
Evaluating Algorithms for Temporal
Queries in Ad-Hoc Video Retrieval

Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Databases and Information Systems

https://dbis.dmi.unibas.ch/

Examiner: Prof. Dr. Heiko Schuldt

Supervisor: Silvan Heller, MSc.

Viktor Gsteiger

v.gsteiger@unibas.ch

2018-054-700

30.06.2021

Acknowledgments

Firstly, I would like to thank Prof. Dr. Heiko Schuldt for encouraging me to develop my

computer science skills and allow me to write this thesis in the Databases and Information

Systems Group. Furthermore, I would like to thank Silvan Heller for his valuable guidance

that has lifted me and allowed me to see further and develop the skills necessary to conclude

this thesis. Additionally, I also want to thank all the other group members and fellow

students who have given valuable input and constructive criticism.

Lastly, I would like to thank the many people around me that helped me complete this

thesis through their relentless and loving support.

Abstract

Expressing a temporal relationship between different search queries has become more impor-

tant in recent years, especially when working with extensive video and audio data collections.

Enabling queries with such a relationship is achieved by using temporal queries processed by

temporal scoring algorithms. These algorithms aggregate the result sets of multiple search

queries according to a temporal relationship and score the results regarding the similarity

to the temporal query. In this thesis, seven such algorithms were developed and evaluated

regarding response time and searched-item ranking as the primary metrics using a dataset of

109 queries specifically developed to test temporal query algorithms and specified in a newly

developed format. The two best-performing algorithms were subsequently implemented in

vitrivr, a multimedia retrieval system, with changes to both the front-end and the back-end.

The implementation was afterwards successfully used during a competitive evaluation of in-

teractive multimedia retrieval systems. The competitive evaluation has shown that temporal

querying in vitrivr has noticeably improved with regards to response time and searched-item

ranking due to the new algorithms and the new implementation within vitrivr.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Motivating Scenario . 1

1.2 Multimedia Retrieval in vitrivr . 1

1.3 Temporal Multimedia Retrieval . 2

1.4 Video Browser Showdown (VBS) . 2

1.5 Contributions . 2

1.6 Outline . 3

2 Concepts 4

2.1 Retrieval Model of vitrivr . 4

2.2 Temporal Query . 5

2.3 Scoring Algorithms . 8

2.3.1 Simple Temporal Scoring (STA) . 9

2.3.2 vitrivr Temporal Scoring (VITRIVR) 10

2.3.3 A∗ Temporal Scoring (ASTAR) . 12

2.3.4 Cluster Temporal Scoring (CLUSTER) 14

2.3.5 Inverse Decay Temporal Scoring (IDA) 15

2.3.6 Log Normal Temporal Scoring (LNA) 16

2.3.7 Normal Temporal Scoring (NA) . 18

2.3.8 Sequential Temporal Scoring (SQA) 19

3 Evaluation 21

3.1 Setup . 21

3.2 Evaluation Metrics . 22

3.3 Evaluation Dataset . 22

3.4 Temporal Efficiency . 24

3.5 Qualitative Performance . 29

3.6 Discussion . 31

4 Implementation 34

Table of Contents v

4.1 Querying . 34

4.2 Result View . 36

4.3 Temporal Scoring . 37

5 Related Work 39

5.1 VBS participants . 39

5.1.1 Viret . 39

5.1.2 Verge . 40

5.1.3 Vireo . 40

5.1.4 SOM-Hunter V2 . 41

5.1.5 W2VV++ BERT . 41

5.1.6 Visione . 42

5.2 Other Scoring/Rank Aggregation Algorithms 42

5.2.1 Prize-Collecting Steiner Tree Problem 42

5.2.2 Maximum Rank Aggregation Problems 42

5.2.3 Weighted Minimum Feedback Arc Set Problem in Tournaments 43

6 Conclusion 44

6.1 Conclusion . 44

6.2 Further Work . 44

Bibliography 46

Appendix A Task Specification 49

Appendix B Evaluation Plots 56

Declaration on Scientific Integrity 58

1
Introduction

Multimedia data, especially video and audio data, have a temporal context. Queries, where

users express temporal context as part of their information needs, are called temporal queries

in the context of this work. This thesis addresses this feature in vitrivr by developing

and evaluating new algorithms to retrieve results for a temporal query and subsequently

implementing them.

1.1 Motivating Scenario
Let us introduce a small fictional scenario: Jane Doe is a documentary filmmaker with

hundreds of hours of video stored in her multimedia database. The videos are from various

projects and cover all sorts of topics. She has recently received a request for some stock

footage from another filmmaker. She remembers having already captured the requested

footage, a video where firstly a lion is sleeping, then a giraffe is eating leaves, and lastly,

a couple of elephants take a bath in a lake. However, Jane does not remember when she

had recorded this footage and does not remember any other information about the searched

sequence.

She could use her retrieval engine to do a semantic search for the concepts of giraffes, lions,

elephants individually and hope to find the correct result in a reasonable time frame by

sheer luck and brute force searching.

Modern retrieval systems, however, can help Jane by introducing temporal queries. She

can now search for the three segments and order them temporally to retrieve the wanted

sequence.

1.2 Multimedia Retrieval in vitrivr
The multimedia retrieval system utilized and extended during this thesis is vitrivr [19]

developed by the Databases and Information Systems group at the University of Basel.

vitrivr is an open-source, full-stack, content-based, multimedia retrieval system.

Multimedia retrieval in vitrivr is based on abstraction layers used to index and retrieve

the underlying multimedia data. Features can be computer-generated semantic annotations

Introduction 2

but also color or motion information. Several similarity measures are employed to score a

multimedia item in its similarity to a given query.

1.3 Temporal Multimedia Retrieval
As illustrated in the motivating scenario, temporal querying can be very productive in

specific scenarios where someone searches for multimedia data with a temporal context.

Temporal multimedia retrieval, which can also be described as a rank aggregation problem,

involves aggregating results from multiple result sets retrieved by the individual similarity

searches and scoring the aggregated results according to their similarity to the temporal

query. Algorithms that do this aggregation and subsequently score the results will be called

temporal scoring algorithms. This thesis will develop seven and evaluate eight temporal

scoring algorithms, with the current implementation in vitrivr as the baseline, to enable fast

and efficient temporal multimedia retrieval.

1.4 Video Browser Showdown (VBS)
The Video Browser Showdown (VBS) [22] is an annual competition of multimedia retrieval

systems to evaluate the abilities of the participating systems competitively.

The competitors all use the same dataset; in recent instalments, the utilized dataset was

the Vimeo Creative Commons Collection (V3C) [20]. The VBS involves two types of tasks

to evaluate the systems:

• Known-Item Search (KIS): A single video clip of varying length must be retrieved from

the collection. This task has two variations, one where the known item is displayed

on a central screen and one where the moderators textually describe the known item.

• Ad-hoc Video Search (AVS): A general description of a collection of shots is presented,

and the goal is to submit as many shots as possible that fit the description. Whether

the shots fit the description is judged by a jury.

The contribution of this thesis with regards to the VBS competition is to develop a more effi-

cient temporal querying to give vitrivr a competitive advantage over other retrieval systems

with regards to the KIS tasks.1

1.5 Contributions
The contributions of this thesis are the following:

• Develop several temporal scoring algorithms

• Define an evaluation task specification and establish a set of evaluation tasks and cor-

responding temporal queries that can be used to evaluate temporal scoring algorithms

1 AVS tasks have not been specifying temporal sequences in the past. However, one can easily imagine
such tasks.

Introduction 3

• Evaluate the quality of these temporal scoring algorithms concerning the given tem-

poral queries.

• Transfer the current temporal scoring aggregation and scoring of vitrivr from the front-

end to the back-end and implement the temporal scoring algorithms determined to be

the best.

• Present the results on the front-end in an appealing fashion

1.6 Outline
Firstly, this thesis will discuss relevant concepts and the conceptual contribution of the

developed temporal scoring algorithms in Chapter 2. In Chapter 3, the evaluation of the

algorithms will be discussed, while in Chapter 4, the implementation into the existing sys-

tems will be introduced, and related work will be discussed in Chapter 5. The conclusion

and an outlook on possible future contributions will be presented in Chapter 6.

2
Concepts

In the following sections, firstly, the retrieval model of vitrivr will be introduced. Following

this, this thesis’s conceptual contributions concerning temporal queries and scoring algo-

rithms will be discussed.

2.1 Retrieval Model of vitrivr
This thesis will regularly refer to the vitrivr retrieval model. This section is based on what

Heller et al. mentioned [8]. The three core components of the vitrivr system are a multimedia

retrieval database Cottontail DB [7], the retrieval engine Cineast [17], and the browser-based

user interface vitrivr-ng [6]. The entire stack is open source and can be found on Github2.

The vitrivr retrieval stack provides content-based retrieval functionality with multiple query

modalities and similarity notions. The frequently used query modalities in this thesis are

the textual search modalities with Automatic Speech Recognition (ASR), Optical Character

Recognition (OCR), Semantic Tags and Visual Text Co-Embedding. In order to provide

the multiple modalities and similarity notions, the query processing component — Cineast

— provides a runtime for an arbitrary number of independent feature models which can

selectively be used depending on the properties of the queries. The independent feature

modules can perform any database retrieval operation, with the only constraint being that

they produce a scored list of the most similar items regarding the query. Most modules

perform vector space retrieval. In vector space retrieval, the documents and queries are

represented as vectors. The similarity of a query and a document is then expressed as

the similarity of the two vectors. Because vitrivr employs multiple independent retrieval

modules, the types of similarity queries over multimedia data can be extended and adapted

to the current application [6]. A similarity query in Cineast is defined as a query that should

retrieve a list of scored items from a multimedia data collection with a similarity score.

The feature modules provided by vitrivr receive a query representation as the API provided

by Cineast is defined. The API defines a data model for queries to the Cineast retrieval

engine consisting of a list of several query containers. Each query container, in the context

2 https://github.com/vitrivr

Concepts 5

of this thesis also understood to be synonymous with similarity query, can consist of several

stages with their respective terms, with each describing the content of a different modality,

such as the previously mentioned semantic, visual, or auditory and many more. The staged

queries are applied in subsequent order, where each result set represents a filter for the

following similarity query. The modules independently perform similarity searches based

on the components of the query that are important for them. The results produced by the

feature modules are then aggregated using a two-step score-based weighted fusion scheme.

The first step is performed by Cineast, where groups of feature modules with similar notions

of similarity are aggregated. The second step of the scheme is performed by vitrivr-ng based

on interactive configurable weights for the different components. As expected, the fusion

process encourages results scored by multiple modules to be superior to those scored by just

one module. Features that are not scored by any module receive a score of 0; the modules

return a list of all relevant elements scored with the highest possible score of 1.

The contribution of this thesis will extend the existing score-based fusion scheme with a

temporal aggregation and scoring scheme. The existing fusion process will not be adapted

to enable backwards compatibility fully.

2.2 Temporal Query
As discussed in the previous section, the current query data model enables the formulation

of temporally chained query containers representing a staged similarity query. The chained

staged similarity queries are then supposed to be scored to aggregate the temporal sequences

desired by the user. The scoring process is supposed to boost the scores of objects with more

and higher results in multiple such containers. The mentioned problem can also be described

as a rank aggregation problem. The assigned scores that rank results within multiple result

sets must be aggregated according to a temporal sequence to retrieve the elements that best

describe the temporal sequence.

A temporal query will be defined by making the following assumptions:

• A temporal query container denoted ti with i ∈ N0 represents a similarity query as

defined by the retrieval model of Cineast 2.1

• A temporal query consists of one or more temporal query containers {t1, . . . , tn} for

n ≥ 1

• A temporal query has an absolute order from the first to the last segment of the

sequence with ti < tj for all i < j, i, j ∈ N0,

• Only multimedia objects that can be splittet up into segments of data that have a

temporal order are considered for the results of a temporal query

• Temporal scoring creates a list of tuples 〈Rsequence, ssequence〉 with

Rsequence = {r1, . . . , ri} for n ≥ i ≥ 1 a sequence of segments from the multimedia

data collection and ssequence ∈ R0 a similarity score,

Concepts 6

• Each result segment ri ∈ Rsequence has to correspond to a query container ti,

• Two results ri, rj ∈ Rsequence where i 6= j and i < j have to be in the same order as

the corresponding query containers ti, tj where i 6= j and i < j,

• The result of a temporal query is then a list of tuples 〈R, s〉 with R being a set of all

segments from the same object with unique values from the list of tuples created by

temporal scoring and s being the maximum score from all sequences corresponding to

an object from the list of tuples created by temporal scoring.

For a further illustration, the following graphs will illustrate the beforementioned concepts

with the illustrative example from Section 1.1:

Semantic Tag: Lion

t1

Semantic Tag: Giraffe

t2

Semantic Tag: Elephant

t3

temporal query

temporal query container

Figure 2.1: A temporal query.

A temporal query as shown in Fig. 2.1 should result in a temporal sequence. A temporal

sequence is based on the aggregation and scoring of the different result sets from the retrieval

containers. Whether a sequence of results from multiple containers is defined as a better

temporal sequence than another depends on how well the aggregated results reflect the

temporal query. The more segments in the correct absolute order of the query and the

more segments present in multiple container result sets, the higher the score of a retrieved

temporal sequence should be. Additionally, it may be that the system allows the user to

define time distances between two segments. The closer the two segments time difference

is to the one provided to the user, the higher the score of the entire temporal sequence

should be. The scoring should be based on these measures. The exact implementation of

this aggregation score depends on the unique algorithm.

The following example of a result from a temporal query will further illustrate the points

discussed. The scores and created sequences do not represent the results of a specific al-

gorithm and are intended for illustration only. Furthermore, the identification used in the

following examples consists of v objectId segmentId.

Concepts 7

temporal scoring results

temporal scoring tuple

0.75

segment

v 07119 35 v 07119 36 v 07119 38

score

temporal sequence

0.5

v 03165 135 v 03165 163

r1 r2 r3

r3r2

0.25

v 07119 37 v 07119 65

r3r2

Figure 2.2: A temporal scoring result with the sequences generated over all objects by some
scoring algorithm.

The temporal scoring result illustrated in Fig. 2.2 is a potential result list from the query

formulated in Fig. 2.1. Three different result tuples can be seen in the list, two from the

same object with different sequences and one from another object. Fig. 2.3 will display how

the result of a temporal query would look like given the scoring results just mentioned.

Concepts 8

temporal query result

result tuple

0.75

segment

v 07119 35 v 07119 36

v 07119 38

score

segments

0.5

v 03165 135 v 03165 163

v 07119 37

v 07119 65

Figure 2.3: A temporal query result where the segments contributing to the sequences have
been mapped to their respective object and the score of the best sequence is assigned to its
object.

The segments in the result tuples should be ordered by occurrence within an object, as can be

seen in Fig. 2.3. Here also, the max-pooling applied to each object can be seen. Max-pooling

means to take the highest value of a set to describe the set. In the subsequent section, the

developed temporal scoring algorithms will be applied to the example query results from

Fig. 2.2. In Chapter 4 implementing the different steps elaborated in this section will be

discussed.

2.3 Scoring Algorithms
In the following subsections, the temporal scoring algorithms developed during this thesis

will be introduced. Additional ideas for temporal scoring algorithms will be discussed in

Chapter 5.

All algorithms expect one or more result containers as input, with each container consisting

of key-value pairs representing the segment ids of the multimedia data and the retrieval

engine score. The total order of the containers represents the temporal ordering of the

aggregated sequences.

The algorithms return temporal sequences with the object id of the corresponding object,

the start and end of the retrieved temporal sequence and the score given to the temporal

sequence.

Concepts 9

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

Figure 2.4: Example segment results.

Fig. 2.4 shows an illustrative example that will be used with all of the following algorithms.

Five result segments will be focused on from the same object as all the algorithms apply

their logic the same way within one object. In the example t(ei) = startTime/endTime

denotes the start and end of an element ei and scj(ei) = score denotes the score of element

ei for query container c where it is the jth result for that query container. If an element

has no score for a query container, then the retrieval engine did not retrieve this element

for this query container. The provided time distances for the query are T = [10, 10] where

there should be a distance of 10 seconds between the results of the first two containers and

again 10 seconds between the results of the second and third container.

2.3.1 Simple Temporal Scoring (STA)
The Simple Temporal Scoring Algorithm scores the retrieved results according to a sequence

of steps in which results, that return the sought after segments in the correct order and inside

a given time limit, are connected to a temporal sequence. The steps performed during the

scoring are the following:

1. For each temporal query result container, the retrieved results get accumulated into

similarity result storages if more than one result has been retrieved for a segment.

2. For each object, all the similarity result storages are retrieved ordered based on the

segment ids present within the storages. The storages are sorted in the temporal order

of the start of the corresponding segment.

3. The algorithm walks through every similarity result storage and constructs temporal

sequences based on the current segment.

4. To construct the temporal sequences, the highest-scoring similarity result in the next

container within the defined time distance is retrieved and added to the sequence.

5. The sequence for every similarity result storage with the highest score is saved.

Concepts 10

6. The temporal sequences are extracted from the store of the temporal sequences with

the highest score. The score is normalised over the number of temporal result con-

tainers.

sequence1 = 1
3

sequence2 = 2.75
3

sequence3 = 2.25
3 sequence4 = 0.5

3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

similarity result storage

Figure 2.5: Example temporal scoring by simple temporal scoring.

When STA is applied on the example results introduced at the beginning of this section,

the algorithm retrieves four temporal sequences as seen in Fig. 2.5 with sequence2 being

the one with the highest score. Blue arrows note the sequences kept for each segment. How

the similarity result storage has been created can be seen, following it can be seen how the

algorithm constructs the temporal sequences going out from every similarity result storage.

sequence1, for example, is so short because the distance to the next segment from another

container is too far away to be connected.

2.3.2 vitrivr Temporal Scoring (VITRIVR)
A temporal scoring algorithm has already been implemented in the instance of vitrivr present

before starting this thesis. The description of the algorithm is based on what was mentioned

by Heller et al. [8]. The steps performed during the scoring are the following:

1. The multimedia objects segments are sorted temporally, usually based on timestamps

in increasing order.

2. Initially, each segment receives its score, and the initial temporal sequence is the seg-

ment itself. Then for each category within the segment’s scores, potential temporal

sequences are constructed. The construction of potential temporal sequences happens

Concepts 11

incrementally using the current segment, and the next segment that fulfils the def-

inition of a temporal sequence is combined with a temporal sequence. Only those

segments form the temporal sequence that results in the highest score, which is nor-

malised to the number of query containers. This process leads to multiple temporal

sequences starting at a certain segment.

3. For each segment, only the temporal sequence with the highest score is kept, normalised

over the number of temporal containers and rendered as a result.

sequence5 = 1.25
3

sequence3 = 1
3

sequence1 = 2
3 sequence4 = 1.5

3

sequence6 = 0.5
3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

sequence2 = 1.75
3

Figure 2.6: Example temporal scoring by vitrivr.

When vitrivr temporal scoring is applied on the example results introduced at the beginning

of this section, five temporal sequences are retrieved as seen in Fig. 2.6 with sequence2

being the one with the highest score. Blue arrows note the sequences kept for each segment.

A segment was scored on its own and not combined as the algorithm created temporal

sequences for all categories independently. In this example, the assumption that s21(e3) and

s22(e3) come from different categories that are both present with the same score in all other

results was made. This distinction leads to two result sequences going out from segment e2,

but only the higher one is kept. Additionally, sequence1, for example, is so short due to the

same reason as previously discussed with STA.

Concepts 12

2.3.3 A∗ Temporal Scoring (ASTAR)
The idea for an A∗ temporal scoring algorithm was developed while taking the lecture

Introduction to Artificial Intelligence3, where several heuristic planning algorithms were

introduced.

The application utilised for temporal scoring of an A∗ algorithm represents the temporal

layout of a multimedia query as a tree structure. The tree nodes are all the segment scores

added up. The initial node is in each tree one segment to start with. Each layer of the tree

is one temporal query container. The ordering of the nodes from left to right is in sequential

order of the queries.

The heuristic applied indicates how well the following video fits into the temporal sequence.

So the heuristic penalises segments that are to the left of the current node (before), assigns

a linearly increasing score between the current segment and the correct time segment, and

segments outside the given boundary. The action cost is the time distance between the

current node and the following node where a perfect result has distance 1. Every node with

an absolute time distance equal to or less to the perfect result receives a cost of the perfect

time distance subtracted by the actual time distance. Every node with an absolute time

distance larger than the perfect result receives the cost of 150 added with the absolute time

difference between perfect and actual.

1 open := new MinHeap ordered by (f, h)

2 if h(init()) < infinity:

3 open.insert(make_root_node())

4 distances := new HashTable

5 while not open.is_empty():

6 n := open.pop_min()

7 if distances.lookup(n.state) = none or g(n) < distances[n.

state]:

8 distances[n.state] := g(n)

9 if is_goal(n.state):

10 return extract_path(n)

11 for each (a, s’) element of succ(n.state):

12 if h(s’) < infinity:

13 n’ := make_node(n, a, s’)

14 open.insert(n’)

15 return unsolvable

Listing 2.1: Generic A∗ psuedo-code.

The A∗ algorithm can be best described by pseudo-code as seen in Listing 2.1. The goals

reached in our example are the optimal temporal sequences that then get normalised over

the number of temporal containers. In our example, the function is f = g + h where g

3 https://dmi.unibas.ch/de/studium/computer-science-informatik/lehrangebot-fs21/lecture-foundations-
of-artificial-intelligence/

Concepts 13

is the distance of a node to the root along the current path. Additionally, a penalty for

segments outside the defined temporal sequence is added. The heuristic h employed for our

implementation of the A∗ temporal scoring algorithm is the following:

h(s) =

(1− s.current.end−s.previous.end
s.timeDistance) · (s.nQueriesLeft), if s.previous.end ≤ s.current.start ≤ s.previous.end+ s.timeDistance

150, otherwise
(2.1)

And the cost of an action is calculated as follows:

cost(a, timeDistance) =

timeDistance− a.moveDistance+ 1, if a.moveDistance ≤ timeDistance

150 + |timeDistance− a.moveDistance+ 1|, otherwise
(2.2)

A∗ with reopening that was employed during the development of this algorithm is optimal

when using an admissible heuristic. To show that the heuristic is admissible, it is necessary

to prove that the employed heuristic is consistent and goal-aware. Goal-awareness is proven

easily since the only time our heuristic has the value 0 is at a goal state when the number

of queries left is 0.

Consistency can be shown by looking at the triangle inequality h(s) ≤ cost(a) +h(s′) for all

transitions s
a−→ s′:

• From the initial state the heuristic value h(s) will always be 1 if there are any following

nodes and 0 if the initial state is the goal state. Any action cost will be at least 1, so

1 ≤ 1 + h(s′) or 0 ≤ 1 + h(s′) will always be true.

• For a state where the algorithm previously stepped outside the desired time distance,

the algorithm will get a heuristic value of h(s) = 150 but in the following state s′

the algorithm might step into the desired next time distance and get both a heuristic

value h(s′) and cost(a) lower than 150. However, the algorithm accepts this because

it encourages correct sequences aside from the correct time distance.

• If the algorithm previously stepped inside the desired time distance, the algorithm will

get a value between 0 and 1 times the number of temporal containers left. The cost

of any action will be 1 and thus x ≤ 1 + h(s′) for x ∈ [0, 1] will be true.

Therefore our heuristic is not consistent and thus also not admissible and safe. Consequently,

A∗ may find only suboptimal solutions. However, during development, the current imple-

mentation was considered to be sufficient due to its logical setup and the encouraging design

that boosts results with a perfect time distance even if a previous segment was outside the

desired time distance. In a future improvement, it could be interesting to change the cost

function to reflect the number of containers left. The utilised heuristic function also has

the consequence that every state has to save its time value and previous time value and the

time distance at the current level. This design is a slight deviation from the original state

space problem as states usually don’t store information regarding predecessors. However,

as this information is only utilised to calculate the heuristic value, this deviation should not

influence the optimality of the heuristic.

Concepts 14

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 21/30

s22(e3) = 0.75

t(e3) = 21/30

s31(e4) = 0.5

t(e4) = 40/50

node

10

150

159

169

1

Figure 2.7: State space created by ASTAR.

To illustrate A∗ the state space from the previously discussed example as seen in Fig. 2.7 has

been depicted. The heuristic values of the different states could then easily be calculated.

2.3.4 Cluster Temporal Scoring (CLUSTER)
The cluster temporal scoring algorithm creates clusters of one to several segments. The

algorithm creates clusters if two segments have been scored within the same container and

if they are temporally close according to a distance measure. The borders of the clusters are

adapted to the maximum and minimum value of their contained segments. This creation of

clusters happens within each temporal container.

1. Cluster objects are created by accumulating all results within a boundary of 2 seconds

and if both results have received a scored result within one result container.

2. The cluster objects get sorted temporally within their query.

3. Then, for each cluster, potential temporal sequences are constructed. This construc-

tion happens incrementally using the current cluster, and the next cluster that fulfils

the definition of a temporal sequence is combined with a temporal sequence.

4. For each cluster, only the temporal sequence with the highest score is kept, normalised

over the number of temporal containers and rendered as a result.

Concepts 15

cluster

sequence1 = 3.75
3

sequence2 = 2.25
3

sequence3 = 0.5
3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

cluster score = 1.75

cluster score = 1.5

cluster score = 0.5

Figure 2.8: Example temporal scoring by CLUSTER.

When CLUSTER is applied on the example results introduced at the beginning of this

section, three temporal sequences are retrieved as seen in Fig. 2.8 with sequence1 being the

one with the highest score. Blue arrows note the sequences kept for each segment. The first

two segments have been combined into a cluster because they are temporally close to each

other. This creates a new sequence not seen before with a higher score. However, potential

temporal sequences can be lost due to clustering compared with the other algorithms.

2.3.5 Inverse Decay Temporal Scoring (IDA)
The inverse decay temporal scoring algorithm attempts to implement an algorithm similar to

the one currently employed by vitrivr. The difference between the two is that inverse decay

significantly boosts results in the correct time sequence while largely penalising results that

do not adhere to the time differences while not completely discounting results that are not

in the correct time location but closer. Results that are farther away than the perfect result

will be penalised strongly. At the same time, the inverse decay temporal scoring algorithm

employs iterative methodologies instead of recursive ones. The steps the algorithm performs

are the following:

1. Each segment receives its score calculated by adding up the individual scores from the

similarity result. The initial temporal sequence is the segment itself.

2. Then, for each query within the segment’s scores, potential temporal sequences are

constructed. This construction happens incrementally. The current segment and the

next segment that fulfils the definition of a temporal sequence are combined into a

temporal sequence. While combining the results, the weighing of the scores is done

Concepts 16

with a decay function. Segments between the current segment and the time to the next

segment get their score-adjusted with adj(t) = el(t−m) with l > 0 being the penalty

of being not at the perfect spot, m ≤ 0 being the time defined to the next segment,

and t > 0 being the time difference between the next element start and the current

element end. The scores of the segments after the time defined for the next segment

will be adjusted by adj(t) = e−l(t−m) with l > 0 being the penalty of being not at

the perfect spot, m ≤ 0 being the time defined to the next segment, and t > 0 being

the time difference between the next element start and the current element end time.

In our application l = 0.1 is employed in both instances. Items that are within the

perfect time distance receive no penalty on their score.

3. Only those segments, that results in the highest score, which is normalised to the num-

ber of query containers, form the temporal sequence. This process leads to multiple

temporal sequences starting at a particular segment.

4. For each segment, only the temporal sequence with the highest score is kept, normalised

over the number of temporal containers and rendered as a result.

sequence2 = 1+e−0.1·(1)·1.75+0.5
3

≈ 1.028

sequence1 = 0.5+e0.1·(−9)·1.75+0.5
3

≈ 0.737

sequence3 = 1.75+0.5
3

sequence4 = 0.5
3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

segment score = 1.75

Figure 2.9: Example temporal scoring by IDA.

When IDA is applied on the example results introduced in the beginning of this section,

four temporal sequences are retrieved as seen in Fig. 2.9 with sequence2 being the one with

the highest score. A more fuzzy definition of the temporal distances is creating sequences

that have not been created compared with STA from Section 2.3.1.

2.3.6 Log Normal Temporal Scoring (LNA)
The log-normal temporal scoring algorithm is very similar to the inverse decay while em-

ploying a different weighting function to penalise the non-perfect results. The actual im-

Concepts 17

plementation also varies between the two algorithms in the employment of data structures.

The steps the algorithm performs are the following:

1. Each segment receives its score calculated by adding up the individual scores from the

similarity result. The initial temporal sequence is the segment itself.

2. Then, for each query within the segment’s scores, potential temporal sequences are

constructed. This construction happens incrementally using the current segment and

the next segment that fulfils the definition of a temporal sequence will be combined

into a temporal sequence. While combining the results, the weighing of the scores is

done with a log-normal function. The following equation penalises the score:

f(x) =
1

(−x+m) · s ·
√

2 · π
· exp(

− ln(−x+m)2

2 · s
) (2.3)

Where m is the input time difference plus 0.6, s is a constant, with s = 0.5 in our

application, and x is the absolute actual time difference between the segments. As

can be seen according to the function, results that are farther away than +0.6 from

the perfect score will be set to zero as the function is undefined for x ≥ m + 0.6.

These variable numbers have been chosen according to intuition based on trialling out

different versions.

3. Only those segments, that result in the highest score, which is normalised to the num-

ber of query containers, form the temporal sequence. This process leads to multiple

temporal sequences starting at a particular segment.

4. For each segment, only the temporal sequence with the highest score is kept, normalised

over the number of temporal containers and rendered as a result.

sequence2 = 1+0.5
3

sequence1 =
0.5+ 1

4.8
√

2π
e− ln2(9.6)· 1.75+0.5

3
≈ 0.334

sequence3 = 1.75+0.5
3

sequence4 = 0.5
3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

segment score = 1.75

Figure 2.10: Example temporal scoring by LNA.

Concepts 18

When LNA is applied on the example results introduced at the beginning of this section,

four temporal sequences are retrieved as seen in Fig. 2.10 with sequence3 being the one

with the highest score. As expected, the results are similar to previously discussed IDA in

Section 2.3.5. However, border cases could be imagined where LNA would cut off temporal

sequences for being too far away while IDA keeps them.

2.3.7 Normal Temporal Scoring (NA)
The log-normal temporal scoring algorithm is very similar to the inverse decay while em-

ploying a different weighing function to penalise the non-perfect results. The actual im-

plementation also varies between the two algorithms in the employment of data structures.

The steps the algorithm performs are the following:

1. Each segment receives its score calculated by adding up the individual scores from the

similarity result. The initial temporal sequence is the segment itself.

2. Then, for each query within the segment’s scores, potential temporal sequences are

constructed. This construction happens incrementally using the current segment, and

the next segment that fulfils the definition of a temporal sequence, combining them

into a temporal sequence. While combining the results, the weighing of the scores is

done with a normal function. The following equation penalises the score:

f(x) = 5 · 1

2 ·
√

2 · π
· exp(

−1

2
· x−m

2

2

) (2.4)

Where m is the time, input time difference and x is the actual absolute time difference.

3. Only those segments, that result in the highest score, which is normalised to the num-

ber of query containers, form the temporal sequence. This process leads to multiple

temporal sequences starting at a particular segment.

4. For each segment, only the temporal sequence with the highest score is kept, normalised

over the number of temporal containers and rendered as a result.

Concepts 19

sequence2 =
1+5· 1

2
√

2π
e
−1
2

(
1
2

)2
· 1.75+0.5

3
≈ 1.013

sequence1 =
0.5+5· 1

2
√

2π
e
−1
2

(−9
2

)2
· 1.75+0.5

3
≈ 0.333

sequence3 = 1.75+0.5
3

sequence4 = 0.5
3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

segment score = 1.75

Figure 2.11: Example temporal scoring by NA.

When NA is applied on the example results introduced at the beginning of this section,

four temporal sequences are retrieved as seen in Fig. 2.11 with sequence2 being the one

with the highest score. As expected, the results are similar to previously discussed LNA

in Section 2.3.6. However, there are cases where NA will penalise slightly differently than

LNA or IDA where NA will boost a different sequence compared to the others.

2.3.8 Sequential Temporal Scoring (SQA)
Sequential temporal scoring algorithm differs from the previously discussed algorithms. The

significant difference to all previously discussed algorithms is that the sequential temporal

scoring algorithm does not care about any user input regarding the time distance between

two temporally subsequent segments. It instead checks for the existence of a sequence in

general. It, therefore, boosts segments that have results in all temporal containers and of

which the results are in the correct order.

1. The sequential temporal algorithm goes through all extracted segments and constructs

temporal sequences in the right order.

2. It calculates the best score using a priority queue to build and evaluate possible tem-

poral paths from the first segment to the last.

3. For each segment, only the best temporal path is kept, and its score is normalised over

the number of temporal queries.

4. For each segment, the best path is set as the temporal sequence to be ordered by

descending score.

Concepts 20

sequence2 = 1+1.75+0.5
3

sequence1 = 0.5+1.75+0.5
3

sequence3 = 1.75+0.5
3

sequence4 = 0.5
3

s11(e1) = 1

t(e1) = 0/10

s12(e2) = 0.5

t(e2) = 10/20

s21(e3) = 1

t(e3) = 20/30

s22(e3) = 0.75

t(e3) = 20/30

s31(e4) = 0.5

t(e4) = 40/50

result container 1 result container 2 result container 3

segment score = 1.75

Figure 2.12: Example temporal scoring by SQA.

When SQA is applied on the example results introduced at the beginning of this section,

four temporal sequences are retrieved as seen in Fig. 2.12 with sequence2 being the one with

the highest score. As expected, the results are similar to previously discussed algorithms.

However, no score adjustments were applied as only the sequence counts and the time

distances are ignored.

3
Evaluation

In this chapter, the algorithms presented in Section 2.3 will be evaluated. All the spec-

ifications4 for the evaluation are provided, and the source code is public so that others

may replicate the results or test out their algorithms. First, the evaluation setup will be

introduced. Following this, the evaluation metrics employed in general will be proposed.

Subsequently, the evaluation dataset will be examined, followed by a discussion of the re-

sults.

3.1 Setup

Cineast

Query
Processing

Standalone evaluation application

Query
to Cineast

Scoring
and ranking

Evaluation
metrics

Figure 3.1: The standalone application setup.

A test setup of the vitrivr stack evaluated the different temporal scoring algorithms. The

evaluation process can be seen in Fig. 3.1. For the evaluation, a Cottontail DB instance

provides the application’s database, Cineast provides the querying and the application in-

terfaces, and the standalone evaluation application5 developed for this thesis provides the

environment to test the algorithms. Vitrivr-ng was therefore replaced with the evaluation

application. The evaluation application implements the interfaces as described in Section 2.3

and ensures that all algorithms have the same framework for their evaluation.

The evaluation application queries Cineast with the WebSocket interface and then scores the

4 https://github.com/vGsteiger/BachelorsThesisContribution/blob/main/Resources/specifications.json
5 https://github.com/vGsteiger/BachelorsThesisContribution/tree/main/tempAlgEval

Evaluation 22

results returned by Cineast with the different temporal scoring algorithms. Then the evalu-

ation application creates evaluation reports in the CSV format based on several evaluation

metrics discussed in the following chapters. Kotlin was used to implement all algorithms.

Similar data structures, for example, HashMaps and ArrayLists, were employed while de-

veloping the algorithms to ensure no structural disadvantages.

The algorithms were evaluated on a 2017 MacBook Air running with macOS Big Sur 11.2.3

and a 1.8 GHz Dual-Core Intel Core i5 processor and 8 GB 16000 MHz DDR3 Memory.

The Cottontail DB instance was run on an external hard drive, a Seagate BarraCuda Fast

SSD with 500GB storage.

3.2 Evaluation Metrics
A temporal scoring algorithm in an interactive multimedia retrieval setting has to provide

multiple desired properties to help the user. The scoring algorithm has to be fast enough,

and the algorithm has to provide good results. In the specific setting of this thesis, it should

also improve performance relative to the current implementation. Therefore, the following

two metrics will be evaluated:

Speed with regards to response time is measured by the Kotlin native measureNanoTime6

function, which is used around the scoring interface of the evaluation application to

execute the interface function to score and returns the elapsed time in nanoseconds.

Interesting is not only a fast execution in some queries but rather a constantly similar

performance within a reasonable time.

Quality of result sets is in the scope of this thesis defined as the relative and absolute

position of the known item within the result set returned by the scoring algorithm.

To be more precise, the known item position is calculated by counting the position

of the first temporal sequence with the same object ID as the correct result that is

within a 15 seconds boundary of the correct item times. The boundary is defined so

that the retrieved result has to start within a 15-second radius of the beginning of

the correct result start time and ends within a 15-second radius of the correct result

end time. Furthermore, the mean and standard deviation and percentage of results

within relevant ranges of result sets are additional qualitative metrics evaluated in the

following Sections.

Precision-recall plots were also created during the evaluation process, as this metric could

also have been interesting. However, the results proved to be very inconclusive, as can be

seen in Fig. B.2.

3.3 Evaluation Dataset
Reproducibility, which is a primary concern in all sciences, is especially hard to guarantee in

information retrieval (IR) systems. Ferro [4] discussed the main concerns of reproducibility

6 https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.system/measure-nano-time.html

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.system/measure-nano-time.html

Evaluation 23

of IR experiments: Even when the data and software is open source, often there are many

hidden parameters and tunings that restrict the reproducibility. Secondly, the data collec-

tions used for experiments are often not publicly accessible. Lastly, during research, many

aspects of the system get meta evaluated and tuned with inaccessible data.

The evaluation application developed during this thesis, together with a dataset of evaluation

tasks, aims to resolve the previously mentioned concerns. The dataset upon which the

evaluations were performed is the publicly available V3C1 [20] dataset also employed during

the recent Video Browser Showdown competitions.

The evaluation dataset consisted of twenty-five known-item search tasks. For each task, four

query components were developed. The query components were then combinatorially com-

bined into fifteen evaluation queries. These queries were furthermore extended by different

combinations of time differences. In total, every known-item search task was represented by

109 queries. The different time distances were employed to ensure no structural advantage

for one or another algorithm for having “guessed” the time distances optimally.

Listing 3.1: Example specification with one task.

1 {
2 "tasks": [

3 {
4 "taskDescription": "Task on an election official in

the US",

5 "taskType": "KIST",

6 "correctResult": {
7 "V3C1ObjectId": "v_05057",

8 "startAbs": 60.0,

9 "endAbs": 80.0

10 },
11 "queries": [

12 {
13 "containers": [

14 {
15 "terms": [

16 {
17 "category": "text",

18 "type": [

19 "OCR"

20],

21 "data": "Manager"

22 }
23]

24 }
25]

26 }

Evaluation 24

27],

28 "config": {
29 "queryId": "3584f2e1-e562-4e4c-bf25-809c9f110100",

30 "hints": []

31 },
32 "timeDistances": []

33 }
34]

35 }

Each task, as can be seen in Listing 3.1, consists of a task description, a task type that can

become relevant in an interactive evaluation session, the correct result, queries consisting of

staged components which include the query terms, a configuration, and temporal distances

between the queries.

The tasks are then combined into a specification file Listing A.1 that can be shared and

should enable other developers to reproduce the tasks evaluated with the scoring algorithms

developed during the scope of this thesis.

The evaluated tasks were inspired by the online interactive evaluation between SOMHunter

and vitrivr [21]. Furthermore, it should be noted that some queries would inherently render

bad results due to being poorly formulated or due to the underlying retrieval models not

retrieving a result.

3.4 Temporal Efficiency
Firstly, the temporal efficiency evaluation of the temporal scoring algorithms concerning

execution time will be discussed. As can be seen in Fig. 3.2, the performances vary. However,

further data is needed to come to a more conclusive result. Generally, it can be said that the

top row of algorithms, Simple Temporal Scoring (STA), Sequential Temporal Scoring (SQA),

vitrivr Temporal Scoring (VITRIVR), and A∗ Temporal Scoring (ASTAR) tend to perform

worse concerning execution time. While the bottom row of Normal Temporal Scoring (NA),

Inverse Decay Temporal Scoring (IDA), Log-Normal Temporal Scoring (LNA), and Cluster

Temporal Scoring (CLUSTER) have very similar performances with respect to execution

time. The algorithms have been introduced in Section 2.3.

During the evaluation, each task was run individually, and the results of independent runs

were counted individually. In a further evaluation, it could be interesting to run the tasks

multiple times and then measure the mean and standard deviation on these results for the

evaluation.

Evaluation 25

Figure 3.2: Comparing the performance of all temporal scoring algorithms with respect to
execution time.

Firstly, it should be noted that ASTAR is so inefficient when including it in the following

graphs, it makes the results of the other algorithms unreadable, even with a logarithmic

scale.

For the following analysis, it is important to add that only the positive standard deviation is

observed as the worst-case performance of the algorithm is only of interest and not necessarily

best-case behaviour.

Figure 3.3: Temporal scoring time µ and +σ interval for SQA and VITRIVR.

Evaluation 26

The two slowest performing temporal algorithms will now be analysed concerning execution

time apart from ASTAR as seen in Fig. 3.3. It can be observed that they behave very

similarly, with a slight tendency of VITRIVR being more consistent, while SQA seems

to be behaving in a somewhat exponential fashion. This behaviour is also in line with

further investigations while creating the evaluations that SQA will run out of memory when

confronted with too many query containers. Exponential time and memory complexity is

not the desired behaviour of an algorithm in a productive system. In the future, it might be

interesting to implement SQA with more favourable data types and introduce cut-offs for

values below a threshold to reduce the memory load.

Figure 3.4: Temporal scoring time µ and +σ interval for the top five fastest algorithms with
respect to execution time.

The rest of the scoring algorithms can be analysed similarly, and the results are not entirely

conclusive. As can be seen in Fig. 3.4, the scoring times of the algorithms all behave similarly

and reasonably on the same level. This conclusion is an excellent result because they are all

fast enough compared with the current implementation, and subsequently, the focus can be

laid on the following evaluations.

Evaluation 27

Figure 3.5: Temporal scoring time with respect to the number of retrieved results by Cineast.

While it is interesting to see the behaviour of the algorithms concerning the number of

temporal query containers, it is also interesting to see if the number of results retrieved by

Cineast has any influence upon the algorithms utilised. For this, the maximal number of

results that Cineast would return for a query was modified to 15’000. This approach resulted

in sometimes more than 65’000 results of temporal queries to be scored by the algorithms.

The intuition would be that more results would change the execution time of the algorithms.

As can be seen in Fig. 3.5 a trend can certainly be seen from all evaluated algorithms that

would support this intuition; at the same time, it can also be seen that the differences in

execution times do not change exponentially, which is good as it would allow us to use more

retrieved results for scoring.

A more detailed picture of the six best performing algorithms with respect to execution

time can now be analysed. The six best-performing algorithms, compared to the results of

Fig. 3.2, are STA, SQA, CLUSTER, LNA, IDA, NA. The mean execution time as a line

plot was added to have another comparative indicator.

Evaluation 28

Figure 3.6: Comparing the boxplots of the six best performing scoring algorithms with
respect to runtime.

Fig. 3.6 shows that the performance of all six of the algorithms is very similar, except SQA.

SQA seems to suffer from an exponential increase in execution time. Otherwise, the speed

concerning execution time depends on the query, so there is no single fastest algorithm.

Evaluation 29

3.5 Qualitative Performance
The evaluation of the qualitative performance of the temporal scoring algorithms is com-

menced by comparing the distributions of the search item positions.

Figure 3.7: Searched item positions over all queries.

In Fig. 3.7, some specific algorithms can already be seen to tend to have a very favourable

distribution regarding search item positions. As the discussion revolves around retrieval

systems, search item positions anywhere above a certain threshold should not be considered

as the user should not be expected to scroll 20’000 results to find the known item. Therefore

the algorithms will be evaluated concerning some critical metrics, which can be observed in

Table 3.1.

The cell with the best results from each column has been highlighted in blue. If ASTAR,

which was determined as too slow, is best, the cells of ASTAR are additionally highlighted

in yellow. The differences in whether an algorithm has found the searched item at all

between the algorithms can vary because of the different ways the algorithms create temporal

sequences. Additionally, it also shows that some query components did not retrieve the

searched item at all. All tasks were kept because it may very well be that a user creates

such a query, and the algorithms still have to be competitive under these circumstances.

Evaluation 30

Algorithm

Mean
Search
Item
Position

Standard
deviation
Search
Item
Position

Finds
result
in %

Finds
result
in under
10’000
positions
in %

Finds
result
in under
1’000
positions
in %

Finds
result
in under
100
positions
in %

STA 1720 2699 97.884 95.646 64.537 33.449
SQA 1960 3751 97.870 92.919 67.296 35.869
NA 1650 2811 97.869 94.906 68.500 36.107
IDA 1655 2979 97.870 94.584 69.878 42.089
VITRIVR 1736 2820 97.619 94.830 66.660 38.388
CLUSTER 1435 1872 97.870 97.829 59.302 12.132
LNA 1557 2599 97.869 95.558 68.770 30.540
ASTAR 1712 2855 97.980 94.949 67.677 36.364

Table 3.1: Performance comparison of the qualitative results of the algorithm evaluation.
Blue is the best result apart from ASTAR, yellow signifies if ASTAR was better than any
other algorithm.

While NA, LNA, and IDA are very similar from an algorithmic perspective, they sometimes

render pretty different results. IDA proves to be reasonably reliable when the focus is on

whether the algorithm finds the correct result below 1’000 and 100 results. At the same

time, when looking at the mean search item position and the standard deviation, CLUSTER

seems to have the lowest values, which would show that it is a relatively consistent algorithm.

The values are, however, sometimes somewhat similar and can not show conclusive results.

It is generally good to observe that multiple algorithms have better results than the baseline

VITRIVR.

In Fig. 3.8 the results of the algorithms can be seen when only the distribution of the results

between 1’000 and zero are considered. This comparison again shows that IDA performs

very well with the most critical group of results and is better than the baseline.

Figure 3.8: Searched item positions of results below 1’000.

Evaluation 31

Figure 3.9: Search item position over number of queries per algorithm.

The average search item position over the number of temporal queries can be observed in

Fig. 3.9. The figure shows that queries with more than three containers perform better than

queries with precisely three, except SQA. It is important to note that the results from one

query are not conclusive because single query requests often did not return any result at all,

which is why they were excluded from this figure. The quality changes may have several

reasons: estimating the timespans between the segments can significantly impact the results

of an algorithm. At the same time, the results show that a time distance approach seems

to be more sensible in most cases compared to a simple sequential search. Regarding the

results of queries with multiple containers, it may also be hard to develop additional queries

for the short segments provided by known item tasks.

Additionally, a graph to evaluate whether the search item position changed with the number

of results retrieved by Cineast has been created. However, the results were inconclusive.

These results will be excluded from the discussion. The graph is present in Fig. B.3.

3.6 Discussion
After presenting both the qualitative and the quantitative results of the evaluation, the

results are discussed. Furthermore, the algorithms that would be good candidates to be

implemented in the Cineast system are evaluated.

Firstly, there are two kinds of algorithms that have been evaluated. On one hand, various

algorithms score the segments according to the correct sequence and the time distances

between segments. On the other hand, there is SQA that only looks at the correct se-

quence. Before the temporal algorithms with time distances are assessed, SQA as described

in Section 2.3.8 will be evaluated.

As seen in Fig. 3.3, SQA is not the fastest of the algorithms concerning execution time.

However, SQAs runtime is not that much worse than the baseline runtime of VITRIVR.

The implementation of SQA evaluated during the evaluation cycle is known to have some

problems regarding the data types. It would be essential to make changes to the data

Evaluation 32

structures involved in a subsequential implementation to improve the runtime and remove

the slightly exponential increase in runtime over several queries.

Due to its unique ability to produce similar results to the current system and the unique

strength of not needing any temporal distance input, SQA, while attempting to implement

the improvements mentioned beforehand, will be implemented in Cineast.

The algorithm evaluated to be the best performing in the category of temporal distance

querying when implemented in Cineast would be IDA as described in Section 2.3.5.

As both seen in Fig. 3.4 and Fig. 3.6, IDA is one of the fastest performing algorithms. It is

one of the most consistent and with similar variances compared to the other top contenders.

The increase in runtime is also very steady and not exponential, which is an excellent

property. Additionally, as seen in Fig. 3.5, the runtime does not drastically change when

having to evaluate more results.

However, the more significant advantage of IDA comes with the qualitative evaluation of

the algorithm. In Table 3.1 and the comparison in Fig. 3.8 the algorithm performs very well

compared to the other top contenders and better than the baseline VITRIVR.

It is important to note that the differences between IDA, NDA, and NA are not substantial

and any of these three have similar properties. In a further evaluation, it could be interesting

to test out if different parameters of the functions employed in these three algorithms would

produce different results.

To have an additional measure of quality combined with a temporal evaluation, a sort of

VBS score function is introduced. This function is not representative of the scores evaluated

at the VBS competition as a very low penalty for false submissions was employed because

the automatic evaluation setup does not allow for any human interaction with the system.

The formula employed during the evalution is: fKIS
t(t, ws) = dmax(0, 50 + 50 · fTS(t) −

fWSP (ws))e where t is the runtime of the algorithm, fTS(t) = T−t
T was the time penalty

with T = 5′000′000′000, and fWSP (ws) = ws · p the recall penalty with p = 0.4.

Figure 3.10: VBS score over number of queries per algorithm.

Evaluation 33

Fig. 3.10 again shows IDA perform similarly to the other contenders due to having good

results early and a fast scoring time. Therefore, the evaluation is concluded with the verdict

that IDA would be the best temporal distance algorithm to be implemented.

Lastly, the evaluation had shown that the chosen aggregation of results from the same

segment within one temporal container had detriments when several features, especially

semantic tags, were used within one or multiple containers. The issue with semantic tags

is that the corresponding results have a binary score of zero or one. If now results from

semantic tags were combined with results from, for example, Visual Text Co-Embedding,

then the tag query results would dominate over the results from any other feature. It could

be interesting to experiment with a different aggregation function within one container. The

average score could be one such function to be evaluated.

4
Implementation

The two algorithms determined to be valuable concerning the evaluation metrics were im-

plemented into the vitrivr retrieval stack during this thesis. The implementation touched

two systems, Cineast and vitrivr-ng. In the following sections, the two parts of the imple-

mentation will be discussed. Due to the new different modalities of the temporal scoring

algorithms, sequential and time distance, the corresponding query interfaces had to be im-

plemented. Correspondingly, the temporal scoring view had to be updated. On the other

hand, the temporal scoring algorithms were implemented in the Cineast back-end to be

executed as part of a new query message handling.

4.1 Querying
The querying preferences of vitrivr-ng were enhanced to enable the user with additional

query parameters concerning the temporal querying. Additionally, new API messages to be

exchanged between the front-end and the back-end were introduced. When querying, the

user can define the temporal scoring mode between sequential where the user does not pass

on any time distances between the query containers and time distance where the user will

pass on time distances. Additionally, the user can set a maximal length of the sequence that,

when restrictive enough, should help the user to retrieve the correct sequence. The changes in

vitrivr-ng were implemented in the Angular7 framework based on the programming language

TypeScript8.

7 https://angular.io/
8 https://www.typescriptlang.org/

Implementation 35

Figure 4.1: Temporal query preference settings in vitrivr-ng.

In Fig. 4.1, the aforementioned settings can be observed. The data will then be transmitted

to the Cineast instance connected with the WebSocket interface.

(a) A query container in the sequential
temporal query mode.

(b) A query container in the time dis-
tance temporal query mode.

Figure 4.2: Query containers in both temporal query modes.

Additionally, in Fig. 4.2 query, containers for a temporal query with three or more containers

can be observed. In Fig. 4.2a the buttons to change the ordering are the only additional

settings on the level of query containers, while in Fig. 4.2b the user can furthermore set the

time distance to the previous container.

1 TemporalQueryV2 : Object

2 {
3 "queries": Array<TemporalQueryComponent>,

4 "config": QueryConfig,

5 "timeDistances": Array<Float>,

6 "maxLength": Float,

7 "messageType": "Q_TEMP"

8 }

Listing 4.1: TemporalQueryV2 object: Q TEMP.

Implementation 36

The additional information that should be transferred from the front-end to the back-end

is the time distance array between the temporal segments and a max time for the whole

segment. As seen in Listing 4.1, the query message for the new temporal query type was

adapted. The new and adapted query message is backwards compatible as the existing

TemporalQuery has been extended, and the new parameters are optional.

4.2 Result View
Additionally to an updated querying interface in the front-end, the result view was also

updated and simplified. The results of the temporal scoring algorithms from the back-end

will be transmitted with the newly introduced TemporalQueryResult. The result returned

to the user will include the usual QR START, QR END, QR SEGMENT, QR OBJECT,

QR SIMILARITY and then additionally QR TEMPORAL.

1 TemporalQueryResult : Object

2 {
3 "content": Array<TemporalObject>,

4 "count": Integer,

5 "queryId": String,

6 "messageType": "QR_TEMPORAL"

7 }

Listing 4.2: TemporalQueryResult object: QR TEMPORAL.

The new TemporalQueryResult can be seen in Listing 4.2 where the front-end receives the

information to extract and display the temporal sequences. Each temporal sequence consists

of all temporal sequences created from the requested temporal query. No further information

is required as the front-end already has all the other information from the other response

messages. The score of the temporal objects will be used to order the content.

1 TemporalObject : Object

2 {
3 "segments": Array<String>,

4 "objectId": String,

5 "score": Float

6 }

Listing 4.3: TemporalObject object to transfer the segments contained in an object and the

score.

In Listing 4.3, the TemporalObject that returns the max-pooled score of the temporal se-

quences of an object, as well as the segments that have been part of a temporal sequence, can

be seen. The segments array contain unique segments ordered by their temporal position

within the object.

Implementation 37

Figure 4.3: Result view of one expanded result object and one toggled object.

The display of the results can be seen in Fig. 4.3. Here result containers containing all the

segments with results to the previously introduced query in Fig. 2.1 can be seen. The first

container is expanded, while the second one is toggled. The toggle functionality has been

introduced to enable a more accessible search experience as some objects may contain many

segments that are not relevant to the search; those irrelevant objects, however, then clutter

the view for the user.

4.3 Temporal Scoring
The temporal scoring part was implemented in the back-end of vitrivr, the retrieval engine

Cineast. The implementation of Cineast is in the programming language Java. The scoring

was transferred from the previous position of the front-end to the back-end. This change is to

relieve the front-end from expensive calculations and do the calculations on the server-side of

the retrieval stack. The front-end already has too many computations to execute. This relief

is essential as most end users will not have the fastest hardware while most servers usually

have a higher computational power. During the implementation, backwards compatibility

was ensured by adding new independent classes instead of altering the existing code.

In Cineast, the temporal message then gets handled accordingly. Firstly, the information

from all temporal queries is retrieved, and the sequence number and all the results concerning

this particular sequence number will be stored. The staged similarity queries will still be

applied as previously, with the first stage acting as a filter on all subsequent stages and only

the results from the last stage being saved and returned. Sequential temporal scoring (SQA)

introduced in Section 2.3.8 is applied if no time distances have been provided. Else, inverse

decay temporal scoring (IDA) introduced in Section 2.3.5 is applied.

The basic idea is that users know intuitively how much time passes between the segments

for some retrieval tasks, which is likely in, for example, a visual task. However, sometimes

they do not know the distances between the segments but know the order, which is, for

example, likely in a textual task. The max time is there to cap the results that are too large

and to return a smaller subset of results instead of the whole package.

Internally in Cineast, not only the first 10’000 results of a query will be requested, however

all results as this may enhance the chance of finding a good segment. Furthermore, the

scoring will be applied on the prefiltered items if a staged query was executed beforehand.

There is an additional duplicate check to remove duplicate segments from the result list to

clean up redundant clutter. The scored sequences will then be max-pooled over the best

Implementation 38

sequence and combined into result objects as can be observed in Section 2.2. These objects

will then be returned to the user and displayed as discussed in Section 4.2.

5
Related Work

Other multimedia retrieval systems will be discussed in the following sections that have

employed temporal querying in their retrieval interfaces and engines. The other systems

participating in recent instalments of the Video Browser Showdown that enable temporal

querying will be compared to the implementation of this thesis, and commonalities and

differences will be evaluated.

5.1 VBS participants
The evaluation [18] of the most recent evaluated instalment of the VBS competitions in 2019

showed that frequent use of temporal queries increases the performance of retrieval systems.

When combined with other potent querying modalities, the potential of temporal querying

enabled successful teams to achieve good results in the expert evaluation. Moreover, while

the systems rarely employed temporal querying during the previous instalments of the VBS

competition [12], multiple systems have employed such query specifications during the last

VBS competition in 2020.

5.1.1 Viret
In the Viret system, as described in the papers for the 27th ACM International Conference

on Multimedia [14] [13] [11], temporal aggregation is evaluated for each modality separately.

If the user does not provide the second query for a given modality, the system considers

defaulting relevance score values. Viret currently supports a sequence of two queries for the

same modality.

Viret also introduces the notion of a primary/secondary query. If the first query is set as

primary, the overall score of a frame oi for a given modality M is computed from scoreMq1 [i]

and maxi+k
j=i+1(scoreMq2 [j]), where scoreMqi represents an array of relevance scores with re-

spect to qi for a temporally ordered sequence of frames. Where k is, similar to the vitrivr

implementation, the configurable threshold.

The scoring system calculates the overall score of the combined query, scoreK1,K2
qi by mul-

tiplication for textual search, addition for colour-based and query-by-example models, and

Related Work 40

logical AND for localized object models.

Viret was one of the first systems to employ temporal querying during the 2019 VBS com-

petition successfully. However, their system is limited to a sequence of two queries and

thus limited compared to the vitrivr implementation. Furthermore, the Viret system only

permits temporal queries of the same modalities due to the different score combination

methodologies. While their system has shown to perform well, vitrivr system’s differences

are significant enough to distinguish vitrivr positively.

5.1.2 Verge
The multimodal aggregation module of Verge [2] fuses the results of two or more search

modules. In order to perform a temporal search, a query using multiple features of two

adjacent shots is received, the system retrieves the top-N relevant images for one of the

queries, and finally, this list is re-ranked by considering the features of the adjacent shot.

The Verge group uses a multimodal aggregation approach, which combines graph-based and

non-linear aggregation. The temporal search works similar to the scoring introduced by the

Viret team, with having a primary and a secondary shot.

Verge has employed their version of the temporal queries during the 2020 instalment of the

VBS competition. Their algorithm is similar to the one employed by Viret and has the

same drawbacks concerning the number of potential temporal queries. The positive thing to

note is that they employ their temporal scoring after the score adjustments of multimodal

queries, similar to the implementation in vitrivr.

5.1.3 Vireo
Vireo employed their implementation of temporal scoring for the VBS 2020 competition

[15]. The Vireo team implemented their very own and unique version of temporal scoring.

The Vireo system displays two canvases to the user to input two object-sketch queries at

the timestamp t and t′ with t < t′. The similarity of a video V = O1, ..., Ok and two queries

Qt, Qt′ . Is calculated as follows:

1. Calculate two sets of similarities Sim(Qt, O1), ..., Sim(Qt, Ok) and

Sim(Qt′ , O1), ..., Sim(Qt′ , Ok)

2. Construct array MaxSim(Qt, V) = [st1, ..., s
t
k] with st1 = Sim(Qt, O1) and sti =

max(sti−1, Sim(Qt, Oi)) for i > 1. Here the order form 1 to k represents the temporal

order of the key-frames. This is an increasing array where an element sti represents

the maximum similarity of the query Qt to the video segment starting from the first

key-frame to the key-frame i.

3. Construct array MaxSim(Qt′ , V) = [st
′

1 , ..., s
t′

k] with st
′

k = Sim(Qt′ , Qk) and st
′

i =

max(st
′

i+1, Sim(Qt′ , Ii)) for i < k. Here the order from 1 to k represents the temporal

order of the key-frames. This is a decreasing array where an element st
′

i of this array

represents the maximum similarity of the query Qt′ to the video segment starting from

the key-frame i to the last key-frame.

Related Work 41

4. Calculate Sim((Qt, Qt′), V) = maxk−1i=1 (sti + st
′

i+1).

This approach enables the user to remember only the order t < t′ rather than the exact in-

terval between two queries. The implementation proposed by this paper thus also features a

sequence-based query formulation similar to the implementation of sequential temporal scor-

ing as discussed in Section 2.3.8. The drawback of Vireos implementation is that they only

support two adjacent queries compared to multiple in the current vitrivr implementation.

5.1.4 SOM-Hunter V2
SOM-Hunter first participated in the VBS competition in 2020 [9] and showed an up-and-

coming competitor winning by solving 15 out of 22 known-item search tasks. The SOM-

Hunter team has now improved their system for VBS 2021 [24]. SOM-Hunter introduced

temporal queries for their first system in 2020.

Similarly to the other systems discussed, they have introduced three adjacent temporal

queries and limit their users to this number of queries. As the evaluation of this thesis has

shown, this might be a good number of temporal queries for the VBS competition. However,

for longer videos, it might be beneficial to introduce the possibility of more temporal queries.

Their main limitation seems to be the structure of their user interface. The temporal query

containers provided by vitrivr prove substantial help for the users to make the temporal

querying clear and easy to understand.

5.1.5 W2VV++ BERT
The W2VV++ model BoW variant was recently successfully integrated into both Viret and

SOM-Hunter. The Siret team now proposed a W2VV++ model [16] based on the more

complex BERT variant. The novel and interesting feature of the proposed system is the

context-aware query ranker, where individual W2VV++ query results are being re-ranked.

It relaxes the temporal ordering to a temporal co-location context. The system makes the

following assumptions for their implementation:

1. Users can describe the seen scenes in much more detail when asked.

2. The user descriptions span over one scene, and no single segment can contain all the

information provided by the user.

3. All subqueries correspond to a short time window of the searched scene.

4. There are not too many files that correspond to a co-location context query in the

dataset

5. Users often describe longer-lasting events

The system proposed by the Siret team employs a sliding window approach where they

aggregate the scores of the relevance of the results within the step size by either product

or sum aggregations. While this proposal tries to satisfy the assumptions suggested, it is

significantly different from the assumptions of the vitrivr implementation as described in

Related Work 42

Section 2.2. The cluster temporal scoring as described in Section 2.3.4 employed a similar

approach, where the algorithm constructed clusters with temporally close results. However,

the evaluation has shown the results to be quite bad in comparison with the other systems.

5.1.6 Visione
Similar to other systems presented here, Visione also introduced temporal querying for their

2021 version of their retrieval system [1]. They employ a similar strategy to the Viret system

with the possibility to provide two queries that should occur within a certain threshold.

Their system, however, has not added any additional new functionality, and the usefulness

compared to the other systems will have to prove itself during the 2021 instalment of the

competition.

5.2 Other Scoring/Rank Aggregation Algorithms
During the investigations of this thesis into possible algorithms, many other potential ap-

proaches to the problem described in Section 2.2 have been encountered. In the following

subsections, some additional ideas encountered during the investigations will be discussed.

5.2.1 Prize-Collecting Steiner Tree Problem
During the exploration of potential algorithms, graph covering problems were also evaluated.

The Prize-Collecting Steiner Tree Problem as described in [5] is a graph problem with a set

of edges in an edge- and node-weighted graph chosen to satisfy some covering constraint.

The problem asks for a subtree that minimizes the total cost of all edges in the subtree plus

the total profit of all vertices not contained in the subtree. The Prize-Collecting Steiner

Tree graph would consist of segments as nodes and distances between the different segments

from the different containers as edges in the exploration. The problem will have to be

changed from a minimization problem to a maximization problem. However, this should be

possible. Together with the algorithmic framework described in [10] it could be interesting

to implement such an algorithm based on the Prize-Collecting Steiner Tree Problem.

5.2.2 Maximum Rank Aggregation Problems
As already discussed in Section 2.2 the problem of temporal scoring in a Multimedia retrieval

system is also often seen as a rank aggregation problem. The goal of temporal scoring is to

find the best sequence of segments from multiple result sets. According to [3], a maximum

rank aggregation problem is given by a set of m permutations of a set of size n, and the

goal is to find a consensus permutation with minimum distance to the given permutation.

The maximum rank aggregation problem is NP-hard. In the case of this thesis, the given

permutation could be a temporal sequence with a perfect score and an element in each

temporal container and the perfect time distances.

A possible implementation of a maximum rank algorithm on the problem of this thesis

would create, for each object, potential permutations and evaluate the distances between the

Related Work 43

permutations and the given permutation of a perfect result. For each object, the permutation

with the closest distance would determine the score of this object.

The algorithm discussed in [3] could be a start on how to calculate the maximum rank

aggregation problem. However, the creation of potential permutations and the calculation

of Maximum Ranking are very time-consuming and thus very likely not a tractable solution.

5.2.3 Weighted Minimum Feedback Arc Set Problem in Tournaments
In the weighted minimum feedback arc set problem in tournaments as described in [23] a set

of elements V is given, nonnegative weights wi,j and wj, for each pair of distinct elements

i and j, and a permutation π that minimizes the weights of pairs of elements out of order

concerning the permutation is wanted. In the problem of this thesis, the input is a collection

of permutations of segments of one object, and wi,j is the fraction of orderings in which i is

ordered before j. The problem would be further constrained that all output permutations

Π must be consistent with a partial order P . This problem is, same as the maximum rank

aggregation problem, NP-hard. There do exist deterministic algorithms that could be an

exciting approach to temporal scoring.

6
Conclusion

This chapter wraps up the thesis by reflecting on the contributions and suggesting possible

future work.

6.1 Conclusion
During this thesis, new algorithms for temporal scoring were developed and evaluated. For

the evaluation with regards to quality and time effectiveness, a stand-alone evaluation appli-

cation has been developed. A task specification file format to define tasks for the evaluation

application to evaluate the algorithms was established. The tasks were manually defined

and inspired by earlier known-item search tasks.

Based on the results, two algorithms were further developed and implemented in Cineast.

This means that vitrivr’s temporal scoring was moved from the front-end of vitrivr-ng to

the retrieval engine Cineast. New API endpoints to facilitate this change were created,

and the handling of the temporal query messages was extended. Three additional query

parameters were introduced to communicate the necessary information from the front-end

to the back-end for the temporal rank aggregation. The results were then deployed and

successfully employed during the 10th anniversary of the Video Browser Showdown.

6.2 Further Work
With a focus on the Lifelog Search Challenge, the evaluation of the following ideas might

be necessary.

• Additional query parameters could be enabled for the temporal queries to be passed

on to the back-end with, for example, a setting in which a user can define which query

containers must be necessarily present in the sequences and others which are optional.

• The display of the temporal sequences could be further enhanced by colour-coding

the query containers and the corresponding segments to clarify which segment has

contributed to which query and establish the order of temporal sequences further.

Conclusion 45

• A different result score aggregation function could be used for the result aggregation

within one container to weaken the effect of binary scored features.

Furthermore, the following broader questions could be interesting for further work:

• The evaluation specification could be extended with additional parameters for the

algorithms to allow future changes.

• Additional temporal scoring algorithms could be developed and evaluated. Some ideas

for other algorithms were discussed in Chapter 5.

• Additional analysis tools in the front-end could be implemented for the users to un-

derstand their queries’ results better.

• The temporal querying interface in vitrivr-ng could be remodelled to enable a more

compact search experience

• All scoring algorithms introduced implement adding up the individual results for seg-

ments. Other ways of combining the result scores from the queries could be tried

out in a future iteration. Subsequently, additional evaluation tasks with more mixed

modalities could be developed to test different score combination methodologies.

Bibliography

[1] Giuseppe Amato, Paolo Bolettieri, Fabrizio Falchi, Claudio Gennaro, Nicola Messina,

Lucia Vadicamo, and Claudio Vairo. Visione at video browser showdown 2021. In

Jakub Lokoč, Tomáš Skopal, Klaus Schoeffmann, Vasileios Mezaris, Xirong Li, Stefanos

Vrochidis, and Ioannis Patras, editors, MultiMedia Modeling, pages 473–478, Cham,

2021. Springer International Publishing. ISBN 978-3-030-67835-7.

[2] Stelios Andreadis, Anastasia Moumtzidou, Konstantinos Apostolidis, Konstantinos Gk-

ountakos, Damianos Galanopoulos, Emmanouil Michail, Ilias Gialampoukidis, Stefanos

Vrochidis, Vasileios Mezaris, and Ioannis Kompatsiaris. Verge in vbs 2020. In Yong Man

Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-

Chun Hu, and Wesley De Neve, editors, MultiMedia Modeling, pages 778–783, Cham,

2020. Springer International Publishing. ISBN 978-3-030-37734-2.

[3] Christian Bachmaier, Franz Josef Brandenburg, Andreas Gleißner, and Andreas

Hofmeier. On maximum rank aggregation problems. In Thierry Lecroq and Laurent

Mouchard, editors, Combinatorial Algorithms, pages 14–27, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg. ISBN 978-3-642-45278-9.

[4] Nicola Ferro. Reproducibility challenges in information retrieval evaluation. J. Data

and Information Quality, 8(2), January 2017. ISSN 1936-1955. doi: 10.1145/3020206.

[5] Takuro Fukunaga. Covering problems in edge- and node-weighted graphs. Discrete

Optimization, 20:40–61, 2016. ISSN 1572-5286. doi: https://doi.org/10.1016/j.disopt.

2016.03.001.

[6] Ralph Gasser, Luca Rossetto, and Heiko Schuldt. Multimodal multimedia retrieval

with vitrivr. In Proceedings of the 2019 on International Conference on Multimedia

Retrieval, ICMR ’19, page 391–394, New York, NY, USA, 2019. Association for Com-

puting Machinery. ISBN 9781450367653. doi: 10.1145/3323873.3326921.

[7] Ralph Gasser, Luca Rossetto, Silvan Heller, and Heiko Schuldt. Cottontail db: An

open source database system for multimedia retrieval and analysis. In Proceedings of

the 28th ACM International Conference on Multimedia, MM ’20, page 4465–4468, New

York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379885.

doi: 10.1145/3394171.3414538.

[8] S. Heller, L. Sauter, H. Schuldt, and L. Rossetto. Multi-stage queries and temporal scor-

ing in vitrivr. In 2020 IEEE International Conference on Multimedia Expo Workshops

(ICMEW), pages 1–5, 2020. doi: 10.1109/ICMEW46912.2020.9105954.

Bibliography 47

[9] Miroslav Kratochv́ıl, Patrik Veselý, Frantǐsek Mejzĺık, and Jakub Lokoč. Som-hunter:

Video browsing with relevance-to-som feedback loop. In Yong Man Ro, Wen-Huang

Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wes-

ley De Neve, editors, MultiMedia Modeling, pages 790–795, Cham, 2020. Springer In-

ternational Publishing. ISBN 978-3-030-37734-2.

[10] Ivana Ljubić, René Weiskircher, Ulrich Pferschy, Gunnar W. Klau, Petra Mutzel, and

Matteo Fischetti. An algorithmic framework for the exact solution of the prize-collecting

steiner tree problem. Mathematical Programming, 105(2):427–449, Feb 2006. ISSN

1436-4646. doi: 10.1007/s10107-005-0660-x.

[11] Jakub Lokoč, Gregor Kovalč́ık, and Tomáš Souček. Viret at video browser showdown

2020. In Yong Man Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-

Woo Choi, Min-Chun Hu, and Wesley De Neve, editors, MultiMedia Modeling, pages

784–789, Cham, 2020. Springer International Publishing. ISBN 978-3-030-37734-2.

[12] Jakub Lokoč, Gregor Kovalč́ık, Bernd Münzer, Klaus Schöffmann, Werner Bailer, Ralph

Gasser, Stefanos Vrochidis, Phuong Anh Nguyen, Sitapa Rujikietgumjorn, and Kai Uwe

Barthel. Interactive search or sequential browsing? a detailed analysis of the video

browser showdown 2018. ACM Trans. Multimedia Comput. Commun. Appl., 15(1),

February 2019. ISSN 1551-6857. doi: 10.1145/3295663.

[13] Jakub Lokoč, Gregor Kovalč́ık, Tomáš Souček, Jaroslav Moravec, and Přemysl Čech.

Viret: A video retrieval tool for interactive known-item search. In Proceedings

of the 2019 on International Conference on Multimedia Retrieval, ICMR ’19, page

177–181, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450367653. doi: 10.1145/3323873.3325034.

[14] Jakub Lokoč, Gregor Kovalčik, Tomáš Souček, Jaroslav Moravec, and Přemysl Čech.

A framework for effective known-item search in video. In Proceedings of the 27th ACM

International Conference on Multimedia, MM ’19, page 1777–1785, New York, NY,

USA, 2019. Association for Computing Machinery. ISBN 9781450368896. doi: 10.

1145/3343031.3351046.

[15] Phuong Anh Nguyen, Jiaxin Wu, Chong-Wah Ngo, Danny Francis, and Benoit Huet.

Vireo @ video browser showdown 2020. In Yong Man Ro, Wen-Huang Cheng, Junmo

Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu, and Wesley De Neve,

editors, MultiMedia Modeling, pages 772–777, Cham, 2020. Springer International Pub-

lishing. ISBN 978-3-030-37734-2.

[16] Ladislav Peška, Gregor Kovalč́ık, Tomáš Souček, Vı́t Škrhák, and Jakub Lokoč.

W2vv++ bert model at vbs 2021. In Jakub Lokoč, Tomáš Skopal, Klaus Schoeff-

mann, Vasileios Mezaris, Xirong Li, Stefanos Vrochidis, and Ioannis Patras, editors,

MultiMedia Modeling, pages 467–472, Cham, 2021. Springer International Publishing.

ISBN 978-3-030-67835-7.

Bibliography 48

[17] L. Rossetto, I. Giangreco, and H. Schuldt. Cineast: A multi-feature sketch-based video

retrieval engine. In 2014 IEEE International Symposium on Multimedia, pages 18–23,

2014. doi: 10.1109/ISM.2014.38.

[18] L. Rossetto, R. Gasser, J. Lokoč, W. Bailer, K. Schoeffmann, B. Muenzer, T. Souček,

P. A. Nguyen, P. Bolettieri, A. Leibetseder, and S. Vrochidis. Interactive video retrieval

in the age of deep learning – detailed evaluation of vbs 2019. IEEE Transactions on

Multimedia, 23:243–256, 2021. doi: 10.1109/TMM.2020.2980944.

[19] Luca Rossetto, Ivan Giangreco, Claudiu Tanase, and Heiko Schuldt. Vitrivr: A flexible

retrieval stack supporting multiple query modes for searching in multimedia collections.

In Proceedings of the 24th ACM International Conference on Multimedia, MM ’16, page

1183–1186, New York, NY, USA, 2016. Association for Computing Machinery. ISBN

9781450336031. doi: 10.1145/2964284.2973797.

[20] Luca Rossetto, Heiko Schuldt, George Awad, and Asad A. Butt. V3c – a research video

collection. In Ioannis Kompatsiaris, Benoit Huet, Vasileios Mezaris, Cathal Gurrin,

Wen-Huang Cheng, and Stefanos Vrochidis, editors, MultiMedia Modeling, pages 349–

360, Cham, 2019. Springer International Publishing. ISBN 978-3-030-05710-7.

[21] Luca Rossetto, Ralph Gasser, Silvan Heller, Mahnaz Parian-Scherb, Loris Sauter, Flo-

rian Spiess, Heiko Schuldt, Ladislav Peska, Tomas Soucek, Miroslav Kratochvil, Fran-

tisek Mejzlik, Patrik Vesely, and Jakub Lokoc. On the user-centric comparative remote

evaluation of interactive video search systems. IEEE MultiMedia, pages 1–1, 2021. doi:

10.1109/MMUL.2021.3066779.

[22] Klaus Schoeffmann. Video browser showdown 2012-2019: A review. In 2019 Inter-

national Conference on Content-Based Multimedia Indexing (CBMI), pages 1–4, 2019.

doi: 10.1109/CBMI.2019.8877397.

[23] Anke van Zuylen and David P. Williamson. Deterministic algorithms for rank aggre-

gation and other ranking and clustering problems. In Christos Kaklamanis and Martin

Skutella, editors, Approximation and Online Algorithms, pages 260–273, Berlin, Hei-

delberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-77918-6.

[24] Patrik Veselý, Frantǐsek Mejzĺık, and Jakub Lokoč. Somhunter v2 at video browser

showdown 2021. In Jakub Lokoč, Tomáš Skopal, Klaus Schoeffmann, Vasileios Mezaris,

Xirong Li, Stefanos Vrochidis, and Ioannis Patras, editors, MultiMedia Modeling, pages

461–466, Cham, 2021. Springer International Publishing. ISBN 978-3-030-67835-7.

A
Task Specification

1 {
2 "$schema": "http://json-schema.org/schema#",

3 "title": "Specification",

4 "type": "object",

5 "properties": {
6 "tasks": {
7 "type": "array",

8 "items": {
9 "$ref": "#/$defs/task"

10 }
11 }
12 },
13 "required": [

14 "tasks"

15],

16 "$defs": {
17 "task": {
18 "type": "object",

19 "properties": {
20 "taskDescription": {
21 "type": "string",

22 "description": "Task description(KIS-T) / information

about the video sequence (KIS-V)"

23 },
24 "taskType": {
25 "type": "string",

26 "enum": [

27 "KIST",

28 "KISV"

29],

Task Specification 50

30 "description": "The type of the task at hand for better

classification"

31 },
32 "correctResult": {
33 "$ref": "#/$defs/correctResult"

34 },
35 "queries": {
36 "$ref": "#/$defs/Query",

37 "description": "Queries used to retrieve the data. One

temporal query consists of multiple queries done in

succession."

38 },
39 "timeDistances": {
40 "type": "array",

41 "items": {
42 "type": "number"

43 },
44 "description": "List of times between the queries used

for the temporal scoring of closeness."

45 }
46 },
47 "required": [

48 "taskDescription",

49 "taskType",

50 "correctResult",

51 "queries"

52]

53 },
54 "correctResult": {
55 "type": "object",

56 "properties:": {
57 "V3C1ObjectId": {
58 "type": "string",

59 "description": "V3C1 object ID to locate the media item.

ObjectId is enough because with the timestamps we

can easily evaluate if a returned result is within

those boundaries."

60 },
61 "start": {
62 "type": "number",

63 "description": "Start of the correct result"

64 },
65 "end": {

Task Specification 51

66 "type": "number",

67 "description": "End of the correct result"

68 }
69 },
70 "required": [

71 "V3C1ObjectId",

72 "start",

73 "end"

74]

75 },
76 "Query": {
77 "type": "object",

78 "properties": {
79 "containers": {
80 "type": "array",

81 "items": {
82 "$ref": "#/$defs/QueryContainer"

83 },
84 "description": "List of QueryContainer"

85 },
86 "config": {
87 "$ref": "#/$defs/QueryConfig"

88 }
89 },
90 "required": [

91 "containers",

92 "config"

93]

94 },
95 "QueryContainer": {
96 "type": "object",

97 "properties": {
98 "terms": {
99 "type": "array",

100 "items": {
101 "$ref": "#/$defs/Term"

102 },
103 "description": "List of Terms"

104 }
105 },
106 "required": [

107 "terms"

108]

Task Specification 52

109 },
110 "Term": {
111 "type": "object",

112 "properties": {
113 "category": {
114 "type": "string",

115 "enum": [

116 "text",

117 "image",

118 "sketch",

119 "filter"

120],

121 "description": "Collection of categories to employ while

searching"

122 },
123 "type": {
124 "type": "array",

125 "items": {
126 "type": "string",

127 "enum": [

128 "metadata",

129 "OCR",

130 "ASR",

131 "concept",

132 "localizedObject",

133 "caption",

134 "jointEmbedding",

135 "custom",

136 "globalFeatures",

137 "localFeatures",

138 "feedbackModel",

139 "color",

140 "edge",

141 "motion",

142 "semanticSegmentation",

143 "B/W",

144 "dominantColor",

145 "resolution",

146 "numberOfObjects"

147]

148 },
149 "description": "Collection of categories to employ while

searching"

Task Specification 53

150 }
151 },
152 "allOf": [

153 {
154 "if": {
155 "properties": {
156 "category": {
157 "const": "text"

158 }
159 }
160 },
161 "then": {
162 "if": {
163 "properties": {
164 "type": {
165 "const": "concept"

166 }
167 }
168 },
169 "then": {
170 "properties": {
171 "data": {
172 "type": "string",

173 "description": "The query data which is in the

locally normal json format as base64 string

with the format data:application/json;base64

,data."

174 }
175 }
176 },
177 "else": {
178 "properties": {
179 "data": {
180 "type": "string",

181 "description": "The query data to be queried for

for example ASR or OCR as a plain string."

182 }
183 }
184 }
185 }
186 },
187 {
188 "if": {

Task Specification 54

189 "properties": {
190 "category": {
191 "const": "image"

192 }
193 }
194 },
195 "then": {
196 "properties": {
197 "data": {
198 "type": "string",

199 "description": "The query data as base64 string

with the format data:image/{file_format};base6
4,data"

200 }
201 }
202 }
203 },
204 {
205 "if": {
206 "properties": {
207 "category": {
208 "const": "sketch"

209 }
210 }
211 },
212 "then": {
213 "properties": {
214 "data": {
215 "type": "string",

216 "description": "The query data as base64 string

with the format data:image/{file_format};base6
4,data"

217 }
218 }
219 }
220 },
221 {
222 "if": {
223 "properties": {
224 "category": {
225 "const": "filter"

226 }
227 }

Task Specification 55

228 },
229 "then": {
230 "properties": {
231 "data": {
232 "type": "string",

233 "description": "The query data which is in the

locally normal json format as base64 string

with the format data:application/json;base64,

data."

234 }
235 }
236 }
237 }
238],

239 "required": [

240 "type",

241 "data"

242]

243 },
244 "QueryConfig": {
245 "type": "object",

246 "properties": {
247 "queryId": {
248 "type": "string",

249 "description": "Same as what was in the request if

specified or else will be randomly generated"

250 }
251 },
252 "required": []

253 }
254 }
255 }

Listing A.1: Task specification for temporal scoring algorithm evaluation

B
Evaluation Plots

(a) Precision-Recall plot of ASTAR (b) Precision-Recall plot of CLUSTER

(c) Precision-Recall plot of IDA (d) Precision-Recall plot of LNA

Evaluation Plots 57

(a) Precision-Recall plot of STA (b) Precision-Recall plot of VITRIVR

(c) Precision-Recall plot of NA (d) Precision-Recall plot of SQA

Figure B.2: Precision Recall plots of all evaluated algorithms

Figure B.3: Search item position compared with retrieval results from Cineast

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Viktor Gsteiger

Matriculation number — Matrikelnummer

2018-054-700

Title of work — Titel der Arbeit

Evaluating Algorithms for Temporal Queries in Ad-Hoc Video Retrieval

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 30.06.2021

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivating Scenario
	1.2 Multimedia Retrieval in vitrivr
	1.3 Temporal Multimedia Retrieval
	1.4 Video Browser Showdown (VBS)
	1.5 Contributions
	1.6 Outline

	2 Concepts
	2.1 Retrieval Model of vitrivr
	2.2 Temporal Query
	2.3 Scoring Algorithms
	2.3.1 Simple Temporal Scoring (STA)
	2.3.2 vitrivr Temporal Scoring (VITRIVR)
	2.3.3 A Temporal Scoring (ASTAR)
	2.3.4 Cluster Temporal Scoring (CLUSTER)
	2.3.5 Inverse Decay Temporal Scoring (IDA)
	2.3.6 Log Normal Temporal Scoring (LNA)
	2.3.7 Normal Temporal Scoring (NA)
	2.3.8 Sequential Temporal Scoring (SQA)

	3 Evaluation
	3.1 Setup
	3.2 Evaluation Metrics
	3.3 Evaluation Dataset
	3.4 Temporal Efficiency
	3.5 Qualitative Performance
	3.6 Discussion

	4 Implementation
	4.1 Querying
	4.2 Result View
	4.3 Temporal Scoring

	5 Related Work
	5.1 VBS participants
	5.1.1 Viret
	5.1.2 Verge
	5.1.3 Vireo
	5.1.4 SOM-Hunter V2
	5.1.5 W2VV++ BERT
	5.1.6 Visione

	5.2 Other Scoring/Rank Aggregation Algorithms
	5.2.1 Prize-Collecting Steiner Tree Problem
	5.2.2 Maximum Rank Aggregation Problems
	5.2.3 Weighted Minimum Feedback Arc Set Problem in Tournaments

	6 Conclusion
	6.1 Conclusion
	6.2 Further Work

	Bibliography
	A Task Specification
	B Evaluation Plots
	Declaration on Scientific Integrity

