovered).

3
Related Work

This chapter describes the research done on password analysis and password guessers. We
show the generally available tools on wordlist analysis and then cover the more specific
parts of splitting passwords and analyze their semantic meaning. Additionally, we show an
overview of the most common candidate generators called preprocessors.

3.1 Wordlist Analysis
A popular tool used for password analysis is contained in PACK [3] (Password Analysis

and Cracking Kit), which statistically analyzes a list of passwords for charsets, lengths, and
complexity. PACK allows the analysis of the most common simple passwords patterns used
in the input and is often used to crack the remaining passwords of a hashlist. Nevertheless,
it does not help to get information about how these passwords were constructed (randomly
vs. words).

Florencio and Herley [11] have shown that users heavily re-use passwords on different
websites and that a large number of the passwords used are of poor quality. The same was
shown by Cazier and Medlin [8] by studying passwords used on e-commerce websites. They
claim that people choose simple passwords because they cannot remember complex ones;
otherwise, the same applies to password sharing among other sites. This issue might be
addressed with password managers, but as mentioned in the introduction, still many people
do not see the need of using a password manager.

A tool called password analysis and research system (PARS) was presented by Ji et al.
[15] in order to support password research by providing a uniform platform integrating
multiple cracking algorithms, password strength meters, and academic papers. PARS allows
comparing password guessers against each other to test their efficiency on typical leaks to
have a uniform comparison.

The focus of the research community lies in analyzing the most common passwords used
in leaks to be able to efficiently recover all simple and often-occurring passwords from an
uncracked list, but this might need a different approach if a single hash is used as the
target. It still might be worth to try some standard wordlists and approaches, but if this is
unsuccessful, more targeted candidates might be more efficient.

Related Work 10

3.2 Word Splitting
In order to increase the security of passwords, some providers require a certain length to

be accepted. As people often tend to use words in their passwords, they use multiple words
instead of just one. These expressions might even be parts of a sentence (e.g. ilovecats).
Bonneau and Shutova [7] have shown that users prefer to select phrases that are chosen
non-randomly. They tend to select patterns that are common in natural language. The
distribution of the bigrams of words is not random in most cases. Ur et al. [18] researched
how similar words used in passwords are to natural language, and they have shown that
passwords in English were more likely to contain nouns and adjectives compared to verbs
or adverbs.

Therefore, the probability of word combinations is not equally distributed but bound to
the word type. In order to research this, the password first needs to be segmented into its
fragments (e.g. ilovecats → i-love-cats). As part of their password analysis, Veras et al. [21]
used a combined approach to split passwords. They used a variety of English corpora with
their appearing frequency and also a collection of part-of-speech tagged n-grams with their
frequency of use. This data allowed to find the segmentation, which is the most likely one,
as some passwords might be segmented into multiple variants.

3.3 Semantic Analysis
To see how people construct passwords, it is necessary to also know out of which words

they create them. Veras et al. [21] have shown that with using semantic analysis, they
were able to crack 67% more of the Linkedin and 32% more of the MySpace hashes than the
state-of-the-art of probabilistic context-free grammar crackers by Weir et al. [24]. Therefore,
the number of candidates can be reduced by targeting specific semantic categories. Veras
et al. [21] only focused on the English language. They show how words which are not in
their corpora could be added, but using trained structures on another language might be
less effective as the probabilities for certain part-of-speech elements and words would be
different.

Still, part-of-speech (PoS) tagging is an important aspect when considering passwords
created out of (partial) sentences. Rao et al. [16] claim that by using PoS tagging, the search
space can be reduced by more than 50% due to the grammatical structures. This approach
can especially be useful for long passwords, as there it is more common, that multiple
words were used (beside random ones). By using a grammar-aware cracking algorithm, they
cracked 10% more passwords than the state-of-the-art (John the Ripper [2] at that time)
when using the same amount of guesses.

Chou et al. [9] analyzed frequently used password patterns and their associated probabil-
ities to develop a model to have a 1.4 to 2.5 times higher success rate than John the Ripper.
They also claim that as long as a password is not hard to remember it stays vulnerable to
smart dictionary attacks. Ur et al. [19] also have shown in their user study, that people
consciously made weak passwords and also still have the feeling that adding a single special
character (e.g. !) makes a password more secure. People also assume that birth-dates
or names are secure as long as they are not on Facebook and therefore, could be used in

Related Work 11

passwords. Ur et al. also claim that people mostly consider targeted attacks as their threat
model but not as part of cracking a full leak, where the full list is attacked in general.

Another way how people are creating passwords was shown by Veras et al. [20]. They
discovered that 5% of the lines in the Rockyou wordlist are pure dates. By looking at the
distribution of these dates, they were able to show that specific dates are contained more
frequently, e.g. first days of months, recent years, and holiday days. Such patterns mostly
are language independent (besides the date notation) and could be used on hashes that are
suspected to be from a non-English source.

Sen [17] showed that 30% of the Ashley Madison passwords and 36% of the Myspace
wordlist contained meaningful English words (with the vast majority being nouns) and were
recognized using part-of-speech tagging. They used the analysis of PACK [3] to show that a
significant number of passwords in the analyzed lists consisted of sequential alpha characters
which most likely are words. Additionally, they used extracted words from Twitter (and
removing the stop-words which do not provide any additional personal word) to bring down
the guessing space further if a specific person’s password is searched.

3.4 Preprocessors
Most existing password recovery solutions like Hashcat [1] and John the Ripper [2] either

use candidates defined by a mask of character sets or from a given dictionary (and applying
mangling rules if needed). However, there does not (yet)15 exist any solution where candi-
dates can be generated directly inside the recovery software with a sophisticated approach
like PCFG-generators, in general, these can be called Preprocessors. Bonneau [6] showed
that switching from a global optimal to population-specific guessing does not give more than
a factor 2 in efficiency for recovering. Therefore, it makes sense to learn the best guessing
technique applied to the overall password distribution.

Due to this limitation of the password recovery solutions themselves, such candidates
need to be generated externally by the preprocessor. A simple approach is to generate the
candidates and save them in a file and then afterward use them in the attack. This method
might work for smaller amounts of candidates, but if the number of guesses grows, saving
them in a file becomes impossible or very costly regarding time and storage space. Therefore,
the candidates ideally get piped directly from the preprocessor into the password recovery
program. This approach works well on a single machine or when done manually, but as soon
as there is a higher-level distribution, the application needs to support this piping. Multiple
distribution applications exist, but none of them currently support that preprocessors can
be integrated for a password recovery task.

The most common preprocessors are:

PRINCE [5] (PRobability INfinite Chained Elements) Princeprocessor takes an in-
put wordlist and generates chains of combined words from this input with these chains
having 1 to N words which are concatenated. It allows receiving higher-grade combi-
nations than just two words. A deeper explanation how PRINCE works was presented

15 https://hashcat.net/forum/thread-7936.html

https://hashcat.net/forum/thread-7936.html

Related Work 12

at PasswordsCon 201416 and also described in more detail by ReusableSec17.

OMEN [10] The Ordered Markov ENumerator can generate password guesses based on
the occurrence probabilities of the used input wordlist. As the name suggests, it uses
Markov chains and splits the input passwords into n-grams to extract their probability.

PCFG Cracker [4][14] The Probabilistic Context-Free Grammar Password Research Project
was created by Weir et al. [24]. They claim that they were able to guess 28-129% more
passwords than with the default John the Ripper [2] attack with the same number of
candidates by using probabilistic context-free grammar sets trained on known pass-
words. This tool uses a list of passwords as the training set and splits them into their
components of alpha characters, digits, and special characters. These combinations
are ordered by probability and can be used to generate the most probable password
constructions first.

Hitaj et al. [13] [12] compared a deep learning approach for password guessing to some of
the above mentioned state-of-the-art tools with the developed tool PassGAN. The approach
consisted of a Generative Adversarial Network (GAN) trained and tested on the Rockyou
and Linkedin passwords. They claim to have outperformed state-of-the-art tools in most of
the cases they tested, and they showed that PassGAN could compete with other password
generation tools. However, there are two restrictions to be kept in mind. First, PassGAN
needs to do a significant number of guesses at the start until the quality improves. Therefore,
it is more suited for guessing against lists of hashes according to the learned distribution,
and it might not be ideal against single targets. Second, Hitaj et al. stripped away all
passwords longer than ten characters from the training and testing set. It first needs to be
confirmed that PassGAN also works for longer passwords, otherwise the benefit on faster
hash algorithms is relatively small, as passwords up to length ten can even be brute-forced
in reasonable time18.

There exist additional open-source preprocessors as well as some closed source ones. Of
the ones mentioned above, currently, only PRINCE has a built-in mechanism to distribute
the generation of the candidates. This restriction might only be an implementation-specific
limitation on other preprocessors as so far there was no need to have it implemented.

16 https://hashcat.net/events/p14-trondheim/prince-attack.pdf
17 https://reusablesec.blogspot.com/2014/12/tool-deep-dive-prince.html
18 With today’s possible speeds (https://www.onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti.

php), we exhaust the keyspace of length ten consisting of the charset a-z, A-Z, 0-9 in 17 days on ten
RTX 2080 Ti GPUs. Length 9 with the same charset is already exhausted in 6.8 hours.

https://hashcat.net/events/p14-trondheim/prince-attack.pdf
https://reusablesec.blogspot.com/2014/12/tool-deep-dive-prince.html
https://www.onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti.php
https://www.onlinehashcrack.com/tools-benchmark-hashcat-gtx-1080-ti-1070-ti.php

4
Architecture

In this chapter, we present the architecture used for Óðinn. Figure 4.1 shows an overall
view of all components and how they are supposed to work together. The analysis is used
to extract the desired information from a wordlist and provide it as structured data in the
results file. Results.json is the central component of the whole structure as it holds the
analysis results, which can be used for multiple further uses, e.g. to filter wordlists for
specific patterns based on the analysis. The two primary purposes of the results are to
serve the visualization component to produce a report about the analyzed wordlist and to
use discovered password structures to generate new password candidates with the guesser.
Depending on the use case, the guesser can use additional information about the target hash
(e.g. words extracted from personal data) to provide more specific variations. Generated
candidates can be used in Hashtopolis to distribute the workload to allow faster recovery
and being able to conduct long-running tasks.

Wordlist Analysis Results.json Guesser

Visualization

Hashtopolis

Report

Information

Figure 4.1: Overview of all components of Óðinn and how they work together. Data is
highlighted in blue, processes in green.

Architecture 14

4.1 Analysis
The main procedure is the analysis component, which takes a wordlist (or multiple ones)

as input and analyzes them. To allow a flexible usage, each type of analysis is contained in
a module that can be turned on/off for the analysis to have the desired results included. To
be flexible regarding distributing the work of the analysis, we use an approach of splitting
the input into small pieces (batches) and modular processing of the lines and aggregating
over the data for the result. Figure 4.2 shows a high-level overview of the modules included
in the analysis component.

Wordlist

Fi
lte

rin
g

Charset

Length

Language Detection

Simple Masks

Advanced Masks

Segment Splitter

Semantic Analysis
R

es
ul

t W
rit

er

Results

Li
ne

 R
ea

de
r

Figure 4.2: Modules included in the analysis component.

4.1.1 Filtering
It is prevalent that wordlists contain a certain amount of data which could be considered

as junk, especially when they are large. This means, most likely these are lines which are
either not real passwords or contain other data that made it into the wordlist due to other
mistakes (e.g. lousy parsing when creating). Examples of such data are emails, HTML
fragments, obviously generated content (e.g. extremely long and repeated), and hashes.

Depending on the use case, such bad entries should be removed before the analysis, as
they could influence the result and are a waste of resources if they are not relevant anyway.
As not always the same entries need to be filtered, there are modules for each type of possible
junk entries. The following modules are the most important ones:

Email Detect if a line is a valid email address. Depending on the implementation, there can
be multiple levels to set what should be considered as a valid email. This is explained
in Section 5.1.

Length Allows setting a lower and upper bound which lines should be accepted.

Mask Filters all lines which match a certain mask (e.g. ?d?d?d?d → all 4-digit lines). This
is useful if it is known that a certain part is generated or specific patterns should not
be considered.

Architecture 15

Common Hashes It often occurs that either uncracked hashes or plaintexts which are still
hashes appear in some wordlists. These for sure, are not any meaningful passwords in
this representation and can be filtered. The filter can check for common lengths (e.g.
32, 40, etc.) and if all characters are hexadecimal to recognize hashes.

4.1.2 Modules
Each module can either produce output for each input line (Processor) or collected results

from all input lines (Collector). The output of Processors needs to be put into Collectors
before being forwarded to the Result Writer.

Charset (Collector) Collects the information about the character set combination used
out of the four basic charsets loweralpha, upperalpha, numeric and special (e.g. low-
eralphanum denoting all lowercase characters plus digits).

Length (Collector) Collects the distribution of the length of the inputs.

Language Detection (Collector) Tries to detect if an input can be assigned to a spe-
cific language due to certain characters used and collects the distribution of these
identifiable words.

Simple Masks (Collector) Collects most common simple masks based on combinations
of the basic charsets (e.g. stringdigit denoting a password which has one or more
alphabetical characters followed by at least one digit).

Advanced Masks (Collector) Collects all character masks ordered by their frequency.
A mask is given with a specific length and character set used for each position (e.g.
?l?l?l?l?d?d).

Segment Splitter (Processor) Splits each word into its components, meaning it tries to
determine out of which components the word was constructed (e.g. hello1234 would
be split into hello and 1234).

Semantic Analysis (Collector) Takes split words as input and tries to classify the seg-
ments by their semantic meaning to collect a distribution of the constructed words
from the input (e.g. how many words were constructed from a male name and a year).

4.1.3 Results Data Model
The information extracted with a wordlist analysis is saved in the results file. Figure 4.3

shows the structure of such a results file together with some example result data. Beside
some general information, each module provides its specific results. If needed, some binary
data can be referenced by a file path.

The results file is a central element as there are multiple use cases where this information
can be used. Examples of such use cases are described in sections 4.2 and 4.4.

Architecture 16

{
"options": {
"-wordlist": "rockyou100.txt",
"-threads": 8,
"-guesser": false,
....

},
"processedLines": 100,
"timeFinished": 1547556228,
"version": "0.1.1",
"analysisTimes": {
"lengthDistribution": 0.034,
"charsetDistribution": 0.037,
"advancedMasks": 0.033,
"languageDetection": 0.033,
"simpleSplitter-fragmentCounter": 0.078,
"simpleSplitter-simpleSemantic": 2.407

},
"filters": {
"lengthFilter/0.1.0": {
"filtered": 4

},
"emailFilter/0.1.0": {
"filtered": 13

}
},
"modules": {
"lengthDistribution/0.1.0": {

"6": 49,
"5": 4,
"7": 19,
"total": 100,
"10": 3,
...

},
"advancedMasks/0.1.0": {

"?d?d?d?d?d?d": 6,
"?d?d?d?d?d": 1,
"?d?d?d?d?d?d?d?d?d": 2,
"?l?l?l?l?l?l?l?l": 16,
"?d?d?d?d?d?d?d": 1,
"?l?l?l?l?l?l?l": 16,
"?d?d?d?d?d?d?d?d": 1,
"total": 100,
"?l?l?l?d?d?d": 1,
"?l?l?l?l?l?l": 42,
...

},
....

}
}

Figure 4.3: Structure of the analysis result. Modules are always referenced with their name
and their version number (e.g. emailFilter/0.1.0). In options the command line parameters
which were used when calling Óðinn creating this results file are listed. analysisTimes shows
the overall time in seconds which each module (or chained modules) needed. In filters all
used filter modules are listed, providing the number of entries filtered by each of them. The
main analysis results are shown in modules where the Collectors provide their data from the
analysis.

Architecture 17

4.2 Visualization and Reporting
Based on the analysis result output, the visualization component is making it possible to

gather all this information output and put it into plots and readable information summed
up in a report. This report can be set to only include specific details or all analyzed results,
depending on the use case. As the visualization is separated from the analysis process, it
is easily possible to re-run the visualization with another configuration without having to
re-run the computationally intensive and time-consuming analysis process. Figure 4.4 shows
the currently considered modules and how the component is structured.

4.2.1 Modules
Each module requires certain results from the previously shown analysis modules as a

dependency. Additionally, every module has a LaTeX template that allows the plot/output
to be integrated into the overall report, which can then be compiled to a PDF.

Length Takes the length distribution output from the analysis and plots it as a bar plot.

Simple Masks Shows the most common simple masks.

Heatmap Plots the fragment count against the length of the password to show structures
of the passwords.

Fragments Shows the most common fragments extracted, separated by type (digits, word,
etc.).

Languages Prints information about the most commonly found languages in the wordlist.

Semantic Words Shows common semantic structures of words appearing in the wordlist.

Advanced Masks Lists the Hashcat charset masks ordered by frequency count. It might
also include information about which masks might be more worth to run and which
not (depending on the keyspace).

Results

R
es

ul
ts

 R
ea

de
r

Length

Simple Masks

Fragment Heatmap

Fragments

Languages

Semantic Words

Advanced Masks

La
Te

X
 M

er
ge

LaTeX Report

PDF Report

Figure 4.4: Structure and modules of the visualization component of Óðinn.

Architecture 18

4.3 Guesser
Similarly, as the other parts of Óðinn, the guessing part is built in modules. Each

module has specific requirements from the results data and uses a different approach to
create candidates based on this data. Below, we describe each module and show what it can
generate.

4.3.1 Fragment Prepend/Append
This module takes a wordlist as base input and appends/prepends one or more of the

most common fragments to these entries. Figure 4.5 shows an example output from a list
of fragments ordered by frequency and a base wordlist. Depending on what a user wants to
run, either both operations or only one of prepend or append can be applied.

password
hello
...

1345 123
673 .com
12 My
...

password123
123password
password.com
.compassword
hello123
123hello
...

Fragments

Base Wordlist

Candidates

Figure 4.5: Example guessing of the FragmentPrependAppend module.

4.3.2 Fragment Mixer
Takes the most common fragments (determined from the analysis) and combines them

together up to N times. Figure 4.6 shows an example of output from a list of given fragments.

1345 123
673 .com
12 My
...

123
123123
123123123
123.com
123.com.com
.com123
.com123123
...

Fragments Candidates

Figure 4.6: Example guessing of the FragmentMixer module with using a maximum of three
combined fragments.

Architecture 19

4.3.3 Semantic
This module takes the most common semantic combinations and creates guesses with

words from the classified groups. The candidates can either be from defined class wordlists
or other classification libraries. Figure 4.7 shows an example using two common semantic
patterns Female Names and Years to generate combinations from the provided wordlists
ordered by frequency or importance.

jenny
heather
meghan
...

fname
fname-year
...

jenny
heather
meghan
jenny92
heather92
meghan92
jenny1997
...

Semantic Patterns

Female Names

Candidates

92
1997
2001
...

Years

Figure 4.7: Example guessing of the semantic module where using two input wordlists.

4.3.4 Bi-Fragment Mixer
This module consists of two phases. It uses the model of Markov chains. From the

analysis result, we have a frequency count for the fragment pairs occurring in the wordlist.
We define N as the total number of pairs and each pair e consisting of the two elements el
and er and a frequency count ec.

e = 〈el, er, ec〉

E = {e0, e1, eN}

Pairs, which have l as their left component, are defined as:

E(l) = {e ∈ E|el = l}

When we now take the sum of the frequency counts for a given l defined as:

F (l) =
∑

E(l)c

we can define the probability for r following l given the tuple e containing this pair:

P (r|l) = ec
F (l)

Architecture 20

Based on these probabilities, we can build a lookup table. We use l as the key and
provide a list of all possible r. This list is in decreased order by the probability of these
possible r. The resulting lookup table models all possible transitions from l to r appearing
in the analyzed wordlist. Figure 4.8 shows an example of such a lookup table. In practice,
it can grow rapidly, especially for common fragments l which will have a large number of
possible r elements.

In the second step, the guesser starts by taking the specific element l = START and takes
the n most probable followers to continue with. For each follower, it recursively goes through
their most probable followers again until a specific limit or an r = END fragment is reached.
All the resulting fragments from these paths are combined and printed as candidates, as
shown in Figure 4.9. As the lookup table has the followers ordered by frequency, the printed
candidates will be in decreasing order of frequency (based on the analyzed wordlist).

password END
START password
password 123
123 !
123 END
! END
START hello
START ilove
...

Fragment Pairs

START

password

123

!

password, hello, ilove

END, 123

!, END

END

Lookup Table

Figure 4.8: Building the lookup table for the BiFragmentMixer module from a given list of
fragment pairs ordered by frequency. START and END denote the begin and the end of a
password combination respectively.

START

password

123

!

password, hello, ilove

END, 123

!, END

END

Lookup Table

password
password123
password123!
hello
...

Candidates

Figure 4.9: Generating candidates using the lookup table, beginning from START and its
followers.

4.4 Preprocessor
In addition to the mentioned preprocessors in 3.4, we want to include our simple password

guessers which take the analysis results and generate candidates to be piped into Hashcat.
At least some of these guesser modules should allow the use of chunking (skip/limit). It will
enable having at least two preprocessors ready to be used in Hashtopolis. Therefore, the
password guesser needs to be capable of chunking the output space to make it possible to
distribute the generation of candidates.

Architecture 21

Having a password guesser working with the analysis results allows comparing guessing
results (and therefore also the analysis results) against existing approaches. Additionally,
having a general inclusion of preprocessors into Hashtopolis might motivate developers of
preprocessors to include support for distribution to allow running large-scale password re-
covery tasks. Preprocessors like OMEN and PCFG-cracker have some internal structures
which already allow some splitting of the generation process. Therefore only small changes
are missing to add support for Hashtopolis.

Figure 4.10 shows the workflow which will happen when a preprocessor is used in Hash-
topolis. The preprocessor receives a specific range in which it should generate the candidates.
These candidates are printed to STDOUT and piped into the Hashcat process. Typically
(primarily, when having faster hash algorithms), a so-called amplifier is used on the Hash-
cat process. This consists of using a rule file to maximize out the hardware capabilities
with Hashcat better because on faster algorithms, the pipe is not fast enough to provide
enough candidates per second. The rules additionally increase the chance to recover the
password(s).

Preprocessor

Skip Limit

Full Task

ilovemydog
ilovemymum
ilovemeat
...

Pipe

Hashcat

Rules

ilovemydog123
Ilovemydog
ilovemydog!
...

Figure 4.10: Workflow of the preprocessor integration in Hashcat. The preprocessor gets a
range in the full task keyspace and needs to cover this part which is piped into Hashcat.

5
Implementation

In this chapter, we present some details about the implementation of Óðinn and the decisions
chosen during this process. Furthermore, we line up some difficulties we faced and the
workarounds or solutions we used.

As the analysis component of Óðinn is the computationally most expensive part (espe-
cially the semantic module), it was programmed to allow parallelization, so all CPU threads
available can be used. The visualization and guesser processes are single-threaded only.
During the development, we found out that it is inefficient to multi-thread over the maxi-
mum available threads for all modules. For example, with most of the filter modules, using
many threads lead to high overhead, the same also applies to specific analysis modules (e.g.
length distribution). For the sake of optimizing, we introduced two modes which a module
can be executed with. There are two number of threads defined (–low-threads and –threads),
one for modules which only require limited computation and should not be multi-threaded
to many cores, and the other which sets the high maximum of threads to be used. Each
analysis module got assigned to one of these two modes in order to use an appropriate
number of threads.

5.1 Filtering Modules
The filtering modules serve two purposes. First, their primary function is to check for bad

entries before they are analyzed. They can be used to filter out very lengthy strings, emails,
or other unwanted patterns. The other use is if, for any reason, these specific matched
entries should be extracted from the wordlist. It can be set to save all matches of the filters,
and if not needed, the analysis can be turned off. Essentially, this allows just to run one or
multiple filter modules through a wordlist and retrieve the matched entries.

In the following, we describe some implementation details for these filter modules.

5.1.1 Email Filter
It is obvious what the purpose of this filter is based on its name. However, in practice,

it is not trivial to determine if a particular string is an email or just a password which

Implementation 23

has some pattern in it. The email filter supports two variants of detecting if a string is
an email or not. The first one only classifies emails that are using a top-level domain
(e.g. john.smith@example.org would be seen as email, but john.smith@sub.example.org
not). The second variant classifies everything as an email that has a valid looking sub-
domain ending, so an arbitrary number of dots, as long as it is a valid subdomain (e.g.
john.smith@sub.domain.org would be accepted, but john.smith@sub..domain.org not). So,
if it looks like a valid email domain ending, it would be classified as email. In contrary to
other email validators, this way we still can classify most of the emails correctly, but it does
not take in false positives like MyP@ssword (a very simple validator would look for the @
and therefore see it as an email address).

5.1.2 Length Filter
This filter removes entries exceeding a particular length or if desired, entries which are

shorter than needed.

5.1.3 Mask Filter
Using the same notation as Hashcat, this filter can remove entries that match a particular

mask (e.g. ?d?d?d?d for all numbers with four digits). It can primarily be useful if someone
wants to get all entries with this mask from the wordlist and then proceed these further.

5.1.4 Fragment Count Length Filter
This filter allows setting restrictions in which range the length of passwords should be

and how many fragments they should consist of. It allows having a closer look at a specific
range from the Fragment Count Heatmap (see Section 5.3.2) in order to explore which entries
caused this specific part. Alternatively, if not wanted, these entries can be removed.

5.1.5 Semantic Filter
With this filter, specific semantic matches can be filtered out. It can be used to have a

look at which passwords get classified as such from the wordlist. Alternatively, to exclude
specific known patterns from the analysis.

5.2 Analysis Modules
There are two types of analysis modules, the ones which produce a result output which

will be saved (Collector) and the second group which applies specific changes to the input
which will be processed afterward by another module (Processor).

Implementation 24

5.2.1 Simple Splitter (Processor)
This module is responsible for splitting each input line into fragments according to their

character class. There, the differentiation is made between three classes: alpha (a-z, A-Z)19,
numeric (0-9), special (everything else). With this module, a simple fragmentation is done.
If there are phrases or multiple words used sequentially, this module might not be enough.
For example, when having the password correcthorsebatterystaple20, it will not be split at
all, as it consists of alphabetic characters only.

5.2.2 Full Splitter (Processor)
The Full Splitter uses the already separated fragments from the Simple Splitter and tries

to split the alpha elements further into their single words (if there are multiple words). In
order to achieve this, two components were used:

Symspellpy The python implementation of Symspell21 is used to split a longer string (pos-
sibly containing multiple words) into their single parts. Symspellpy uses a frequency
dictionary to evaluate which separation is the most likely one. The quality of the
segmentation highly depends on the quality of the loaded dictionary.

Frequency Dictionary As passwords often are not from proper English language only, the
default dictionary provided with Symspellpy was not good enough to separate most
of the passwords correctly. In order to cover more than just English and as well cover
Internet slang, we used a provided collection of Reddit22 comments data23 to extract
all words and run a frequency count over this list. As even with heavy cleaning of these
texts, there are still some unwanted words contained, we cut the frequency dictionary
afterward below a set count threshold24. With this wordlist, we expect to cover most
of the currently used language (e.g. new words, slang), under the assumption they are
used in passwords.

After certain tests, we found out that some words were meaningless combinations of
multiple words in the dictionary (e.g. true, blue and trueblue). Symspellpy consequently
did not separate trueblue into two words, making infeasible the following classification by
the semantic module. In order to avoid cutting off a lot more of the dictionary (we have
adjusted the cut threshold to a higher value, resulting in the loss of some valid entries), we
created a second dictionary where we set the cut threshold relatively high. When now trying
to split into fragments, the small dictionary is used first. If there is a possible segmentation,
we use this one. In case there is no segmentation found, the same process is done again
with the full dictionary. This way we make sure that single words (which occur much more

19 This includes as well valid UTF-8 characters which are considered as alpha from non-English alphabets,
e.g. the German ö or French é

20 https://xkcd.com/936/
21 https://github.com/wolfgarbe/SymSpell and https://github.com/mammothb/symspellpy
22 https://reddit.com
23 http://files.pushshift.io/reddit/comments/
24 Currently this threshold is set to 2 (we included words from the years 2008-2010 so far), when having

more words from more years, the threshold can be set higher.

https://xkcd.com/936/
https://github.com/mammothb/symspellpy
https://reddit.com
http://files.pushshift.io/reddit/comments/

Implementation 25

often) get segmented even if their concatenated version occurs in the dictionary as well, as
the small dictionary gets prioritized.

In order to allow the most flexibility, it is configurable if the small dictionary should be
used or not. It heavily depends on the words in the wordlist and the capabilities of the
further analysis (e.g. semantic analysis).

5.2.3 Semantic Analysis (Collector)
Being able to analyze the meaning of only one single word semantically is challenging.

Depending on the input, it is nearly impossible to be sure about the meaning. There are
several reasons for this:

• Very short strings can be abbreviations, but often these also can have multiple match-
ing meanings (e.g. he could stand for Helium or be the male pronoun).

• Some words could be written identically but have a whole different meaning. Without
having additional information, it is impossible to detect which one is the correct one
(e.g. can could be a verb or a noun with different meanings).

• There is no guarantee that the word is from the English language. Therefore it could
happen that even if the word has a meaning in English, it could mean something
different in another language (e.g. die which in English comes from to die or the
singular of dice, but could also be the German female article). As the Full Splitter is
also able to handle non-English input, words could mean something different or would
not mean anything in English.

Still, English is the most commonly used language in Wordlists. Therefore, it is essential
to be at least able to classify these. We decided to go for WordNet25 which offers classifi-
cation for single words into the so-called synsets which can be set into relation with other
synsets (e.g. hierarchically). Most other natural language processing tools do not offer a
classification of single words but require to have a full sentence, which we do not have in
our scenario.

WordNet uses synset groups to provide different options if a word could have multiple
meanings. In that case, they are numbered and ordered in their frequency in the English
language. As we have no way to determine which one is the correct one, we always select
the most common one.

Even if WordNet covers the English language pretty well, there are certain limitations
and issues for our use-case:

• As soon as there is a typo in a word, it will not be able to classify the word, as it has
to match exactly.

• Short strings can be classified as some strange synsets (e.g. he would be classified as
a chemical element because it is used in the periodic table for Helium).

25 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

Implementation 26

• Names, brands, games, and similar types of words are completely unknown to Word-
Net. For example, passwords often contain names; therefore, WordNet misses a lot of
important classes in our case.

• WordNet classifies very specifically, so even similar words whose meaning would belong
to the same higher group of words are classified with different synsets.

In order to tackle the challenges with Óðinn, we used the following three types of classifica-
tions detailed afterward:

WordNet Classify the word with WordNet to a synset and then try to find a parent synset
to have broader coverage for the meaning. This merging process is more exactly
described below.

Class Dictionary Provide lists of words assigned to a specific meaning to classify. For
example, have a list of female first names to classify all these words as female names.

Class Function Using programming logic to determine if a given input matches a certain
class. For example, having one function to detect if a given input is a year. In the
function, we define that all inputs with two or four digits, which are in a reasonable
year range, are classified as years.

5.2.3.1 WordNet Classification

If we assume the words love, hate, emotion as an example, we see that these words
semantically could be in one group, but WordNet classifies each of them into a separate
synset. If we only aggregate all classifications directly from the synsets, most or all synsets
get low counts, and it is challenging to create a decreasing order of combinations as there
would be too few occurrences.

To improve this, we need to match synsets together to broader classes. WordNet allows
getting the parental synset, as the synsets are built into a tree with one root when traversing
up by parental nodes. Unfortunately, there are significant differences between synsets on
how many parents have to be traversed until reaching the root. Therefore, it is not possible
to have a single number of steps to go up to reach a broader synset. We used an empirical
approach to determine common synsets which could be grouped, by using the semantic
distance calculation provided by WordNet (shortest_path_distance() function). We took
all synsets with a frequency higher than a threshold (at least 400 occurrences) from the
Rockyou wordlist analysis and calculated the distance between each of them. We grouped
those which had a small enough distance between them. During the analysis, a classified
synset will be checked against each of these broader groups. If the semantic distance is small
enough, the broader group will be used as the classification. An example of this process of
finding a higher group to assign a synset to is shown in Figure 5.1.

The method to assign synsets to larger classes has certain costs as it is expensive to
compare to each of the groups. Up to a certain level, this can be reduced by caching these
assignments and checking these beforehand. As the number of same synsets is decreas-

Implementation 27

ing exponentially, caching the most frequent ones already drastically reduced the required
computation effort.

mom ma.n.01 flower.n.01
time_unit.n.01
region.n.01
person.n.01
mother.n.01
energy.n.01
motor_vehicle.n.01mother.n.01

Figure 5.1: Example of the assignment of a classified synset to a higher one, based on the
distance to the known higher synsets. Mom is classified to the synset ma.n.01 which is
defined as “informal terms for a mother” by WordNet. This synset is then compared by
using the shortest_path_distance() and the path_similarity() functions of WordNet to find
the best matching higher synset. In this example, the distance to mother.n.01 is the smallest
and therefore mom will be classified as mother.n.01. In case there are not any of the higher
synsets close enough to the initial synset, it will be kept as it is without assigning it to
another one.

5.2.3.2 Class Dictionaries & Functions

As mentioned beforehand, WordNet is only able to classify words from the English
language. The class dictionaries and functions aim at covering the missing words. We first
tried to let WordNet classify the words, and if this was not successful, we used our own
dictionaries to find a match. Using this approach, we noticed the above-described issue that
WordNet misclassified some special words. To tackle this, we split our class dictionaries and
functions into two groups. One of them being tested before (pre-wn classes) WordNet and
one afterwards (post-wn classes). The pre-wn classes contain tests against names, countries,
cities, and months. These were sometimes classified as something completely different,
e.g. the female name Anna is classified as anna.n.01 which is a hyponym of the synset
indian_monetary_unit.n.01, which is not what the meaning of this name should be in our
case.

5.2.4 Fragment Counter
This module is taking the overall count for all fragments which are found in the wordlist.

It will show the most common fragments appearing in the analyzed passwords. This infor-
mation can additionally be used to guess new passwords with either combining the common
fragments or combine them with existing other wordlists, described more detailed in Section
6.3.3.

Additionally, the number of fragments appearing for a given password length is counted.
It means that the module counts the frequency of the number of elements for each password
length present. For example, for the password Password123, the counter for length eleven

Implementation 28

and two fragments is incremented. This data can be used to analyze some structures of the
wordlist, described in Section 5.3.2.

5.2.5 Bi-Fragment Counter
Having the passwords fragmented, we can do the same as what is done with character

n-grams. Instead of just splitting the password by a specific number of characters and look
at the frequency of tuples like OMEN [10], we can create pairs of fragments to generate
chains. For example, if we take the word mymomisgreat :

my− mom− is− great⇒ START− my

⇒ my− mom

⇒ mom− is

⇒ is− great

⇒ great− END

The Bi-Fragment counter counts the occurrences of these pairs in order to see the most
frequent or all possible followers of a particular fragment found in the wordlist.

5.3 Visualization Modules
Visualization modules serve two functionalities. First, as the name suggests, they visu-

alize specific data from the analysis. Second, they can provide LaTeX code to either include
their generated plots into the report or provide textual content or other structures from the
analysis. In case of being interested in the plots only, it is possible to open the plots directly
with matplotlib26 and interactively explore certain parts of them (e.g. zoom, move).

Most of the modules are trivial in their function and what they should plot. We are
describing the two most relevant modules in what follows. We discuss the output and
discoveries of all the modules in the results chapter.

5.3.1 Fragment Count Distribution
The distribution of fragment lengths allows seeing if the trend is exponentially decreas-

ing as expected by Zipf’s law27. Figure 5.2 shows an example where we clearly see that
the number of passwords is decreasing with an increasing number of fragments. Having
significantly different plots than such a decreasing pattern would show that there might be
unwanted password candidates in the wordlist.

26 https://matplotlib.org/
27 Such law is followed by all languages and passwords as well, as shown by Wang et al. [23]

https://matplotlib.org/

Implementation 29

20 40 60 80 100
Number of Fragments

101

103

105

107

Co
un

t

Fragment Distribution

Figure 5.2: Example of a Fragment Distribution Plot.

5.3.2 Fragment-Heatmap
The fragment heatmap uses the frequency of the number of fragments for certain lengths

from the fragment counter analysis module. Common passwords are in a smaller range of
fragment counts and password length, having a heatmap makes it possible to have a first
impression with a single view. Figure 5.3 shows an example of such a heatmap. The color
denotes the frequency of the specific length and fragment count.

20 40 60 80 100
Length

20

40

60

80

100

Fr
ag

m
en

t C
ou

nt

Fragment Count Heatmap

Figure 5.3: Example of a Fragment Heatmap Plot.

Implementation 30

5.4 Guesser
Guesser modules are used to produce candidates to be tested against a hash. They use

result data from the analysis and optionally additional input. As the modules were explained
in detail in the architecture chapter, we focus on the two essential modules, which were also
the most challenging ones to implement.

5.4.1 Semantic Guesser
This module takes one or multiple semantic constructions (e.g. fname-year) out of

which it will generate candidates with this semantic structure. Depending on the semantic
structure, it uses different approaches to retrieve words for a specific class:

WordNet Classes If the class is a wordnet synset (e.g. emotion.n.01), it uses WordNet’s
functionality to get hyponyms for the given synset, then traverses the trees of the
children and takes all lemmas (in WordNet those are words in their canonical form
with a single meaning) of these synsets.

Class Dictionaries The guesser starts guessing with the words present in the dictionary
of that class and goes through them in the order they are in the file.

Class Functions The functions from the analysis which classify these specific classes pro-
vide additional functionality which generates candidates matching this class. For ex-
ample, for the class year this will produce the possible numbers which are classified
as years by the semantic analysis.

Compared to the two other variants, the class dictionaries allow that the candidates can
be enforced to be in a specific order (if for certain reasons these entries are more likely to be
correct). On WordNet, the guesser module has not any control in which order it returns the
requested synsets and their lemmas. With the class functions, it could be possible to add
this, but it would be very use-case dependent and requires additional programming effort
to make this efficiently happen.

5.4.2 Bi-Fragment Mixer
This module makes use of the pairs of fragments that can follow after each other to

build new combinations of fragments as candidates. The main challenge with this module
is its memory consumption. Due to the enormous amount of different fragments and pairs,
when loading the structure which is built to generate candidates grows quickly. Especially
as the result file first needs to be loaded and then processed into the structure required by
the module. For example, to load the analysis result of the Rockyou list into this guesser
module, having 8GB of memory was not sufficient28.

In order to overcome this specific case where loading the results file and parsing afterward
is too much to handle on smaller hardware, we added the possibility to convert a results file
into a CSV style file with only the required data for this guesser module. The module then

28 The Rockyou list contains 14’344’392 lines.

Implementation 31

alternatively can load the data directly from this prepared file instead of the results file and
can handle it using significantly less memory. An example of this method can be found in
Appendix A.6.

With the depth-first approach we used to go through the possible candidates with the Bi-
Fragment guesser module, it happens that more probably candidates appear much later than
they should. For example, if the first fragment is the most likely one, that does not mean
that all the right-hand fragments are also that probable. Early right-hand fragments of the
next first fragment are more common, as their frequency count is higher. In order to improve
the ordering of the candidates to be closer to a strictly decreasing frequency, we added the
iterative overlay. We sum up the position count of the fragments in the right-hand lists of
a candidate to denote its probability compared to other candidates. As we have to explore
the candidates in order to determine this number, we set a range in which the sum should
be and only print candidates being in this range. This process we do until we covered the
whole range of these sums, we start at 1 and end at max_top ∗ max_steps+ max_steps

(according to the flags set on the guesser).

5.5 Hashtopolis Preprocessors
Hashtopolis should be able to handle multiple preprocessors with their settings and

allowing the execution of tasks using these preprocessors.

5.5.1 Integration
Preprocessors are defined on the web interface in the server configuration. For each

preprocessor, it should be defined how the binary is called, where it can be downloaded and
which flags it uses for handling chunks. This information is mostly used by the agent, as it
will take care of retrieving the binary and call it appropriately when executing a task.

When a task is being created, it can be selected that a preprocessor should be used for
this task, selecting from the configured ones on the server. As each preprocessor has some
unique configurations, an input field allows setting any required command line parameters
to get the desired result. Also, files from the server can be entered there, similar to the
regular task command line.

5.5.2 Limitations
Ideally, a preprocessor should provide the functionality to chunk the entire work into

pieces. Similar as it is done with the flags –skip and –limit on Hashcat. Without having
any flags to tell the preprocessor to start at a certain point and stop after a specified limit,
an agent cannot start at the point where the start of the chunk is set.

In order to still support preprocessors that do not have any functionality to skip and
limit the covered keyspace, we implemented a workaround using the command line utilities
head and tail to just cut out the correct lines. Of course, this solution has a particular
overhead, as the preprocessor always has to start from the beginning of its guessing, and
the skipped lines will just be ignored. Still, this solution allows some integration, which is

Implementation 32

better than having no possibility at all. Also, it has to be noticed that the preprocessor
should always produce the same lines if called with the same arguments. If this is not the
case, it is entirely impossible to include it in Hashtopolis.

6
Evaluation / Results

In this chapter, we analyze the functionality and abilities of the developed parts of Óðinn
and its integration into Hashtopolis. We also compare the guessing abilities of some guesser
modules to state-of-the-art preprocessors. Further, we discuss some example results showing
interesting outcomes which can assist the user in understanding what is inside a wordlist.

For most of the modules, it does not make sense to evaluate their speed as their most
important factor is how well they can do what they are supposed to do. We show examples
from the modules, to demonstrate what they are able to do and what their limits are.

6.1 Analysis
The startup of the analysis generally is delayed by a few seconds because it needs to load

the frequency dictionary for the Full Splitter and initialize WordNet. By far, the slowest
module is the semantic analysis module as it needs to compute all the distances to optimize
the classifications as described in Section 5.2.3.1. Table 6.1 shows the times required for all
modules in the analysis of the Rockyou wordlist29. It shows that around 97% of the total
time was used for the semantic analysis. If there is no need to have the semantic results for
a specific task, we recommend to turn it off (for that run) to avoid a significant amount of
time wasted.

6.1.1 Full Splitter Module
The Full Splitter module is supposed to retrieve strings which are split into their char-

acter classes (alpha, numeric, special) and test if there is further splitting possible on the
alpha part. For example, having the password greatpassword123! which is split into three
fragments greatpassword - 123 - !, the Full Splitter should split greatpassword further into
the two words great and password.

Using Reddit comments as the source for words and building the frequency dictionary
to be used by the Full Splitter had several advantages and disadvantages:

29 The Rockyou wordlist contains 14’344’392 unique lines.

Evaluation / Results 34

Table 6.1: Analysis times for modules and module chains (wordlist Rockyou), running with
an Intel Core i7-4710HQ+ 2.50GHz (8 threads)

Module(s) Time % of total Time

lengthDistribution 105s 0.4%

charsetDistribution 104s 0.4%

advancedMasks 203s 0.7%

languageDetection 132s 0.5%

simpleSplitter-fragmentCounter 261s 1.0%

simpleSplitter-fullSplitter-simpleSemantic 25’911s 97.0%

• Since Reddit is not exclusively English, we have coverage as well for other languages.
Additionally, it also includes slang words and often used expressions that are not
grammatically correct. For example, using lemme instead of let me.

• The Reddit comments also included many names, brands, and expressions from games.
These are not contained in standard English dictionaries.

• We used scripts to remove unwanted content from the comments (e.g. URLs, numbers,
special chars only). Still, there were some expressions in the data which we could not
filter out as they do not differ from any normal words. These expressions were mostly
multiple words which were written together, for example, mymom instead of my mom,
which caused the concatenated word also to appear in the frequency dictionary.

We discuss some examples showing what can be split and which are not optimal and
show the reasons. Listing 6.1 shows correctly split examples. The most frequent wrong split
happens with the mentioned concatenated words. Such examples are shown in Listing 6.2.
A more rare case is shown in Listing 6.3 which occurs because the correct splitting would
consist of one more word than the proposed one. Symspell prefers as few as possible words,
and as od appears in the frequency dictionary (multiple thousand occurrences counted), it
selects the wrong split. Listing 6.4 shows another possibility of why strings could be split
incorrectly. Since leville is not contained in the frequency dictionary, Symspell tried to find
another possible split which is wrong.

Listing 6.1: Correctly split strings.

j e p a r l e f r a n c a i s 1 2 3 −> j e pa r l e f r a n c a i s 123
c o r r e c t h o r s e b a t t e r y s t a b l e −> co r r e c t horse bat te ry s t ap l e
i c h l i e b e d öner −> ich l i e b e döner
mysafepassword −> my sa f e password
da l l i s i smybabyg i r l −> d a l l i s i s my babyg i r l
bravegiveup123 ! −> brave g ive up 123 !
ve rb i e rmi lk shake .13 −> ve rb i e r milkshake . 13
n ina l i nda4eve r −> nina l i nda 4 ever
shannenismybabe ! −> shannen i s my babe !

Evaluation / Results 35

Listing 6.2: Not fully split strings.

mymomlovesme −> mymom love s me
trytoguessmypassword −> try to guess mypassword
imnotboosted −> imnot boosted

Listing 6.3: Incorrectly split string due to minimal word count.

doyoube l i eve ingod ? −> do you b e l i e v e i n g od ?

Listing 6.4: Incorrectly split string due to the name leville not being contained in the
dictionary.

l e v i l l e i smyboo −> lev i l l e i sm y boo

6.1.2 Language Detection Module
The language detection was quite problematic. There are only very few characters which,

without any doubt, would suggest one single language. Most of the special characters which
could hint for a language can appear in at least two languages. For example, the German
umlaut ü could not only be German but also Turkish, so without any additional information,
we cannot determine which language the password is from. Natural Language Processing
libraries typically require a full sentence to assign a given input to a language as they use
so-called stop-words to identify it. To make language decisions based on single words, again
hand-crafted dictionaries could be used to extend the detection, but this again would require
much manual work and still could be prone to errors.

6.1.3 Semantic Analysis Module
The semantic module classifies each fragment into a class that will produce a list of classes

for an input password. A class either is a WordNet synset (denoted by the class, the word
family and the position from different possible meanings) or a class from a wordlist/function
which is denoted by its name. If a fragment is not classifiable, it will be denoted by a x.
Below we discuss several examples of classifications in order to show the possibilities and
challenges which are still open.

Listing 6.5 Taken from the famous XKCD example about password strength30. Óðinn
can classify all fragments with WordNet, but for two of the classified elements, they
seem not to be the most appropriate one if compared to the original meaning from the
comic. The word correct is interpreted as the verb from fixing something and not the
adjective of being correct. The word battery gets classified as a size unit used in army
language instead of the word used for power cells.

Listing 6.6 This example consists of two names and two additional fragments. WordNet
typically is not able to classify names (and the crafted dictionaries are used), but in

30 https://xkcd.com/936/

https://xkcd.com/936/

Evaluation / Results 36

that case, it recognizes nina. The name is known, because in WordNet, it is defined
as the Babylonian goddess of the watery deep and daughter of Ea.

Listing 6.7 The fragments from this example get classified accurately except the word babe.
This word typically and also, in this case, is used, for example, for someone’s girlfriend.
WordNet associates it to the meaning of child, which is wrong in this context.

Listing 6.8 & Listing 6.9 These examples show that with the current WordNet data we
used it is completely impossible to identify any non-English words. As in the first
example, all fragments are unknown, a single x is used as classification. In contrary
to the second example where the digits were identified as common-number (which
means it is a combination of digits typically used in passwords), therefore it prints a
classification for all fragments.

Listing 6.10 The classification of the fragment password may sound inappropriate, but
indeed it is correct. WordNet defines this synset as evidence proving that you are who
you say you are; evidence establishing that you are among the group of people already
known to the system; recognition by the system leads to acceptance which matches for
the meaning of password in this case. On the other side, safe is wrongly classified
because WordNet identifies it as a noun used for safes to store valuable content and
not as the adjective of something being safe.

Listing 6.11 In this example, surprisingly, the name dallis is not known, but the word
babygirl is contained in the female names dictionary.

Listing 6.5: Semantic classification example #1

c o r r e c t h o r s e b a t t e r y s t a p l e
−> change_state . v . 0 1 | horse . n . 0 1 | army_unit . n . 0 1 | a r t i f a c t . n . 01

Listing 6.6: Semantic classification example #2

n ina l i nda4eve r
−> nina . n . 0 1 | fname | d i g i t | ever . r . 01

Listing 6.7: Semantic classification example #3

shannenismybabe !
−> fname | be . v . 0 1 | pronouns | c h i l d . n . 0 2 | s p e c i a l

Listing 6.8: Semantic classification example #4

i c h l i e b e d öner
−> x

Listing 6.9: Semantic classification example #5

j e p a r l e f r a n c a i s 1 2 3
−> x | x | x | common−number

Evaluation / Results 37

Listing 6.10: Semantic classification example #6

mysafepassword
−> pronouns | strongbox . n . 0 1 | p o s i t i v e_ i d e n t i f i c a t i o n . n .01

Listing 6.11: Semantic classification example #7

da l l i s i smybabyg i r l
−> x | be . v . 0 1 | pronouns | fname

Table 6.2: Most common semantic structures found in Rockyou.

Structure Found Occurrences

number 2’345’568

char | number 146’460

number | char 104,674

mname | number 65’253

fname | number 54’689

metallic_element.n.01 | number 35’855

city | number 28’158

char | char | number 27’650

person.n.01 | number 24’780

Table 6.2 shows the most common semantic structures from the analysis of the Rockyou
list. It only considered the combinations where all fragments were identified. We see that
persons and city names appear frequently and that numbers are prevalent and are contained
in nearly every structure. The class ofmetallic_element.n.01 is an additional example where
issues with WordNet come into place. Typically, these structures consist of two characters
followed by digits; in many cases, these two characters are the short version of an element
from the periodic table (which WordNet can recognize). On the other hand, the classification
into person.n.01 most likely is correct, as such passwords can consist of relatives and humans
as dad, mother or son.

The examples show that WordNet often has problems to provide the correct synset as
the most likely one. We also think that WordNet did not keep up with the development
of the language used in familiar environments and modern expressions used. This property
makes it challenging to use it correctly in many cases for the classifications, and we need to
rely mostly on the created dictionaries to identify fragments.

6.2 Visualization and Reports
To have a good overview of the analysis results, Óðinn can create plots for specific

modules and also can summarize everything in a PDF report generated with LaTeX. In this
section, we will discuss some exciting results visible in plots and what can be said about the
quality of a wordlist based on them.

Evaluation / Results 38

6.2.1 Length Distribution Module
As the name is already saying, this module plots the length distribution of the passwords

in the analyzed wordlist. With this information, a first impression is given about the quality
of the list. Figure 6.1 shows an expected result from a wordlist. Most common lengths are
between 6 and 10, for longer passwords it is exponentially decreasing with having no entries
with more than 63 characters. In Figure 6.2, on the other hand, there are several peaks at
certain lengths (e.g. 32, 64) and the majority of entries is longer than 20 characters. There
are lines in this wordlist being longer than multiple hundred characters. This plot clearly
shows us that in this wordlist, there are a lot of non-password lines, such as hashes or other
nonsense.

Figure 6.1: Length distribution of passwords in the Hashes.org 2015 list.

Figure 6.2: Length distribution of passwords in the Hashes.org 2015 junk list
(https://hashes.org/left.php). Hashes.org uses regular expressions to filter out common
non-password entries from their wordlist, these removed lines are available in the junk lists.

Evaluation / Results 39

6.2.2 Fragment Distribution Module
Similar to the length distribution module, the fragment distribution module allows get-

ting a quick insight into the structures of the lines of the wordlist. Most of the passwords
typically are consisted of one or only a few fragments. Therefore we expect a fast decreasing
amount of entries when increasing the number of fragments. An excellent example of such
an expected outcome is shown in Figure 6.3. There can be different insights provided than
with the length distribution. For example, the often-used Rockyou wordlist (which shows a
good result on the length distribution) shows some structures which most likely are no pass-
words, as shown in Figure 6.4. In Rockyou certain lines contain HTML strings and other
code elements, definitely not being passwords. These lines cause the fragment distribution
to show the entries with more than 40 fragments, suggesting that this wordlist ideally should
be cleaned from such entries.

Figure 6.3: Fragment count distribution of passwords in the Hashes.org 2015 list.

Figure 6.4: Fragment count distribution of passwords in the Rockyou list.

Evaluation / Results 40

6.2.3 Fragment Heatmap Module
The fragment heatmap plot shows the occurring frequencies of password lengths with a

specific number of fragments. This plot helps to identify patterns in the wordlist and also can
show if lists contain large parts of generated content. Figure 6.5 shows the comparison of the
Hashes.org 2015 against the Rockyou list. Typically these plots show a very high frequency
in the range of low fragment counts and password lengths below 15 (yellow area). In this
range, both lists are similar (with the Hashes.org list being slightly more erratic). When
looking at the higher lengths, we see again that Rockyou must contain some non-common
lines shown by the single entries in the right range of the plot. From this comparison, we
can see that in the range below length 30, the Rockyou list most likely has a slightly higher
quality than the Hashes.org list, but on the other hand, contains more junk lines which are
long and have many fragments.

Another fascinating discovery that can be made in the Hashes.org 2015 list (Figure 6.5a)
is that in the length range of 20-30, every second frame count is more frequent than the
neighboring ones. When filtering out these entries from the list (using the filter features of
Óðinn), we see the reason. The brighter lines (which means more frequent) are caused by
lines which consist of passphrases separated by spaces or dashes, for example, correct-horse-
battery-staple. As such combinations of words separated with single chars always have an
odd count of fragments, they were causing the pattern in the plot.

The Hashes.org 2015 junk list allows further interesting insights. Figure 6.6 shows an
extended heatmap plot. We again clearly see that this list is made up of many trash lines
which for sure are no regular passwords. We will have a closer look at some structures:

• There are certain lengths (e.g. 100, 128, 256) that appear more frequently. This most
likely has to do with certain limitations of the original input where the passwords were
entered or for generated ones that this was a certain limit.

• The highest frequency counts are not in the normally expected range (as described
above) but around the length of 25 and consisting of five or more fragments. Also,
there are multiple other areas where suddenly a higher frequency occurs for a single
value of length or fragments.

• In the range of 35 to 60 fragments and around length 100 there is a larger cluster of
entries. When looking at the lines which caused this section, we see that these entries
are all cracked SHA384 hashes with their plaintexts. SHA384 hashes have a length
of 84 hex characters, with their plaintexts attached the length gets close to 100. So,
the lines were in the form of 98796d...9b1b:password. The hexadecimal hash
consists of characters and digits; this then caused many fragments as there are a lot
of changes between digits and chars in the hash value.

The heatmap plots allow detailed insight into wordlists, together with the filter function
to extract particular ranges of the plot, this is a robust tool to find unwanted entries and
rating wordlists.

Evaluation / Results 41

(a) Fragment heatmap of passwords in the
Hashes.org 2015 list.

(b) Fragment heatmap of the passwords in Rock-
you.

Figure 6.5: Comparison between two wordlists with the fragment heatmap.

Figure 6.6: Fragment heatmap of the Hashes.org 2015 junk list.

6.3 Guessing
On the semantic analysis, the quality of the result is highly dependent on the dictionaries

used to improve the classification of entries that are unknown to WordNet. Also, the guessing
is depending on the dictionaries available and also on which semantic structures should be
guessed. Because of that, we can not run a general evaluation of the semantic guessing.
Examples on the usage of this guessing can be found in Appendix A.7. Therefore, we focus
on the Bi-Fragment guessing module in this section.

6.3.1 Comparison on Password Leaks
We wanted to compare the Bi-Fragment guessing module to the other state-of-the-art

tools. To make this possible without a lot of manual work, we used the Password Guessing

Evaluation / Results 42

Framework (PGF)31. This allowed us to easily compare guesses of all the tools we wanted
to evaluate with different testing sets. The following guessers should be evaluated:

Óðinn Using the Bi-Fragment guesser module, the specific configuration for the generation
is described below.

OMEN Latest available version in the repository32 as of August 2019.

PCFG Using the latest available version in the repository33 as of August 2019.

PRINCE Using the latest release from the repository34, version 0.22.

JTR Markov From John the Ripper using the Markov generation functionality, using the
latest available version as of June 2019 (1.9.0-jumbo-1+bleeding-1a06dc4).

The PGF allows using wordlists and hashlists (as long as unsalted lists are used) to be
used to evaluate. Also, it does not need any GPU resources to run. The checks against the
hashlists are made using John the Ripper, so everything is running on CPU. The abilities
of the system where the evaluation was running on, is not relevant for the outcome of the
evaluation, therefore we do not go into details on that.

In order to keep the amount of resources needed to train all the tools to a reasonable
time, we went for the commonly used Rockyou list as the training list. This list contains
14’344’392 unique password entries. As we wanted to find out how the guessing tools behave
against other lists, we decided to use the full list as the training set and run the guessing
runs against other lists only. To have some variety of results, we decided to use the following
lists as testing sets, which also are commonly used in evaluations:

000webhost The hosting company was breached in 201535. They stored the passwords of
their approximately 15 million customers in plain text. The resulting unique wordlist
contains 10’619’843 unique entries.

eHarmony The dating website eHarmony suffered a breach in 201236. The passwords were
stored using the MD5 hashing algorithm. The resulting hashlist contains 1’516’834
unique hashes.

Linkedin The social network Linkedin suffered a breach in 201237. Four years later it
became public that a much larger amount of user accounts were affected in the same
hack in 201238. In total more than 110 million user accounts were affected whose
passwords were stored using the SHA1 hashing algorithm. The resulting hashlist
contains 61’829’262 unique hashes.

31 https://github.com/RUB-SysSec/Password-Guessing-Framework and https://password-guessing.org/
32 https://github.com/RUB-SysSec/OMEN
33 https://github.com/lakiw/pcfg_cracker
34 https://github.com/hashcat/princeprocessor
35 https://www.000webhost.com/000webhost-database-hacked-data-leaked
36 https://www.eharmony.com/blog/update-on-compromised-passwords/
37 https://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised
38 https://www.linkedin.com/help/linkedin/answer/69603/notice-of-data-breach-may-2016?lang=en

https://github.com/RUB-SysSec/Password-Guessing-Framework
https://password-guessing.org/
https://github.com/RUB-SysSec/OMEN
https://github.com/lakiw/pcfg_cracker
https://github.com/hashcat/princeprocessor
https://www.000webhost.com/000webhost-database-hacked-data-leaked
https://www.eharmony.com/blog/update-on-compromised-passwords/
https://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised
https://www.linkedin.com/help/linkedin/answer/69603/notice-of-data-breach-may-2016?lang=en

Evaluation / Results 43

PwndSub10m The breach notification service Have I Been Pwned released breached pass-
words from a variety of leaks totaling in nearly 550 million entries39. In order to protect
the passwords, they were hashed using SHA1 and later also with NTLM. As the full
list is fairly large, we took a random subset of these hashes with the size of 10 million
entries.

Yahoo The Yahoo list consists of 6’458’020 SHA1 hashes. It is available on Hashes.org
since 201340. Most likely it was retrieved as a partial list of the 500 million large
breach of Yahoo which got public in 201441.

Table 6.3: Removed entries from testing lists by matching against training data.

Test List Total Entries Removed Entries Testing Entries

000webhost 10’619’843 451’096 10’168’747

eHarmony 1’516’834 18’491 1’498’343

Linkedin 61’829’262 3’344’334 58’484’928

pwndSub10m 10’000’000 259’772 9’740’228

Yahoo 6’458’020 93 6’457’927

To make the comparison between the tools more independent from the training set,
before the tools were able to guess against the testing lists, all matches which occurred
in the training list (Rockyou) were removed. Table 6.3 shows the removed entries for the
tested lists. On the first run, each tool was allowed to make 100 million guesses against the
remaining testing set where the matches from Rockyou were removed.

The configuration settings for generating the guesses from Óðinn were the following.
From the start element it should use maximum one Million followers (–guesser-bifragment-
max-outerloops) and for the further elements maximum the top 300 following fragments
(–guesser-bifragment-max-top). We allowed up to 4 fragments being combined (–guesser-
bifragment-max-steps). As we set it using the iterative procedure, a smaller number of more
likely fragments was guessed first.

Results

For normal guessing, we allowed a maximum of 100 million guesses. Figure 6.7 shows
the comparison against the 000webhost testing list. On the first few million guesses, Óðinn
is able to outperform all other tools, shown in Figure 6.8. Afterward, the PCFG guesser is
leading and outperforms all other tools.

The result when comparing the guessers against each other varies significantly, depending
on which testing set is used, with the exception that the PCFG guesser is leading. For
example, when we look at the evaluation against the Linkedin set, as shown in Figure 6.9,

39 https://haveibeenpwned.com/Passwords
40 https://hashes.org/leaks.php?id=38
41 https://yahoo.tumblr.com/post/150781911849/an-important-message-about-yahoo-user-security

https://haveibeenpwned.com/Passwords
https://hashes.org/leaks.php?id=38
https://yahoo.tumblr.com/post/150781911849/an-important-message-about-yahoo-user-security

Evaluation / Results 44

0 20 40 60 80 100
Guesses (millions)

0

200000

400000

600000

800000

1000000
M

at
ch

es

000webhost
JTR Markov
Óðinn
PCFG
PRINCE
OMEN

Figure 6.7: Evaluation against the 000webhost list, with a maximum of 100 million guesses.

0 1 2 3 4 5
Guesses (millions)

0

10000

20000

30000

40000

50000

M
at

ch
es

000webhost
JTR Markov
Óðinn
PCFG
PRINCE
OMEN

Figure 6.8: Evaluation against the 000webhost list, with a maximum of 5 million guesses.

we see that Óðinn got significantly fewer matches than some of the other tools. Compared
to the others, OMEN and PCFG seem to have some steps which are more or less visible.
In Figure 6.10, we see them doing some jumps. We also see that these changes happen at
the same point every time in the case of OMEN. Therefore we can assume that OMEN and
PCFG are not strictly guessing passwords based on the learned probabilities but use some
other ordering. Further, we see that against the eHarmony list, John the Ripper Markov is
not as good as against the other testing lists.

Surprisingly, there was one list, where Óðinn performed extraordinary well compared to
the other tools (except PCFG). This run is shown in Figure 6.11. It also is clearly visible
that the candidates of Óðinn are strictly ordered by probability, therefore the steepness of
the curve is decreasing smoothly. To understand why most of the tools are that bad, we
need to take a look at the matches which they got. Ten random plaintexts from the matches
of each tool are shown in Table 6.4. It seems that the Yahoo dataset contains more complex
passwords than would typically be observed in lists. This can be due to the fact that there
were other password restrictions in place, or the dataset had the easier passwords removed
beforehand. From the examples we see that the other tools mostly guess shorter passwords
and get a few which have special chars (language specific chars). Óðinn on the other hand
gets matches where we see the combinations of fragments, either multiple words combined

Evaluation / Results 45

0 20 40 60 80 100
Guesses (millions)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000
M

at
ch

es

Linkedin
JTR Markov
Óðinn
PCFG
PRINCE
OMEN

Figure 6.9: Evaluation against the Linkedin list, with a maximum of 100 million guesses.

0 20 40 60 80 100
Guesses (millions)

0

20000

40000

60000

80000

100000

120000

140000

M
at

ch
es

eHarmony
JTR Markov
Óðinn
PCFG
PRINCE
OMEN

Figure 6.10: Evaluation against the eHarmony list, with a maximum of 100 million guesses.

as part-of-speech or numbers/special chars mixed with simple words.

0 20 40 60 80 100
Guesses (millions)

0

2000

4000

6000

8000

M
at

ch
es

Yahoo
JTR Markov
Óðinn
PCFG
PRINCE
OMEN

Figure 6.11: Evaluation against the Yahoo list, with a maximum of 100 million guesses.

The outcome of the plaintext comparison between the tools confirms that it is unfair
to compare the guessers directly on full testing lists as we omit the case when we have
more difficult passwords or a list where easy entries were already cracked. Therefore, we
decided to make a second comparison where we are not interested in the absolute number
of passwords recovered, but in how many entries a tool guessed which was not guessed by

Evaluation / Results 46

Table 6.4: Random taken matches against the Yahoo list.

Óðinn OMEN JTR Markov PRINCE PCFG

lisalovesjake puccibelle jar-08 københavn serenDipity

pie rocks toneybrown nicolò nazlıcan workout#1

librodemormon robinhollie pay me findMe reesenicole

justgetthere karmantree seseña mvpewok Gürkchen

cadence4now pinkdrum ma07!! Buckm1 alysaemma

aug10mar janenia2 bayernmünchen RobMike bambidaisy

runner4eva pridesmith KORČULA Godreal brycegreen

candy03nov bullermona janhjan constança hallkodi

cottonmouthgirl scoobylori arribaespaña asdfghjklñ jena!!

action.man dogtiggy bel_29 butGod auntdiana

any of the other tools.
Following is given:

T = {Óðinn,OMEN,JTR Markov,PRINCE,PCFG}

GTi = All guesses from tool Ti (i ∈ [1, 5])

S = {000webhost,eHarmony,Linkedin,pwndSub10m,Yahoo}

Sk = All entries in the testing set k (k ∈ [1, 5])

We define the matches from each tool for a testing list Sk as the following:

MTiSk
= GTi

∩ Sk

To retrieve the unique matches for a tool on the list Sk we use:

UTiSk
= MTiSk

∖ 5⋃
j=1
j 6=i

MTjSk

PGF saves the founds which each tool gets on the evaluation, but it does not save in
which order the passwords were found (it uses a python dictionary internally). Therefore
we can not determine UTiSk

from our previous evaluations. To have some data points in
between the start and the maximum number of guesses, we ran multiple evaluations with
having a changed number of maximum guesses to have the number of unique founds for
certain steps. We set the following positions (in millions):

X = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

As these steps had to be performed by each tool, this resulted in more than 500 eval-
uations to be executed. However, it allowed us to retrieve the unique founds for each tool
at each step. When we look at the normal results again, as shown in Figure 6.12, we see
that Óðinn can not keep up with the other guessers in the number of matches against the

Evaluation / Results 47

while testing set. It also is still similar when we look at the number of unique matches in
Figure 6.13. This comparison still is not fair, as if the total number of matches is higher, it
is nearly sure that also the unique count will be higher. Therefore, we compare the number
of unique matches with respect to of the number of total matches:

UTiSkrel =
UTi

MTi

Figure 6.14 shows the relative comparison of unique matches. PCFG is still clearly
leading, but we see that the other tools are close together with Óðinn getting approximately
ten percent more unique matches. On the other lists, we can observe a similar outcome, for
example, as shown for Linkedin in Figure 6.15.

0 200 400 600 800 1000
Guesses (millions)

0

250000

500000

750000

1000000

1250000

1500000

1750000

M
at

ch
es

000webhost
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure 6.12: Evaluation against the 000webhost list, with a maximum of 1 billion guesses
showing the number of matches for each tool.

0 200 400 600 800 1000
Guesses (millions)

0

100000

200000

300000

400000

500000

600000

700000

800000

Un
iq

ue
 M

at
ch

es

000webhost

JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure 6.13: Evaluation against the 000webhost list, with a maximum of 1 billion guesses
showing the number of unique matches for each tool.

Evaluation / Results 48

0 200 400 600 800 1000
Guesses (millions)

10

20

30

40

50

60

70

80

%
 U

ni
qu

e

000webhost
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure 6.14: Evaluation against the 000webhost list, with a maximum of 1 billion guesses
showing the percentage of matches which were unique.

0 200 400 600 800 1000
Guesses (millions)

10

20

30

40

50

60

70

%
 U

ni
qu

e

Linkedin
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure 6.15: Evaluation against the Linkedin list, with a maximum of 1 billion guesses
showing the percentage of matches which were unique.

6.3.2 Comparison on Left Hashes
As mentioned in the previous section, we were interested in comparing the tools not

only against full test lists but also against more difficult passwords. For this we took the
Hashes.org left 32hex list42 (as of July 15th 2019) as evaluation list. It is ideal to be used
as it contains a large number of uncracked hashes collected over multiple years originating
from many different sources. Typically, easy passwords are quickly found and do not remain
in the left list; therefore, in general, the passwords are more complex and difficult to recover.

We only test the candidates with MD5 (as the hashes in the left list not all necessarily
need to be MD5), the list contains 27’643’254 unique hashes. We evaluated smaller guessed
lists using rules in order to optimize the GPU usage43. All tools were trained on the
Hashes.org found list 201544, for Óðinn we used the following settings for the generation:
10’000 outerloops, 100 top, three fragments, non-iterative. The guessing lists from all the
tools contain 98’761’423 (number of entries in the Óðinn list, enforced on the other tools)

42 https://hashes.org/left.php
43 https://hashcat.net/forum/thread-5287-post-28724.html#pid28724
44 https://hashes.org/left.php

https://hashes.org/left.php
https://hashcat.net/forum/thread-5287-post-28724.html#pid28724
https://hashes.org/left.php

Evaluation / Results 49

Table 6.5: Number of founds when running guessing against the Hashes.org left list and
examples of recovered passwords.

Óðinn OMEN PRINCE PCFG

934 found 452 found 208 found 474 founds

brajaniec glee1233 ka289220@ adiwaj411

roughh11 carytfishing1 @y05135116 PARTgo25

hanyang@05 trapetsare01 fradio13 love2996

joeyandus719 ted10049! @>000world brynn0924

puppyfood.0906 shaunta28 jaia05 prettygurl o5

PaSS18is89 silver2460 sd8125 1005@dsu

gururam@78 shan20110102yc 157930517 infinite04

1215mk cindy2067 wwjd0707 Qweasd098

hlen$#13 prispimmano ms2032 y9598!@#

MANI11JUNE fla3mar2her1 !a1279610 vivian5p11!

and we used the rockyou-30000.rule45 containing the rules. We were not able to use JTR
Markov for this evaluation as it was not able to train on the large Hashes.org 2015 list.

In Table 6.5, we see the number of matches found against the left list by each tested
tool together with some examples. Óðinn got the most founds, which shows that it is more
suited against difficult lists or such where the simple passwords were already removed.

6.3.3 Generated Rules
From the analysis of wordlists, Óðinn can provide all the fragments it found. With the

frequency count, it is possible to have an ordered list of them, with a decreasing order of
probability. When recovering long passwords, it can often be observed that rules which
prepended certain strings to the candidates were effective. An example of such a prepend
rule could be46:

ˆoˆlˆlˆeˆh

This rule, for example, would prepend hello to the word password resulting in the candi-
date hellopassword. So we translated the list of fragments we extracted from Rockyou with
Óðinn into prepending rules. This file contains 752’627 rules in total. In most cases, it is
not needed to have that many rules, but as this rule file is in decreasing probability for the
fragments, the number of needed rules can just be extracted with head to get the N most
probable prepend rules. The ten most probable prepends are shown in Listing 6.12.

45 https://github.com/hashcat/hashcat/blob/master/rules/rockyou-30000.rule
46 Using the syntax of Hashcat’s rule engine: https://hashcat.net/wiki/doku.php?id=rule_based_attack.

The Function ˆx denotes prepending the character x to the input. Functions can be stacked and will be
executed in order from left to right.

https://github.com/hashcat/hashcat/blob/master/rules/rockyou-30000.rule
https://hashcat.net/wiki/doku.php?id=rule_based_attack

Evaluation / Results 50

Listing 6.12: Most probable prepends from Rockyou.

^o^t (to) ^e^m (me)
^e^v^o^ l (l ove) ^n^a (an)
^y^m (my) ^d^n^a (and)
^s^ i (i s) ^e^v^o^ l^ i (i l o v e)
^y^b^a^b (baby) ^e^h^t (the)

We used the same left hashlist from Hashes.org as in the previous section to evaluate how
many and what kind of passwords we can recover with the help of these prepend rules. We
used the Rockyou list together with all the prepend rules. With the run, 1’052 passwords
were recovered in total. Table 6.6 shows examples of these found passwords and which
prepend rule was used for this candidate.

If we now use a wordlist which contains more complex passwords than Rockyou, we can
use the prepend rules to recover even longer passwords. Listing 6.13 shows examples of
passwords recovered from the Hashes.org left list when using the Óðinn generated wordlist
(used in Section 6.3.2) in combination with the prepend rules. We can see that the passwords
consist of multiple combined elements (words, numbers, mixed case). This outcome shows
again that the combination of fragments can allow the reconstruction of longer and more
complex passwords.

Listing 6.13: Example founds from using the Óðinn generated wordlist with prepend rules.

kangdongju1− yumiesme12 ,
minqueen123 ! pharmws10/11
nhvar s i ty#6 cks124
l i l y t r e w i s c o o l wtf85bwin123
jarebomar3@ red s t one j r 10 /
CIA^^1 s t GANGSTERboy12@
LOVELYteddybear10@ sr i roy22@
babumukkaden5 quemaunanuve
yurotube123 . t a k r l i f e . 7
ncrcdancerox d i f l e e 0 7 !

6.4 Preprocessor Integration
Contrary to the initial plan, the Hashtopolis integration does not strictly require a guesser

to have the –skip and –limit flags to allow them to be used. This way, guessers as OMEN and
PCFG can be used without waiting for the developers to offer the necessary flags. Though,
it needs to be considered that this only is useful to use if attacking slower hash algorithms.
Otherwise, the guesser in most cases is not fast enough to quickly catch up to the position
where the specific chunk starts. This would lead to a high overhead when agents have to
wait a long time on every chunk until the position to start is reached.

Evaluation / Results 51

Table 6.6: Example of found passwords with the prepend rules and their accordingly used
rule

Wordlist Entry Rule Found Candidate

kim97 ˆt ˆr ˆm ˆs smrtkim97

buffet1 ˆR ˆG ˆK KGRbuffet1

VAMPIRIA ˆN ˆE ˆW ˆR ˆE ERWENVAMPIRIA

ash145 ˆA ˆT ˆA ˆL LATAash145

faruk ˆp ˆa ˆl ˆo ˆd dolapfaruk

tpark7 ˆh ˆg ˆa ˆp paghtpark7

brown14 ˆU ˆS ˆW WSUbrown14

bottega ˆa ˆr ˆo ˆl ˆf ˆa ˆl ˆl ˆe ˆd dellaflorabottega

pennylin ˆA ˆN ˆN ˆI ˆT TINNApennylin

manju56 ˆt ˆe ˆe ˆn ˆv ˆa ˆn navneetmanju56

Especially for fast hashes, it is recommended to use a rule file as an amplifier (e.g. the
prepend rules described in the previous section). On the one hand, this allows using the
GPU resources more efficiently and on the other hand, this way, the guesser has to generate
fewer candidates for a chunk. This again makes the overhead smaller when using the same
number of chunks.

7
Conclusion

In this thesis, we developed Óðinn, a tool to analyze large wordlists, visualize the outcome,
and guess new passwords. It can be used for a variety of use-cases and is easily extensible
for further purposes by adding more modules. Additionally, we provided an extension to
Hashtopolis by integrating preprocessors to be used in distributed password recovery tasks.
In this chapter, we discuss the evaluation outcomes and discuss future work.

7.1 Results Discussion
We showed that Óðinn can split passwords into their basic fragments and find their

semantic meaning. The quality of the outcome depends heavily on the used dictionaries
for the classification as well as on the source of the wordlist. Generally, it is challenging to
have a generic approach to handle this language-independently, as we have to assume that
wordlists are built containing mixed language passwords. Having specific dictionaries for
different languages may improve this, but it would also impose more sophisticated analysis
to be done and introduce additional false hits.

A similar issue appears when trying to classify a password into languages. Beside using
specific characters which occur only in very few languages, it is nearly impossible to classify
based on a single password. Therefore, the language detection module in Óðinn can only
provide minimal information from the analysis.

The visualization of the analysis results allows a quick overview of a wordlist. Odd
content in a wordlist can be discovered and more deeply analyzed. It is essential to support
the creation of better wordlists and removing junk lines in order to have well suited guesses.
Further, it is the first analytical approach to improve wordlists without manual inspection.

Using the guesser modules of Óðinn, we were able to recover long passwords consisting of
multiple fragments. We compared Óðinn to other state-of-the-art guessers and it shows that
Óðinn is well suited to guess against hashes where other attacks were already exhausted, to
recover longer and more complex passwords/passphrases. In such cases, Óðinn outperforms
the other benchmarked guessers. Additionally, we showed that based on analysis results
from Óðinn, we can create rules which also are effective in recovering difficult passwords.

Conclusion 53

7.2 Future Work
Since the beginning, we developed Óðinn to be flexible to be extended and changed easily.

There are possible improvements and additions for the future as listed below. Further, there
still remain some open research questions.

Frequency Dictionary Improve the quality of the frequency dictionary by adding more
words and trying to reduce the amount of unwanted content. The detection of con-
catenated words and filtering out invalid words remains a challenge.

Semantic Analysis More dictionaries with classes can be added, as well as extending
the current existing dictionaries by more words. This will allow to classify more of
the fragments and improve the quality of the semantic analysis. Additionally, other
languages can be included as well, to classify non-English fragments into their correct
class. The extension and creation of dictionaries is a tedious and time consuming task
but not challenging.
To improve the classifications with WordNet, the grouping can be improved/changed
to use better parental synsets and use a faster approach to reduce the computation
required. This holds some questions to solve. What are the ideal broader groups to be
used, and is there an algorithmic approach to solve this (instead of the used empirical
approach)?

Analysis Modules To explore the case structures in the fragments, we can analyze the
distribution of the positions in the passwords with capitalized letters. While the
implementation of such a module is straight-forward, it needs to be researched if this
gives interesting insights and what can be concluded from such results.

Visualization Modules Visualize additional analysis modules, for example, as the above-
mentioned one and include them in the report. Also, add more control to how the
plots should be rendered, which appear in the report. This purely is implementation
work to be done.

Improve Speed In order to improve the speed of the analysis, the result merge function-
ality can be extended to be able to aggregate the results from multiple machines. This
ability will allow distributing the analysis over multiple machines instead of over mul-
tiple threads only. This requires to introduce an additional layer in the structure of
Óðinn, but technically it is ready to be implemented.

Guesser Splitting Find a better way to split the guessing task into a keyspace. Currently
jumping to a skip position needs some processing time. Ideally, the keyspace should
be created in a way that all positions can be reached quickly and that the workload is
distributed (mostly) equally across the keyspace. This challenge is an open research
question, which is also still unsolved in other guessers.

Extend Report Extend the content of the report to provide more detailed results of the
analysis and provide additional textual support to plots and tables. While being im-
plementation work only, identifying the exact required additional content is a challenge
in itself.

Bibliography

[1] Hashcat advanced password recovery. https://hashcat.net/hashcat. Accessed: 2019-01-
15.

[2] John the Ripper fast password cracker.
https://github.com/magnumripper/JohnTheRipper. Accessed: 2019-01-15.

[3] Password analysis and cracking kit. https://github.com/iphelix/pack. Accessed: 2019-
02-18.

[4] PCFG Cracker: Probabilistic context free grammar password research project.
https://github.com/lakiw/pcfg_cracker. Accessed: 2019-01-15.

[5] PRINCE: Standalone password candidate generator using the prince algorithm.
https://github.com/hashcat/princeprocessor. Accessed: 2019-01-15.

[6] Joseph Bonneau. The science of guessing: Analyzing an anonymized corpus of 70
million passwords. Proceedings - IEEE Symposium on Security and Privacy, (Section
VII):538–552, 2012. ISSN 10816011. doi: 10.1109/SP.2012.49.

[7] Joseph Bonneau and Ekaterina Shutova. Linguistic properties of multi-word
passphrases. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 7398 LNCS:1–12, 2012.
ISSN 03029743. doi: 10.1007/978-3-642-34638-5_1.

[8] Joseph A. Cazier and B. Dawn Medlin. Password security: An empirical investigation
into e-commerce passwords and their crack times. Information Systems Security, 15(6):
45–55, 2006. ISSN 1065898X. doi: 10.1080/10658980601051318.

[9] Hsien Cheng Chou, Hung Chang Lee, Hwan Jeu Yu, Fei Pei Lai, Kuo Hsuan Huang,
and Chih Wen Hsueh. Password cracking based on learned patterns from disclosed
passwords. International Journal of Innovative Computing, Information and Control,
9(2):821–839, 2013. ISSN 13494198.

[10] Markus Dürmuth, Fabian Angelstorf, Claude Castelluccia, Daniele Perito, and Abdel-
beri Chaabane. Omen: Faster password guessing using an ordered markov enumerator.
In International Symposium on Engineering Secure Software and Systems, pages 119–
132. Springer, 2015.

[11] Dinei Florencio and Cormac Herley. A large-scale study of web password habits. Pro-
ceedings of the 16th international conference on World Wide Web - WWW ’07, page
657, 2007. ISSN 08963207. doi: 10.1145/1242572.1242661.

https://hashcat.net/hashcat
https://github.com/magnumripper/JohnTheRipper
https://github.com/iphelix/pack
https://github.com/lakiw/pcfg_cracker
https://github.com/hashcat/princeprocessor

Bibliography 55

[12] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-Cruz. Passgan: A
deep learning approach for password guessing. In International Conference on Applied
Cryptography and Network Security, pages 217–237. Springer, 2019.

[13] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-Cruz. Passgan: A
deep learning approach for password guessing. In Robert H. Deng, Valérie Gauthier-
Umaña, Martín Ochoa, and Moti Yung, editors, Applied Cryptography and Network
Security, pages 217–237, Cham, 2019. Springer International Publishing. ISBN 978-3-
030-21568-2.

[14] Shiva Houshmand, Sudhir Aggarwal, and Randy Flood. Next gen pcfg password crack-
ing. IEEE Transactions on Information Forensics and Security, 10(8):1776–1791, 2015.

[15] Shouling Ji, Shukun Yang, Ting Wang, Changchang Liu, Wei-han Lee, and Raheem
Beyah. PARS: A Uniform and Open-source Password Analysis and Research System.
Proceedings of the 31st Annual Computer Security Applications Conference, pages 321–
330, 2015. doi: 10.1145/2818000.2818018.

[16] Ashwini Rao, Birendra Jha, and Gananand Kini. Effect of grammar on security of long
passwords. Proceedings of the third ACM conference on Data and application security
and privacy - CODASPY ’13, page 317, 2013. doi: 10.1145/2435349.2435395.

[17] Utku Sen. Generating personalized wordlists with natural language processing by ana-
lyzing tweets. https://github.com/tearsecurity/rhodiola/blob/master/rhodiola_paper.
pdf, 2019.

[18] Blase Ur, Saranga Komanduri, Richard Shay, Stephanos Matsumoto, Lujo Bauer, Nico-
las Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Michelle L Mazurek, and Timo-
thy Vidas. Poster: The art of password creation. In Proc. IEEE Symposium on Security
and Privacy, 2013.

[19] Blase Ur, Jonathan Bees, Richard Shay, Nicolas Christin, Fumiko Noma, Sean Segreti,
Lujo Bauer, and Lorrie Faith Crano. “ I Added ‘ !’ at the End to Make It Secure ”:
Observing Password Creation in the Lab. Proceedings of the eleventh Symposium On
Usable Privacy and Security - SOUPS’ 15, pages 123–140, 2015.

[20] Rafael Veras, Julie Thorpe, and Christopher Collins. Visualizing semantics in pass-
words: The Role of Dates. Proceedings of the Ninth International Symposium on Visual-
ization for Cyber Security - VizSec ’12, (1):88–95, 2012. doi: 10.1145/2379690.2379702.

[21] Rafael Veras, Christopher Collins, and Julie Thorpe. On the Semantic Patterns of
Passwords and their Security Impact. In Proceedings 2014 Network and Distributed
System Security Symposium, 2014. ISBN 1-891562-35-5. doi: 10.14722/ndss.2014.23103.

[22] Chun Wang, Steve T K Jan, Hang Hu, Douglas Bossart, and Gang Wang. The Next
Domino to Fall : Empirical Analysis of User Passwords across Online Services.

https://github.com/tearsecurity/rhodiola/blob/master/rhodiola_paper.pdf
https://github.com/tearsecurity/rhodiola/blob/master/rhodiola_paper.pdf

Bibliography 56

[23] Ding Wang, Haibo Cheng, Ping Wang, Xinyi Huang, and Gaopeng Jian. Zipf’s law
in passwords. IEEE Transactions on Information Forensics and Security, 12(11):2776–
2791, 2017.

[24] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek. Password cracking
using probabilistic context-free grammars. In Security and Privacy, 2009 30th IEEE
Symposium on, pages 391–405. IEEE, 2009.

A
Odinn Usage

Information about all the flags usable with Óðinn can be found when calling the help function
as shown in Listing A.1.

Listing A.1: Calling Óðinn help function.

$ python3 __main__. py −−help

To list which modules are available, the list commands can be used, as shown in Listing A.2.

Listing A.2: Listing available modules.

$ python3 __main__. py −− l i s t −ana ly s i s−modules
advancedMasks
cha r s e tD i s t r i bu t i o n
fragmentCounter
. . .

$ python3 __main__. py −− l i s t −v i s u a l i z e−modules
latexSummary
l a t e xF i l t e r
c ha r s e tD i s t r i bu t i o n
. . .

$ python3 __main__. py −− l i s t − f i l t e r −modules
ema i l F i l t e r
l e n g t hF i l t e r
fragmentCountLengthFi lter
. . .

A.1 Analysis
The definition of which modules should be used for the analysis is done in a JSON

configuration file. It can not be done on the command line directly, as there would be no

Odinn Usage 58

simple way to specify chains of modules together with standard modules. Listing A.3 shows
the default configuration which is delivered with Óðinn. The chained modules are ordered
in a sub-list and module components can be used multiple times (e.g. the simpleSplitter
module).

Listing A.3: Default analysis config.

[
" l e ng thD i s t r i bu t i on " ,
" cha r s e tD i s t r i bu t i o n " ,
"advancedMasks " ,
" languageDetect ion " ,
[

" s imp l e Sp l i t t e r " ,
" fragmentCounter "

] ,
[

" s imp l e Sp l i t t e r " ,
" f u l l S p l i t t e r " ,
" s impleSemantic "

]
]

An analysis can then be executed by calling the command as shown in Listing A.4. The
file analysis-config.json contains the module configuration as described above, and the -o
flag specifies where the results file should be saved and -w sets the wordlist to be analyzed.

Listing A.4: Executing analysis with Óðinn.

$ python3 __main__. py −a −A ana ly s i s−c on f i g . j son −o r e s u l t s . j s on \
−w word l i s t . txt

Óðinn by default will load the lines in batches of 100’000 entries to be analyzed. Depend-
ing on the hardware running on, this value can be changed by using the –batch-size <n>
parameter. Also depending on the hardware, the number of threads can be set with using
–thread <n>. The difference between the threads and low-threads is explained in Chapter
5.

A.2 Filtering
By default, when running analysis with Óðinn, all filter modules are active, but they

are not set to filter anything. Each filter module has its specific flags, which are also listed
in the help function. Specifying the filters is done with the -F flag with listing all desired
modules separated by a comma, e.g. as in Listing A.5.

Odinn Usage 59

Listing A.5: Selecting filter modules example.

$ python3 __main__. py −a −A ana ly s i s−c on f i g . j son −o r e s u l t s . j s on \
−w word l i s t . txt −F ema i lF i l t e r , l e n g t hF i l t e r −−skip−emai l s \
−−min−l ength 5 −−max−l ength 10

If needed, the entries which are filtered out by the modules can be written to file by
setting a path with –write-filtered <path>. In case there should only be filtered, and no
analysis should be executed, the –filter-only flag can be set. This can be useful to extract
all entries from a wordlist matching a specific setting. An example is shown in Listing A.6
where the entries should be written to filtered.txt which match the specific mask ?u?l?l?l?l?l.
Listing A.7 shows some example output from using this mask filter.

Listing A.6: Example of filtering only.

$ python3 __main__. py −a −w word l i s t . txt −F maskFi l ter \
−−write− f i l t e r e d f i l t e r e d . txt −− f i l t e r −mask ’?u? l ? l ? l ? l ? l ’

Listing A.7: Filtered entries matching from the command in Listing A.6

Quincy Trunks
Simple Turt le
Speedy Al i sha

A.3 Generate Report
The visualization modules can create LaTeX code which can then be compiled to a PDF

report. To compile the LaTeX code, the distribution needs to be installed, so that pdflatex
can be called on the command line. If not possible, the LaTeX code can be copied and be
compiled on another system later (call the report generation without the –render-latex flag).
Using the -V flag it can be selected, which modules should be included in the report, if not
specified, all existing visualization modules will be called. Listing A.8 shows an example
report generation call from a results file. The argument –latex-path <path> can be used to
set a location to save the report to (instead of the default report folder). All flags which are
used to set plotting specific settings as described in Section A.4 can be used as well, and
they will be applied to the plots in the report.

Listing A.8: Example of generating a report.

$ python3 __main__. py −v −− f u l l −r epor t −R −r r e s u l t s . j s on −V \
latexSummary , cha r s e tD i s t r i bu t i on , l e ng thD i s t r i bu t i on \
−−generate−l a t e x

Odinn Usage 60

A.4 Show Plots
Plots can either can be generated and saved to disk or they can be directly displayed in

windows to explore them dynamically. Plots will always be saved in PDF and SVG format
in the plots folder. Listing A.9 shows an example where just two plots are generated and
saved, without displaying anything. Listing A.10 shows the same plot generation with the
addition that it will open two windows with the two selected plots, offering the ability to
move, zoom, and save at additional locations.

Listing A.9: Example of generating a report.

$ python3 __main__. py −v −V cha r s e tD i s t r i bu t i on , l e ng thD i s t r i bu t i on

Listing A.10: Example of generating a report.

$ python3 __main__. py −v −V cha r s e tD i s t r i bu t i on , l e ng thD i s t r i bu t i on \
−−show−p l o t s

A.5 Bi-Fragment Analysis
The Bi-Fragment analysis is not set in the default module config file, as typically this

results in large json files. So it should only be run if needed. An example of the command
for this run is shown in Listing A.11.

Listing A.11: Example of bi-fragment analysis.

$ python3 __main__. py −a −A ana ly s i s−con f i g−b i f r a g . j son \
−w rockyou . txt

A.6 Bi-Fragment Guessing
The Bi-Fragment analysis is not set in the default module config file, as typically this

results in large JSON files. So it should only be run if needed. An example of the command
for this run is shown in Listing A.11.

–guesser-bifragment-max-top Sets the number of possible right-hand elements of the
current state should be explored. Increasing this number can lead to an exponentially
growing amount of candidates.

–guesser-bifragment-max-steps Sets the maximal number of fragments to be combined.
It typically is set to 3 or 4. Higher numbers will lead to too many candidates.

–guesser-bifragment-max-outerloops Sets how many right-hand elements from the START
element should be taken. It sets how many starting fragments should be used.

–guesser-bifragment-exact-only Set this flag if only combinations with the exact num-
ber of fragments as configured in the max-steps value should be printed (and none
with fewer fragments).

Odinn Usage 61

–guesser-bifragment-skip-nonend Set if only combinations should be printed, where the
last fragment is followed by an END element.

–guesser-bifragment-skip-singlechar Set if fragments with length one should be skipped.

–guesser-bifragment-non-iterative Set that the iterative mode should not be used. This
will generate candidates faster, but the order of elements may not be with decreasing
frequency.

An example using some of the flags is shown in Listing A.12. The values carefully need
to be adjusted as some small changes could mean a massive increase of candidates.

Listing A.12: Example of bi-fragment analysis.

$ python3 __main__. py −g −G biFragmentMixer −r r e s u l t s . j s on \
−−guesser−bifragment−max−top 50 −−guesser−bifragment−max−s t ep s \
3 −−guesser−bifragment−max−out e r l oops 50000 \
−−guesser−bifragment−skip−s i n g l e c h a r

In the special case where the results file from the Bi-Fragment analysis gets fairly large,
the result can be converted into a CSV file which allows the guesser to sequentially load the
file without having to keep it in memory. Listing A.13 shows how an existing results file
is used to create a CSV file and Listing A.14 shows an example how the guesser then can
be started with loading the data from the CSV file (using the –guesser-bifragment-load-file
argument). For the results file, only a dummy input is taken, as the argument is required.

Listing A.13: Example of bi-fragment analysis.

$ python3 __main__. py −−u t i l −−u t i l−export−b i f r a g r e s u l t s . j s on \
> r e s u l t s . csv

Listing A.14: Example of bi-fragment analysis.

$ python3 __main__. py −g −G biFragmentMixer −r dummy. j son \
−−guesser−bifragment−max−top 50 −−guesser−bifragment−max−s t ep s \
3 −−guesser−bifragment−max−out e r l oops 50000 \
−−guesser−bifragment−skip−s i n g l e c h a r \
−−guesser−bifragment−load− f i l e r e s u l t s . csv

A.7 Semantic Guessing
The semantic results of an analysis can be used to guess candidates based on the struc-

tures which were most common in the analysis. The module only takes combinations from
the results where all elements were classified (no x fragments). Listing A.15 shows an ex-
ample where the most common ten combinations are used to generate guesses. The limit
flags set the maximum amount of candidates for a class can maximal be taken to avoid too
many candidates from certain classes.

Odinn Usage 62

Listing A.15: Example of bi-fragment analysis.

$ python3 __main__. py −g −G semantic −r r e s u l t s . j s on \
−−semantic−max−e lements 10 −−semantic−ba s e l i s t−l im i t 100 \
−−semantic−wordnet−l im i t 100

B
Additional Plots

This appendix contains additional plots from the guesser benchmarks which were not used
in the thesis text.

B.1 Analysis Plots
In this section the additional plots from the analysis results of the Hashes.org 2015 list,

the Hashes.org 2015 junk list and Rockyou list are shown.

Figure B.1: Fragment distribution of the Hashes.org 2015 junk list.

Additional Plots 64

Figure B.2: Length distribution from the Rockyou list.

Figure B.3: Fragment Heatmap of the Hashes.org 2015 junk list without the extended axes.

B.2 Comparison with 100m Guesses
This section shows the additional plots from the comparison of the guessers with a

maximum of 100 million guesses.

Additional Plots 65

0 20 40 60 80 100
Guesses (millions)

0

100000

200000

300000

400000

500000

M
at

ch
es

PwndSub10m
JTR Markov
Óðinn
PCFG
PRINCE
OMEN

Figure B.4: Guessers against the PwndSub10m testing list with 100 million guesses.

0 20 40 60 80 100
Guesses (millions)

0

200000

400000

600000

800000

1000000

M
at

ch
es

000webhost
JTR Markov
Óðinn
PCFG
PRINCE
OMEN
PCFG + OMEN
Rockyou + best64

Figure B.5: Guessers against the 000webhost testing list with 100 million guesses, including
using Rockyou + best64 and PCFG with OMEN.

B.3 Comparison with Unique Matches
In this section, the remaining plots for the comparison up to 1000 million guesses and

the comparison with unique founds are shown.

0 200 400 600 800 1000
Guesses (millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
at

ch
es

1e7 Linkedin
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure B.6: Guesser comparison against the Linkedin testing list with 1000 million guesses.

Additional Plots 66

0 200 400 600 800 1000
Guesses (millions)

0

200000

400000

600000

800000

1000000

1200000

1400000
M

at
ch

es

PwndSub10m
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure B.7: Guesser comparison against the PwndSub10m testing list with 1000 million
guesses.

0 200 400 600 800 1000
Guesses (millions)

20

30

40

50

60

70

80

%
 U

ni
qu

e

PwndSub10m
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure B.8: Guesser comparison with unique founds against the PwndSub10m testing list
with 1000 million guesses.

0 200 400 600 800 1000
Guesses (millions)

0

10000

20000

30000

40000

50000

M
at

ch
es

Yahoo
JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure B.9: Guesser comparison against the Yahoo testing list with 1000 million guesses.

Additional Plots 67

0 200 400 600 800 1000
Guesses (millions)

30

40

50

60

70

80

90

100

%
 U

ni
qu

e

Yahoo

JTR Markov
Odinn
PCFG
PRINCE
OMEN

Figure B.10: Guesser comparison with unique founds against the Yahoo testing list with
1000 million guesses.

	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	2 Foundations
	2.1 Password Recovery
	2.2 Password Analysis
	2.3 Hashtopolis
	2.4 Terminology

	3 Related Work
	3.1 Wordlist Analysis
	3.2 Word Splitting
	3.3 Semantic Analysis
	3.4 Preprocessors

	4 Architecture
	4.1 Analysis
	4.1.1 Filtering
	4.1.2 Modules
	4.1.3 Results Data Model

	4.2 Visualization and Reporting
	4.2.1 Modules

	4.3 Guesser
	4.3.1 Fragment Prepend/Append
	4.3.2 Fragment Mixer
	4.3.3 Semantic
	4.3.4 Bi-Fragment Mixer

	4.4 Preprocessor

	5 Implementation
	5.1 Filtering Modules
	5.1.1 Email Filter
	5.1.2 Length Filter
	5.1.3 Mask Filter
	5.1.4 Fragment Count Length Filter
	5.1.5 Semantic Filter

	5.2 Analysis Modules
	5.2.1 Simple Splitter (Processor)
	5.2.2 Full Splitter (Processor)
	5.2.3 Semantic Analysis (Collector)
	5.2.3.1 WordNet Classification
	5.2.3.2 Class Dictionaries & Functions

	5.2.4 Fragment Counter
	5.2.5 Bi-Fragment Counter

	5.3 Visualization Modules
	5.3.1 Fragment Count Distribution
	5.3.2 Fragment-Heatmap

	5.4 Guesser
	5.4.1 Semantic Guesser
	5.4.2 Bi-Fragment Mixer

	5.5 Hashtopolis Preprocessors
	5.5.1 Integration
	5.5.2 Limitations

	6 Evaluation / Results
	6.1 Analysis
	6.1.1 Full Splitter Module
	6.1.2 Language Detection Module
	6.1.3 Semantic Analysis Module

	6.2 Visualization and Reports
	6.2.1 Length Distribution Module
	6.2.2 Fragment Distribution Module
	6.2.3 Fragment Heatmap Module

	6.3 Guessing
	6.3.1 Comparison on Password Leaks
	6.3.2 Comparison on Left Hashes
	6.3.3 Generated Rules

	6.4 Preprocessor Integration

	7 Conclusion
	7.1 Results Discussion
	7.2 Future Work

	Bibliography
	A Odinn Usage
	A.1 Analysis
	A.2 Filtering
	A.3 Generate Report
	A.4 Show Plots
	A.5 Bi-Fragment Analysis
	A.6 Bi-Fragment Guessing
	A.7 Semantic Guessing

	B Additional Plots
	B.1 Analysis Plots
	B.2 Comparison with 100m Guesses
	B.3 Comparison with Unique Matches

